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Abstract

1t is important for robots that act in human-centered en-
vironments to build image processing in a bottom-up man-
ner. This paper proposes a method to autonomously acquire
image feature extraction that is suitable for motion genera-
tion while moving in unknown environment. The proposed
method extracts low level features without specifying image
processing for robot body and obstacles. The position of
body is acquired in image by clustering of SIFT features
with motion information and state transition model is gen-
erated. Based on a learning model of adaptive addition of
state tramsition model, collision relevant features are de-
tected. Features that emerge when the robot can not move
are acquired as collision relevant features. The proposed
framework is evaluated with real images of the manipulator
and an obstacle in obstacle avoidance.

1. Introduction

In building a robot that act in human-centered environ-
ments, it is not practical to embed the information of all
possible objects to be recognized. Thus, it is important that
robots acquire information autonomously from unknown
environment. An important issue is development of image
processing ability. Minato et al. pointed out that it is impor-
tant for the development of intelligent robot that the robot
can generate feature extractor of the image autonomously
[1]. They proposed to obtain image processing filters au-
tonomously based on maximization of conditional entropy
defined by image inputs and actions, where desired action
for each image input is given as teaching signals. The learn-
ing ability of robot would be improved if motion generation
is concurrently considered in feature extraction learning.
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In the case where a robot does not have any information
on image input, to discover the position of its own body in
the image is an important issue. Fitzpatrick et al. showed
a bottom-up acquisition of body and object representation
[2]. They proposed to find the robot body as what moves
in the image first when motor command is given and then
find an object as what moves the next to its body. The robot
body and the object were acquired by difference processing.
Stoytchev proposed a method to discover the robot body
in the image and acquire similarity transformation between
images with different scales [3]. In this research, markers
that move concurrently with motor commands are detected
as a part of body. From the viewpoint of autonomous image
processing, however, it is specialized approach for extrac-
tion of robot arm due to using markers. Though acquisition
of body image has been actively investigated, its applica-
tion to motion generation including state transition predic-
tion model, planning method and controller has not been
sufficiently discussed. If robot can learn lower level image
features in a bottom-up manner instead of using difference
processing, the applicability of the robot can be broadened.

This paper proposes an acquisition of low level image
feature extraction which is closely coupled with motion
generation via state transition estimation. In this paper, col-
lision avoidance by a two-link manipulator is implemented
as a task for the robot system. We use SIFT (Scale Invariant
Feature Transform) features to find robot body image and
detect collision relevant features. SIFT is one of the meth-
ods that describe features in image proposed by Lowe [5].
SIFT can describe constant features for rotation and varia-
tion of scales and has been applied to robot vision recently
(e.g. [6]).

An advantage of the proposed method is that it does not
depend on specific hand-coded design. Thus, it can be eas-
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ily applied to different manipulators. Robot can acquire ac-
tion which suits environment autonomously thorough trial
and error without advance informations of the environment
and the robot. Our approach generates the motion of the
robot with reinforcement learning [7] in image coordinate
instead of using configuration space [8]. The reason for this
is that it is easy to control the robot body when a target
position of the body is given in the image coordinate. An-
other advantage is that the proposed framework can be re-
garded as an extension of MOSAIC (Modular Selection and
Identification for Control)[4], which is known as controller
for nonlinear and unsteady systems with multiple- modules
structure.

The experimental setup is described in section 2. Section
3 describes the proposed method. The verification of the
method by experiment is given in section 4. Finally, section
5 concludes this paper.

2 Problem Setting

Suppose there is a manipulator where kinematic parame-
ters are unknown. There are two tasks for the robot system.
The first task is to move a part of the body to a target po-
sition in the 2D image coordinate, where representation of
the body (which part is the body in the image) is not given
in advance. The second task is to move the part of the body
to a target position while avoiding collision with obstacles.
Here, representation of the obstacles is not given in advance,
either.

3 Image Feature Acquisition with Collision
Avoidance

First, the robot builds representation of its own body in
the image obtained by the camera. The task for the robot is
to control the center of the body relevant features (hereafter
called the position of the body) to a target position. The
position of the manipulator is discovered using correspon-
dence between a motor command and motion of features in
the image. This body detection does not utilize any specific
knowledge on the image of the robot manipulator except
for synchronousness between motion of the manipulator in
the image and motor command. As low-level feature de-
tection, we apply SIFT. In the first process, the manipulator
can move freely without any collision with obstacles.

State transition models of the manipulator are generated
by estimation of Jacobian using the position of the body
and the displacement between corresponding features be-
fore and after motor command. By this, the robot can con-
trol to move the manipulator.

Next, the robot finds visual features of collision with ob-
stacles for collision avoidance for motion generation. The
process in this stage deals with the collision between the
manipulator and the obstacle.
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Finally, the robot moves while avoiding the obstacle, af-
ter acquiring the feature that is relevant to collision. Dy-
namic programming with updated dynamics models is used
in motion generation.

3.1 Extraction of body relevant features

Features which move in the image when the manipulator
is commanded to move are extracted as body relevant fea-
tures. In this subsection it is assumed that there is no col-
lision with obstacles or no objects that moves irrelevantly
to the manipulator. First, SIFT features are calculated for
two images, one before motor command (displacement of
joint angle Aq) and the other after the command. SIFT fea-
tures (keypoints) contain 128 dimensional feature vectors
and two dimensional position vectors in the image coordi-
nate. Using the feature vectors, matching is calculated (by
comparing Euclidian norms) among keypoints in the two
images.

Suppose n keypoints have been matched in the two im-
ages. Let p,(t) (i = 1,2,---,n) € R? denote the posi-
tion of ¢-th matched feature in the image before the motor
command and p;(t + At) € R? denote the position of i-
th matched feature which corresponds to p; (¢) in the image
after the command. The displacement of i-th feature in the
image coordinate is defined by

v, =p;(t+At) —p;(t), i=1,2,--- ,n. (1)

To find a group of keypoints that move similar directions
with similar positions, clustering with [v7, p?]7 € R* is
calculated. Mean shift [9] is used for the clustering.

The cluster which has the largest mean displacement is
regarded as the body relevant features since the displace-
ment of body relevant features is supposed to have the
largest value. The cluster for the body relevant feature is
decided as
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where j = 1,2,--- ,m denotes the index of cluster and
C; denotes the set of j-th cluster. Figure 1 shows an out-
line of acquisition of body relevant features. Blue circles in
the figure indicate SIFT features (keypoints). The size of
circle shows scale of the feature. The red ellipse indicates
the cluster of keypoints with similar displacements and po-
sitions. Figure 2 shows an example of matching between
SIFT features. In the figure, blue circles indicate features
that are matched and red ones indicate mismatched.

3.2 Generation of state transition models

In the second step, the relation between motor command
Agq and displacement of the position of the body is esti-
mated. This relation can be used to predict the motions of



Figure 1. Outline of clustering to extract body
relevant features
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(a) before motor command (b) after motor command

Figure 2. Example of matching of SIFT fea-
tures

body relevant features and to realize desired motions of the
features. In general, the relation between displacement of
joint angle and velocity of the manipulator in the image is
represented as follows.

z=Jq, 3)
where & denotes the velocity of the hand in the image co-
ordinate, ¢ denotes the angular velocity of joint, and J,
denotes Jacobian.

Suppose [ small displacements of joint angle
Aqy,Aqs, -+, Aq; € R? are tested as motor commands at
the same initial angle of g. Let Q = [Aqq, Agy, -+ , Aqy]
and corresponding displacements of body rele-
vant features in the image coordinate be defined as
X = [Axq,Azo, - -, Axy). It holds from X = J,Q that
the least square approximation of J, is given by

J,=X(Q"Q)'Q". 4)

J, is approximated for pairs of (¢1,q2). ¢1 — g2 space is
discretized into 1y x ny grids and J, is approximated at
each grid.

3.3 Acquisition of collision relevant fea-
tures

In the third step, features that are relevant to collisions
between the manipulator and obstacles are acquired. Here,
the motor command Aq € R? is given to the robot ran-
domly while the workspace contains an obstacle. Using the
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Figure 3. Outline of acquisition of collision
relevant features

state transition model described in the previous section, the
position of a body relevant feature at the next time step can
be predicted as

T(t + At) = x(t) + J;Aq(t). 5)

When the robot collides with the obstacle, the actual mo-
tion of the manipulator does not match the prediction of
Eqn. (5). That is, the actual state transition will be

z(t + At) = x(t). (6)
In such case, a new prediction model is created to account
for the different state transition. Features that emerge in this
new transition for the first time are memorized for switch-
ing the state transition models. The idea of finding collision
relevant features is depicted in Figure 3. In Figure 3(a), the
robot can move the link to the upper direction. This small
motion matches the prediction given by the state transition
model of Eqn. (5). On the other hand, when the link comes
close to the obstacle as shown in Figure 3(b), the link can
not be moved to the same direction any more. The first
model of Eqn. (5) can not predict the transition but the new
model of Eqn. (6) can account for this case. The red cir-
cle indicates a feature that emerged at this situation. This
feature can be used to switch the prediction models.

An example of detecting collision relevant features is
shown in Figure 4. Red circles in Figure 4(a) indicate fea-
tures that emerged when collision occurred, i.e., features
that did not match features in the image of the previous time
step.

Note here that the detected features for a collision men-
tioned above contains features that are actually not relevant
to collision (see small red circles dispersed in Figure 4(b)).
These irrelevant features are detected because of the pro-
cess of matching of SIFT features under the influence of
noise. To remove these irrelevant features, features that did



Figure 4. Example of acquisition of collision
relevant features
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Figure 5. selection of state transition model

not match in the process described in 3.1 (red circles in Fig-
ure 2) are stored in advance. By comparing the detected
features with the stored mismatching features, the collision
relevant features can be extracted.

The flow of processing for motion generation is depicted
in Figure 5, where f denotes SIFT feature vectors. The po-
sition of the body part « is extracted from f and fed into
planner/controller and each state transition model. The out-
put of state transition models are selected by the switcher
and utilized to modify planning and control. In our applica-
tion, two state transition models described by Eqn. (5) and
Eqn. (6) are obtained. When collision relevant features are
detected, the transition model is switched from model Eqn.
(5) to model Eqn. (6).

3.4 Motion generation

Dynamic programming, which is a sort of reinforcement
learning, is used for motion generation with adaptive modi-
fication of state transition probabilities. The state for plan-
ning and control is the position of the body in the 2D image
coordinate. The state is discretized into my X mgo grids.
Actions are defined as transitions to the neighbor state grids
to four directions (up, down, right and left). Update of the
value functions at each grid (each state s and action a) is
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given as

max, » | PL/[RE, +V(s)] (D)

S

Z P:s’ [Rgs’ + ’YV(S/)] (8)

V(s) and Q(s, a) denote the state value function and the ac-
tion value function, respectively. a is action. PZ, denotes
the state transition probability and the state transition is as-
sumed be controlled deterministically in this application.
denotes the discount factor and R denotes the reward. Ini-
tially, the value functions are calculated with R = 0 for the
target position and R = —1 for all other states and actions.

When an action is decided by the action value function
at each state, the motor command is calculated by Aq =
J q_lA:c, where A« is given by the action on the state grid.

If there are collision relevant features, the state transi-
tion model is switched to the model which gives prediction
of Eqn. (6). The value iteration of Eqn. (7) is processed
with the new transition model at the colliding position and
it results in a trajectory that avoids the collision.

4 Experimental Results

4.1 Experimental Setup

We use two PCs as shown in Figure 6, the one controls
the manipulator and the other gets images by a stereo cam-
era. Two joints of the manipulator are controlled for reach-
ing motion. The stereo camera is used to get 2D image and
range (3D) image, which is calculated by hardware of the
stereo vision system. 2D and 3D images are stored with
various postures of the manipulator off-line. With those im-
ages, a simulation with real images of the manipulator is
built. In the simulation, the input image of the manipu-
lator can be obtained when a motor command (small dis-
placement of joint angles) is given. Besides, 3D images of
obstacles are also taken in advance. By calculating inter-
ference between 3D pixels of the manipulator and the ob-
stacles, collision can be simulated. Thus, the manipulator
does not move when collision with obstacles occurs in the
simulation.

4.2 Acquisition of body relevant features

In Figure 7, the results of clustering with mean shift
using position and displacement of features which are de-
tected by SIFT matching are shown. It can be seen that
some keypoints on the manipulator are extracted in the two
examples. Extraction of body is succeeded for all of 116
poses in the sense that the position of the body is around the
manipulator link. More strictly evaluating, the position in
90.5% cases is on the link.
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Figure 6. Experimental system

Figure 8. All acquired collision relevant fea-
tures

Figure 7. Example of acquisition of body rel-
evant feature

Based on these results, Jacobian matrices are approxi-
mated with four displacements of joint angles for each grid,
+5[deg] for ¢; and £10[deg] for go. The number of grids
for the approximation is set as n; = ng = 11, within the
range of 0 < ¢; < 50[deg] and 50 < g2 < 150 [deg].

4.3 Acquisition of collision relevant fea-
tures

To obtain images with collision with an obstacle, the
robot moves its arm so that the arm contacts with the ob-
stacle at various positions. Figure 8(b) shows all acquired
collision relevant features.

Table 1 shows evaluation of collision detection. The re-
sult of recognizing whether given images contain collision
relevant features or not. Totally 294 images are tested, in-
cluding 19 images with collision relevant features.

4.4 Obstacle avoidance

The discretization of state space for the motion planning
is set as mq mo = 10. The range of discretization of

Table 1. Evaluation of collision detection

Collision  [%] | Nocollision  [%]
Recognized as
collision 15/21 [71.4] 4/273 [1.5]
Recognized as
no collision 6/21 [28.6] 269 /273 [98.5]
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Figure 9. Result of reaching

state space in the image coordinate is 141.3 < z < 389.1,
77.8 < y < 266.6. Taking the effect of discretization into
account, the task is judged to be finished when the distance
between the position of the body and the target position is
smaller than a threshold value. The discount factor is set as
v = 0.9. Figure 9 shows a trajectory of reaching motion
realized by the proposed method. Green circles indicate the
positions of the body and black circles indicate the target
position.

Figure 10 shows a trajectory with an obstacle, where the
initial configuration of the manipulator and the target po-
sition for the robot body is the same as the case shown in
Figure 9. Red circles in the figure indicate collision rele-
vant features. Note here that the position of the obstacle
is different from the experiment described in 4.2. That is,
the stored collision relevant features are tested in a similar
but different situation to the learning phase. The difference
between the positions of those two cases are 0.2[m] in the
world coordinate. In comparison with Figure 9, where the
manipulator moves straight toward the target, the manipula-
tor once moved upward to avoid collision with the obstacle.



Figure 10. Result of avoidance obstacles

4.5 Discussion

Though a successful trajectory generation was shown in
4.3, there were failures for different conditions of initial
configurations and target positions. Those failures were
caused by two reasons: First, the clustering of the body
relevant features was not consistent enough. The cluster
with the largest displacement can vary depending on im-
ages, which can be also seen in Figure 9, 10 (green circles
localize various parts of the arm). A possible solution for
this is to utilize more information of SIFT features to con-
sistently find the body part.

Second, generation of state transition model is not pre-
cise enough because of the SIFT matching errore The re-
sult of average of 5 patterns of SIFT matching for the part
of hand is shown Table.2. Failure 1 expresses there are no
features to match. Failure 2 expresses matched feature is
wrong. This result is not good enough increasing of match-
ing accuracy is needede

5 Conclusion

In this paper, we proposed to acquire image feature ex-
traction in a bottom-up manner that is suitable for motion
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Table 2. Success rate of SIFT matching

Feature | Ave. # of features | Percentage[%]
All 30.0

Success 14.6 48.7

Failure 1 10.2 34.0

Failure 2 5.2 17.3

generation of a manipulator. The proposed method first
finds body relevant SIFT features autonomously, followed
by acquisition of collision relevant SIFT features. Colli-
sion relevant features are extracted by the generation of the
state transition models based on Jacobian approximation
between motor command and body motion in the image. An
appropriate collision avoidance behavior was realized with
dynamic programming with on-line update of state transi-
tion model. One of our future works is to extend this idea of
autonomous feature extraction to other kinds of robot mo-
tions, such as locomotion (localization) and manipulation
of objects. The first step to such extensions will be to im-
prove the generality of collision relevant features, because
only one kind of obstacle was tested in the experiment.
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