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Abstract—Fuzzy algorithms provide intuitive method for robot 
obstacle avoidance. Fuzzy controllers incorporating a design 
based on lookup tables (LUT) enable faster obstacle avoidance 
in environment with multiple obstacles. In an earlier study, we 
introduced a full LUT-based architecture for an 18-rule 
Positive/Negative (P/N) fuzzy controller. In this study, the 
number of fuzzy rules is expanded to 50. Because of the extra 
rules, the controller apparently needs more LUT(s) buffers. In 
other words, the buffer size increases with the complexity of 
the fuzzy controller. Therefore, we propose a LUT sharing 
method to reduce the buffer size without significantly 
degrading the performance of the controller. The final 
objective of this work is to design a LUT-based fuzzy controller 
whose buffer size is independent of the complexity of the fuzzy 
system. The proposed method is evaluated by simulating a 50-
rule P/N fuzzy controller using Microsoft Robotics Developer 
Studio (MSRDS). The simulation results show that in 
comparison with the method not using LUT(s), full LUT-based 
method and the LUT sharing method reduce the operational 
time by nearly 80% and 70%, respectively. Although the LUT 
sharing method needs 1.5 times more operational time than the 
full LUT methods, it reduces the buffer size by more than 90%. 

Keywords- robot navigation; obstacle avoidance; fuzzy 
controller; lookup table 

I.  INTRODUCTION 
Obstacle avoidance algorithms for autonomous 

navigation aim to navigate a robot to a target position 
without human control. The robot acquires information about 
the obstacles from sensors and updates a navigation map. 
The robot’s path on the map from the current position to the 
target position is determined by these obstacles. If the map 
does not change during the navigation, obstacle avoidance is 
not necessary because a well-defined path safely leads the 
robot to the target position. However, if unexpected obstacles 
suddenly appear on the path, the robot must avoid them to 
arrive at the target position without collisions. To avoid these 
obstacles and navigate to the target position in real time, the 
robot must rapidly determine its steering direction and 
velocity. This study investigates fast real-time obstacle 
avoidance for robot navigation and focuses on improvement 
of its performance and optimization of the implementation. 

Several algorithms were proposed for robot obstacle 
avoidance, including potential field algorithms [1], vector 
field histogram algorithms [2], and fuzzy controller 

algorithms [3]. The fundamentals of fuzzy controller 
methods were presented by Wang [4], Palm [5], Passino [6], 
Aguirre [7] and others. As the results of these papers, fuzzy 
controller methods have an advantage in real-time 
applications because they provide simpler and more intuitive 
methods for obstacle avoidance. Lilly [8] presented a P/N 
fuzzy obstacle avoidance controller and provided more 
intuitive method for robot obstacle avoidance [8]; this 
method used negative fuzzy rules to eliminate redundant 
fuzzy rules. 

This paper is based on the P/N rule fuzzy controller 
method proposed in [8] and is an extension of our previous 
work [9]. 

The rest of this paper is organized as follows. Section 2 
introduces the P/N rule fuzzy controller method and 
discusses the design of a 50-rule P/N fuzzy controller. 
Section 3 proposes a lookup table (LUT) sharing method for 
the controller. Section 4 describes the hardware design of the 
controller, and Section 5 presents our simulation and 
comparison results. Finally, Section 6 summarizes our 
conclusions. 

II. P/N RULE FUZZY CONTROLLER 
The positive rules of traditional fuzzy systems only 

describe the operations to be carried out. In 
Positive/Negative (P/N) rule fuzzy system, negative fuzzy 
rules are introduced to prescribe actions to avoid rather than 
execute. The positive rules induce proper system outputs of 
the fuzzy controller as the same manner of traditional fuzzy 
system rules while negative-rules prevent the system 
producing improper fuzzy outputs. One of the applications of 
the P/N rule fuzzy system is obstacle avoidance for 
autonomous robot navigation. In this application, the positive 
rules guide the robot to target while the negative rules 
prevent collisions. The positive rules dominant when only a 
few obstacles are present, and the negative rules begin to 
have an effect only when obstacles appear in the robot 
navigation path. If the obstacles are far from the robot’s 
current position, the negative rules rarely affect the system. 
When the distance between the obstacles and the robot 
decreases, the negative rules begin to dominate the fuzzy 
system.  

A. Design of 50-Rule P/N Fuzzy System 
The fuzzy controller proposed in this paper is based on 
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two types of inputs; laser range finder (LRF) sensor data 
and a relative target position. The LRF sensor provides a 
distance vector of directions over a 180° range with an 
angular resolution of 0.5°. Once the target position has been 
determined, the position is fixed on the navigation map. 
However, the relative target position should vary as the 
robot moves. The robot navigation controller must update 
the relative target information, which consists of the target 
distance and target direction. The fuzzy controller output is 
the steering direction for the robot. The controller can also 
convert the output into specific values such as velocities for 
the two differential wheels. Of the 50 P/N fuzzy rules, 25 
are positive rules and relate to the target position, and 25 are 
negative rules and relate to obstacle positions. 

B. Fuzzification 
Fuzzification of the inputs is achieved by the membership 

functions shown in Figure 1. Each membership function of 
fuzzy input is Gaussian distribution function and is 

 
expressed as 
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where c denotes the center position of the distribution and σ 
denotes the variation in the function. Table I presents the c and σ values for each fuzzy membership function. The fuzzy 
sets Hard Left (HL), Soft Left (SL), Straight (S), Soft Right 
(SR), and Hard Right (HR) relate to the target and obstacle 
directions. The fuzzy sets Zero (Z), Very Near (VN), Near 
(N), Far (Far), and Very Far (VF) relate target and obstacle 
distance. The output fuzzy sets Hard Left (HL), Left (L), 
Soft Left (SL), Straight (S), Soft Right (SR), Right (R), and 
Hard Right (HR) are for the positive rules, while HL , L , 
SL , S , SR , R , and HR  are for the negative rules. 

Figure 1.  Membership functions of designed 50-rule fuzzy controller. 

TABLE I 
CHARACTERISTICS OF FUZZY MEMBERSHIP FUNCTIONS 

 
Target Obstacle 

Center 
( c ) 

Variation 
(σ ) 

Center 
( c ) 

Variation 
(σ ) 

Direction 
(0.5º) 

HL -60 18 -60 18 
SL -30 18 -30 18 
S 0 18 0 18 

SR 30 18 30 18 
HR 60 18 60 18 

Distance 
(mm) 

Z 0 1500 300 150 
VN 2500 1500 550 150 
N 5000 1500 800 150 
F 7500 1500 1050 150 

VF 10000 1500 1300 150 
 

TABLE IV 
MEMBERSHIP DEGREES OF INPUT FUZZY SETS. 

Degrees of positive-rule 
fuzzy sets 

Degrees of negative-rule 
fuzzy sets 

HL μHL HL μ HL  
SL μSL SL μ SL  
S μS S μ S 

SR μSR SR μ SR  
HR μHR HR μ HR  
Z μZ Z μ Z  

VN μVN VN μVN 
N μN N μN 
F μF F μ F  

VF μVF VF μVF 
 

TABLE III 
RULE BASE FOR 25-RULE NEGATIVE FUZZY SYSTEM 

(EXPERT-PROVIDED). 

Steering 
direction 

Obstacle direction 

HLi SLi Si SRi HRi 

Obstacle 
distance 

Zi HL  HL  S  HR HR 

VNi HL  L  S  R HR 

Ni L  L  S  R R 

Fi L  SL  S  SR  R 

VFi SL  S  S  S  SR  
 

TABLE II 
RULE BASE FOR 25-RULE POSITIVE FUZZY SYSTEM 

(EXPERT-PROVIDED). 

Steering 
direction 

Target direction 

HL SL S SR HR 

Target 
distance 

Z HL HL S HR HR 

VN HL L S R HR 

N L L S R R 

F L SL S SR R 

VF SL S S S SR 
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C. Rule Base 
The expert-provided positive rule base is given in Table 

II; it can be represented by following rules. 

 
The expert-provided negative rule is given in Table III; it 

can be represented by the following rules. 

 
The notation of the membership degree of each fuzzy set is 
given in Table IV. The weight of the positive rule Rule 1P is 
calculated by multiplying μHL and μZ, and the weight of 
Rule 2P is calculated by multiplying μHL and μVN. Other 
weights are calculated in the same ways. The combined 
degree of the positive rule Rule 1P and the negative rules is 
calculated as 
 

 
 
The negative terms in this equation are the relevant terms 
from the positive output fuzzy set. Because the positive 
output fuzzy set is HL, the negative terms must be 
determined from the corresponding negative output fuzzy 
set, HL . Therefore, the positive term is multiplied by the 
terms of Rule 1N, Rule 2N and Rule 6N. As a result, the 
negative terms decrease the degree of the positive term. 
Note that i is used to index each obstacle in a multiple-
obstacle space. Because multiple obstacles constitute the 

input for a negative-rule fuzzy system, accumulated 
multiplication is applied. 

There are two parameters in the equation. Parameter α is 
an offset value that maintains a minimum level of the 
positive term. If the positive term is near zero, negative terms 
cannot have any effect on the fuzzy output. We performed 
simulations and found that one optimal value of the offset is 
0.5. Similarly, the other combined degrees are calculated as 
follows. 
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D. Defuzzification 
Finally, the output value of the 50-rule P/N fuzzy 

controller is calculated as a weighted average of the degrees 
of all the output fuzzy sets. 
 

 
 
The weights of the output fuzzy sets are calculated as 
follows. 

621 μμμ ++=HLw  

8743 μμμμ +++=Lw  
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20151413121110 μμμμμμμ ++++++=Sw  
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24231817 μμμμ +++=Rw  

222116 μμμ ++=HRw

Rule 1N 
If xObstacleDirection is HLi and xObstacleDistance is Zi then y is not HL 
 

Rule 2N 
If xObstacleDirection is HLi and xObstacleDistance is VNi then y is not HL
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Rule 6N 
If xObstacleDirection is SLi and xObstacleDistance is Zi then y is not HL 

. 

. 

. 
Rule 25N 
If xObstacleDirection is HRi and xObstacleDistance is VFi then y is not SR
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Rule 1P 
If xTargetDirection is HL and xTargetDistance is Z then y is HL 
 

Rule 2P 
If xTargetDirection is HL and xTargetDistance is VN then y is HL 

. 

. 

. 
Rule 25P 
If xTargetDirection is HR and xTargetDistance is VF then y is SR 
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III. SHARED LUT-BASED FUZZY CONTROLLER 
To enhance the performance of the obstacle avoidance 

controller, we aimed to reduce its processing time. Faster 
decisions about avoiding obstacles lead to more accurate 
avoidance. The fuzzy controller method is a simpler and 
more intuitive method for obstacle avoidance. However, 
fuzzy membership functions formed from Gaussian 
distributions increase the operational complexity because the 
controller must multiply numerous floating point numbers to 
calculate each fuzzy membership degree. Without high- 
performance processors, these operations could make real-
time navigation difficult. Hence, we tried to reduce the 
computation time of the membership degrees by using 
LUT(s) for membership functions. Because all the input and 
output values for the membership functions are determined 
in advance, it is possible to search the membership degrees 
by using the LUT(s) without carrying out any computations. 
Figure 2 shows an example of obtaining the fuzzy 
membership degrees for a fuzzy set S using the LUT(s). In 
this architecture, each fuzzy input is converted into a 
corresponding buffer address and the data value at that 
address is the membership degree for the given input. If the 
fuzzy controller obtains each membership degree from the 
LUT(s) buffers, the robot can rapidly avoid unexpected 
obstacles because the calculation time associated with the 
multiplication of floating point operands is eliminated. 

LUT-based fuzzy controller design is attractive because it 
allows rapid avoidance, but there are drawbacks. To store the 
LUT(s) of all the membership functions, it is necessary to 
ensure that the controller system has buffers of a sufficient 
size. Clearly, the more the number of rules in the controller, 
the larger is the buffer size. An excessively large buffer size 
may limit the application of general mobile embedded 
processors. To overcome this limitation, we tried to reduce 
the buffer size by sharing a LUT(s). The shared LUT 
contains only one basis function. The other fuzzy 
membership functions with a similar shape or characteristics 
obtain their outputs via a rescaling of this basis function. 
Because the membership functions in this paper are based on 
Gaussian distributions, the equation of the basis function can 
be expressed as 
 

2

2

2 ionBasisFunct
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The variance of the basis function, σBasisFunction, is set to 128 
for the 50-rule P/N fuzzy controller. Because a Gaussian 
distribution is characterized by its variance (σ) and center 
(c), the output value of each membership function is simply 
obtained from the basis function by rescaling the input value 
using the formula: 
 

)( FunctionMembershipinput
FunctionMembership
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The result, xConverted, may not be an integer. However, the 
shared LUT requires integer input values. Since we cannot 
use non-integer indices, we obtain approximate values by 
rounding off xConverted to the nearest integer. 

As noted above, fbasis has a Gaussian distribution, which is 
an even function, so the left part of the function in the 
shared LUT can be eliminated to remove redundancy of 
buffers. To index an address in the left part of the basis 
function, the absolute value of the rescaled address is used. 
The indexing address of the shared LUT is calculated as 
 

)(( FunctionMembershipinput
FunctionMembership
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LUT cxroundAddress −=
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Figure 3 shows the fuzzy membership degree acquisition 
process for the LUT sharing method. The Address Generator 
generates the indexing address of the shared LUT, 
AddressLUT. In each buffer address, 32-bit floating point data 
is stored and the indexing address ranges from 0 to 511, as 
shown in Figure 3. If the calculated address, AddressLUT, 
exceeds 511, LUT returns 0 as the output. This means that 
we consider output values below 0.000000119 to be 0 in 
order to reduce the buffer size. 

After reading the data from the shared LUT, the 
Compensator adjusts the data value because it is not exactly 
the same as the expected membership degree. However, the 
Compensator may not be necessary here because the errors 
between the shared LUT output and the original outputs are 
negligible. We have confirmed this by simulation 
experiments and have decided to remove the Compensator in 
our design. 

IV. HARDWARE DESIGN OF THE FUZZY CONTROLLER 
Figure 4 shows the hardware design for the proposed 

 
Figure 3. Diagram of fuzzy membership degree acquisition using the 

shared lookup table.  
Figure 2. Diagram of fuzzy membership degree acquisition using lookup 

tables. 

734



obstacle avoidance fuzzy controller. To calculate the fuzzy 
operations, the membership degrees of the inputs, namely, 
target direction and distance and obstacle direction and 
distance, must first be calculated. The purpose of our design 
is to calculate all the membership degrees using the shared 
LUT. Although the architecture incorporates only one 
shared LUT, the hardware must immediately start the fuzzy 
operations and perform all these operations long before the 
input data arrive. Because the design permits only one set of 
input data at each cycle, adders and multipliers 
accumulatively calculate the operands, and buffers 
temporarily store the results of the calculations. The results 
of wHL , wL , wSL wS , wSR , wR , and wHR are stored in buffers 
during the first stage. If the buffers for these values are full, 
the final output of the controller is calculated in the second 
stage; the first stage of the fuzzy controller is then able to 
process subsequent obstacle avoidance operations. 

V. SIMULATION RESULTS 
We simulated the 50-rule P/N fuzzy controller using 

MSRDS [10] on a computer system with Intel® Core™ 2 
Quad 2.4 GHz CPU and 3.24 GB RAM. If there are no 
obstacles, the robot moves in a straight line from the starting 
position to the target position. However, if there are many 
obstacles, the robot must change its path to avoid them. To 
evaluate our method using the simulator, we created a 
service module for each approach and used it in an MSRDS 
visual programming language (VPL) diagram. The service 

modules are programmed in C# programming language and 
compiled using Microsoft Visual Studio. 

Because a graphic simulation environment requires high- 
performance processors, the simulation was performed on a 
high-performance computer system. We consider only the 
fuzzy operation time because the simulation system spends 
most of its time on graphic processing. 

Table V shows the simulation results for each method. 
The buffer size for the full LUT design is (204+8469+847) 
× 4 bytes and that for the shared LUT is 512 × 4 bytes. The 
processing clock cycle for each method in the table is an 
average of the computation clock cycles for the avoidance 
operations during the navigation from the starting position 
to the target position. The controller without LUT(s) does 
not need any LUT(s) buffer space, but it requires eight times 
more time for performing fuzzy operations than the full 
LUT-based controller. If all the membership functions have 
LUT(s), the operation time is greatly reduced. However, 
many buffers are required. The simulation results show that 
by using the LUT sharing method, the controller can operate 
with just 5.34% of the buffer size of the full LUT(s). 
Although the shared LUT method is slower than the full 
LUT method, the enormous reduction in buffer size is a 
major advantage. 

The simulation results show that the LUT-based 
controller reduces the computational requirements and it can 
obviously enhance the performance of real-time applications. 
Moreover, the LUT sharing method offers a way to use an 
LUT-based architecture without requiring a large-size buffer. 

VI. CONCLUSIONS 
This work aimed to design a real-time, low-power system 

for mobile robots. To perform fast operations in real-time 
systems, it is enough to use high-performance processors. 
However, real-time embedded systems have some limitations. 
We should aim to reduce the operation clock frequency so as 
to lower the power consumption because a high clock 
frequency elevates the power consumption of the systems. 
Thus, reduction in operational complexity is important from 
the viewpoint of achieving faster operations and lower power 
consumption. 

We utilized an LUT(s) approach to avoid complicated 
and repetitive calculations of the membership degrees. Our 
full LUT-based fuzzy controller reduced the average 
operation time by 80%.  However, this design requires 
buffers with large sizes to hold all the membership function 
values. To reduce the buffer size, we tried a shared LUT 
approach. The simulation shows that the LUT sharing 
method takes 1.5 times more operation cycles on average 
than the full LUT-based design, but it reduces the buffer 
requirements by 94.5%. 

In conclusion, our work offers advantages with regard to 
real-time obstacle avoidance of mobile robots because the 
LUT-based fuzzy controller design enables faster obstacle 
avoidance and the LUT sharing method keeps the controller 
compact by greatly reducing the buffer size. 
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Figure 4. Hardware architecture of proposed P/N fuzzy controller. 
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