
An Efficient Solver for Scheduling Problems on a Class of Discrete Event Systems
Using CELL/B.E. Processor

Hiroyuki Goto
Department of Management and Information Systems Science

Nagaoka University of Technology
Nagaoka, Niigata, 940-2188 Japan
e-mail: hgoto@kjs.nagaokaut.ac.jp

Atsushi Kawaminami
Faculty of Management and Information Systems Engineering

Nagaoka University of Technology
Nagaoka, Niigata, 940-2188 Japan

e-mail: s063314@ics.nagaokaut.ac.jp

Abstract—This research implements an efficient solver for
scheduling problems in a class of repetitive discrete event
systems using a CELL/B.E. (CELL Broadband Engine). The
essence of this involves efficiently computing the transition
matrix of a system whose precedence constraints regarding the
execution sequence of jobs can be described by a weighted
DAG (Directed Acyclic Graph). This means solving the longest
path problem efficiently for all pairs of source and destination
nodes. For the first step towards a high-speed computation, we
utilize SIMD (Single Instruction Multiple Data) functions.

Keywords-CELL/B.E.; repetitive discrete event systems;
directed acyclic graph; SIMD; transition matrix;

I. INTRODUCTION
In this research, we implement an efficient solver for

scheduling problems in a certain class of repetitive discrete
event systems using a CELL/B.E. [1], [2] processor. The
focused systems are flow-line style where the same facilities
are used repeatedly. We assume that the relationships
between the execution sequences of jobs and the occupation
times in facilities can be represented by a weighted DAG.
Typical systems include: production systems [3], transporta-
tion systems [4], etc.

It is known that the behavior of this kind of system can
be formulated by linear equations called state equation in
max-plus algebra [5], [6], a class of discrete algebra. The
state equations in this algebra provide the earliest and/or
latest event occurrence times. They include a state vector
that represents the state of the system, a transition matrix
that reflects the propagations times of events, and an input
vector that supplies the feeding times to the system. The
bottleneck of the solver is in calculating the transition
matrix.

For a system whose precedence constraints can be ex-
pressed by a DAG with n nodes and m arcs, the time
complexity for computing the transition matrix based on a
simple method is)(O 4n . On the other hand, more efficient
methods for computing the transition matrix with a time
complexity of either (a)))((O mnn +⋅ or (b))(O 3n have
been proposed in [7]. Method (a) is based on an adjacency
list, whereas method (b) uses an adjacency matrix. Since

2/)1(−⋅≤ nnm is followed for systems with a DAG
structure, method (a) appears more efficient. However, in
systems with dense adjacency matrices, the overhead for

generating the adjacency lists is relatively high, in which
case method (b) may be more efficient. In addition, method
(b) is predicted to achieve a remarkable reduction in
computation time when utilizing processors with vector
instructions that allow multiple elements to be computed
simultaneously.

An approach to these functions is using the set of SIMD
instructions [8] with SSE extensions that has become
common in recently released Intel-compatible processors
such as Pentium 4 and Athlon 64, etc. However, the set of
relevant instructions have been extended repeatedly, which
now requires advanced techniques for implementation and is
time-consuming for maintenance. By contrast, there are
alternative processors, CELL/B.E., to make use of the
benefits of SIMD instructions. In recent years, reasonable
CELL/B.E. processors have been released and installed in
several portable PCs and home-use game machines. Since
CELL/B.E. processors are designed for vector calculations
from the initial version, a unified and user-friendly interface
can be utilized for using SIMD functions.

Therefore, this paper focuses on a CELL/B.E. processor
and examines the effect of speedup in the computation of
the transition matrix for systems with a DAG structure. A
Sony Playstation III (TM) equipped with a CELL/B.E.
processor is used in this study.

II. MATHEMATICAL BACKGROUND
Denoting the real field by R , define }{−∞∪= RD . If
D∈yx, , the following basic operators are defined:

),(max yxyx =⊕ , yxyx +=⊗ and =⊗ yx yx ⋅ . Let the
unit elements for operators ⊕ and ⊗ be)(−∞=ε and

)0(=e , respectively. If nm ≤ ,

.),,,max(1 nmmk

n

mk
xxxx L+

=

=⊕

In the representation of matrices, ij][X stand for the),(ji th
element of matrix X , and TX represents the transposed
matrix. If nm×∈DYX , , ln×∈DZ ,

,)][,]([max][ijijij YXYX =⊕

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.16

725

.)][][(][
1

kjik

n

k
ij ZXZX +=⊗ ⊕

=

(1)

Let the unit matrices for operators ⊕ and ⊗ be ε and e ,
respectively. ε is a matrix, the elements of which are all ε ,
and e is a matrix, of which the diagonal elements are e
and all off-diagonal elements are ε . The priority of
operator ⊗ is higher than ⊕ , and it is omitted when no
confusion is likely to arise.

Assuming that the number of facilities is n , we consider
the behavior of the k th job. Let the processing completion
time of job k be)(kx , and assume that its minimum value
is supplied by)(ku . Furthermore, let the processing time in
each facility and the list of preceding facilities of facility i

)1(ni ≤≤ be)(kd and)(iP , respectively. Under these
assumptions, the earliest processing completion times of the
corresponding job)(kEx can be calculated using the
following equation:

)]()1([)(kkk kE uxAx ⊕−⊗= , (2)

where

kkk PFPA *
0)(= ,)]([diag kk dP = ,

⎩
⎨
⎧

∉
∈

=
.)(if:
,)(if:

][0 ij
ije

ij P

P

ε
F

Equation (2) is referred to as the state equation, kA as the
transition or system matrix, and 0F as the adjacency matrix.
Operator * is referred to as the Kleene star operator. For
systems with a DAG structure, if the adjacency or weighted
adjacency matrix is given by nn×∈DX , *X is calculated
as:

1
1

0

* −
−

=

⊕⊕⊕==⊕ sl
s

l
XXeXX L , (3)

where εX ≠−1s , εX =s)1(ns ≤≤ . s is an instance that
depends on the precedence constraints of the system. In
terms of graph theory, calculating the Kleene star is
equivalent to solving a kind of the longest paths problem.

For a given adjacency matrix nn×∈DX , efficient algo-
rithms for calculating *X are proposed in [7]. These
include the following two or three steps.

(1) Topological sort

If node j is located upstream of node i , represent this
as ij p . The topological sort [9] aligns the nodes to satisfy

)()(jj SS < if ij p , where the index of node i is
represented by)(iS . As it is based on a DFS (Depth First
Search) method, the time complexity is)(mn +Ο . Note that
the result is not unique and depends on both the initial
parameters and implementation.

(2) Create an adjacency list (only for method (a))
If node i is a preceding and adjacent node of node j ,

denote this precedence constraint by ji → . Then, for a
given destination node j , obtain the set)(jP of source
nodes i that satisfy ji → . This is done by obtaining the set
of i that satisfy ε≠ij][X for a given j , and repeating the
same procedure for all j)1(nj ≤≤ .

(3) Iterative calculation of *X

After preparing a working matrix nn×∈DZ for comput-
ing *X , initialize this to eZ = . Then, we update the value
of ji][Z topologically from upstream nodes to downstream
nodes. In method (a), this update is performed by creating
an adjacency list)(jP in the following manner:

)][]([max][][
)(lijljljiji ZXZZ +⊕←

∈P
. (4)

On the other hand, method (b) updates the value using an
adjacency matrix X , as follows:

lijl

n

l
jiji][][][][

1
ZXZZ ⊗⊕← ⊕

=

. (5)

For an instance i , the time complexities of (4) and (5) are
)(mn +Ο and)(2nΟ , respectively. By repeating this

procedure for all i)1(ni ≤≤ , the time complexity of
computing the transition matrix is))((O mnn +⋅ in method
(a), and)(O 3n in method (b).

As mentioned above, if X is the weighted adjacency

matrix of a DAG, the theoretical time complexity of method
(a) is lower than that of method (b). However, (4) requires
creating adjacency lists to calculate the second term of the
right hand-side, whereas the corresponding term in (5) only
requires max and ‘+’ operations for fixed size row and
column vectors.

Various processors designed for fast computation can
calculate fixed size arrays very quickly. Thus there may be
several cases where the algorithm based on (5) is faster.
This is confirmed in subsequent sections.

III. CELL BROADBAND ENGINE
We overview the structure of a CELL/B.E. installed in

the Sony Playstation III. The CELL/B.E. consists of a PPE
(PowerPC processor Element) and a SPE (Synergetic
Processor Element). The former has an all-purpose proces-
sor core, while the latter includes a specialized core for
calculation. Fig. 1 gives an outline of this structure.

The PPE is an all-purposed processor with a 64 bit
PowerPC architecture. It controls the SPEs as well as
running the operating system. A set of vector calculations
called ‘Altivec’ is available. It has, however, frequently
noted that the processor is not suitable for floating-point
calculations.

The SPE is a processor with a 128 bit SIMD architecture
which allows for simultaneous operations on multiple elem-

726

PPE

L1 Cache

L2 Cache

SPE

LS

MFC

SPE

LS

MFC

SPE

LS

MFC

SPE

LS

MFC

SPE

LS

MFC

SPE

LS

MFC

XDR
DRAM EIB (Element Interconnect Bus)

PPE

L1 Cache

L2 Cache

SPE

LS

MFC

SPE

LS

MFC

SPE

LS

MFC

SPE

LS

MFC

SPE

LS

MFC

SPE

LS

MFC

XDR
DRAM EIB (Element Interconnect Bus)

Figure 1. Internal structure of CELL/B.E.

ements. For computation of floating-point values of 32 bits,
it can handle four elements simultaneously, while it can
handle sixteen elements for ‘char’ type values of 8 bits. As
such, it is expected that an elaborate optimization can
achieve a remarkable reduction in computation time for
vector and matrix calculations. On the other hand, the
processor is not suited to the calculation of single elements,
that is, of scalars.

For the main memory of the entire processor, fast acces-
sible memory called XDR (eXtreme Data Rate) DRAM is
used. In addition to this, each SPE has an internal RAM
called the LS (Local Store) independently. This is a kind of
L2 cache, with the result that each SPE can access its own
LS very quickly. Data transfers between the LS and XDR
are performed using the DMA interface called the MFC
(Memory Flow Controller). In the case of a CELL/B.E.
installed in the Playstation III, thre is only a single PPE with
an operating frequency of 3.2 GHz. The number of SPEs
available in Linux is six, and the size of each LS is 256KB.

IV. IMPLEMENTATION
In this research, we use ‘float’ variables of 32bits for

storing data for D . A special value ‘-FLT_MAX’ is used to
represent ε . As mentioned in the previous section, SPEs
perform basic operations using 128 bit registers. For ‘float’
variables, four values can be computed simultaneously.
However, the same registers are used even for operating on
scalars. This means that, for an operation on five elements,
for example, requires two SIMD operations. Moreover, it
should be noted here that calculating the Kleene star
requires frequent computations on the transposed matrix and
powers of the matrix. Consequently, this research focuses
particularly on optimizations regarding the following two
aspects.

• Computation per block: each block includes four ‘float’
variables.

• Efficient computation of the transposed matrix and
multiplication of two matrices.

Hereafter, we outline the optimization in the implementation.

A. Internal structure of vectors and matrices
For vector data, we prepare a one-dimensional array

consisting of the minimum number of blocks required to
store the data. Since each block includes four ‘float’ type
variables, the number of required blocks for storing vector

nD∈a is:

]4/)1int[(1 −+= nbn . (6)

Fig. 2 depicts the case for 5=n . For any unused elements,
ε is substituted. For storing matrices, keeping in mind that
transposed matrices must be calculated frequently, we
prepare a verbose square matrix as the internal structure.
Now, consider storing the values of matrix nm×∈DM
(1>m , 1>n). Recalling (6), the number of blocks required
to store a),(max nm -sized vector is:

]4/)1),(int[(max1, −+= nmb nm .

Noting that nmb ,4 ⋅ ‘float’ variables can be stored in this
area, we prepare a one-dimensional array where nmb ,4 ⋅
variables can be stored in both row and column directions.
Accordingly, the required number of blocks is nmnm bb ,,4 ⋅⋅ ,
as illustrated in Fig. 3.

B. Calculation of transposed matrix
First, we introduce an efficient algorithm for computing

the transposed matrix. It is applicable only for a 44× -sized
matrix, and this makes use of an instruction called ‘permuta-
tion’. An illustration thereof is presented in Fig.4. Elements
shaded gray represent the cells to be moved to other
locations with the permutation instruction. In view of this,
we propose computing the transposed matrix by executing
two steps as shown in Fig. 5. First, the original matrix is
divided into block matrices. Then, blocks),(ji ,),(ij are
swapped for all blocks)1(,nmbji ≤<≤ , ignoring the
diagonal block matrices. In the second step, transposed
matrices of all block matrices are computed for all i and j

)1,1(,, nmnm bjbi ≤≤≤≤ .

C. Multiplication
According to (1), to obtain the),(ji th element of

ZX ⊗ , an inner product of the i th row vector of X and
the j th column vector of Z must be calculated. However,
as shown in Fig. 3, we can perform operations on rows very
quickly whereas operations on elements in a vertical
direction are not so easy. Hence, this research first computes
the transposed matrix of Z , then adds the corresponding
elements of the i th row vector of X and the j th row
vector of TZ , and finally finds the maximum value of these.

D. Kleene star
We explain algorithms for calculating the Kleene star for

a given weighted adjacency matrix nm×∈DX .

727

1a 2a 3a 4a 5a ε ε ε

2 blocks

unused

1a 2a 3a 4a 5a ε ε ε

2 blocks

unused
Figure 2. Internal structure of vector-type variables.

n

nmb ,

ε

blocks

m

nmb ,4 ⋅
rows

…

…

n

nmb ,

ε

blocks

m

nmb ,4 ⋅
rows

…

…

Figure 3. Internal structure of matrix-type variables.

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1 2 9 10
5 6 13 14
3 4 11 12
7 8 15 16

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1 2 9 10
5 6 13 14
3 4 11 12
7 8 15 16

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

Figure 4. Computation of the transposed matrix of a 4*4-sized matrix.

…

…

…
…

…

…

…
…

Figure 5. Calculation of the transposed matrix.

In a simple method based on (3), we first prepare two
working matrices nn×∈D)0()0(,WZ , initialized to e ,
where the upper suffix (*) represents the number of updates
with 0 representing the initial value. The values of W are
updated in the following manner:

.)1()(XWW ⊗= −ii (7)

Subsequently, the values of Z are updated as follows:

.)1()1()(−− ⊕= iii WZZ (8)

Equations (7) and (8) are applied repeatedly until εW =)(i .
At this stage, the values of *X are stored in Z .

n21 ... n21 ...

Figure 6. A system with tandem-structured precedence constraints.

Next, the computation algorithms based on methods (a)
and (b) are explained. After performing a topological sort on
the adjacency matrix nm×∈DX , both methods update the
values of Z based on either (4) or (5). However, we note
here that it is better to avoid calculations on rows. Thus, we
handle the working matrix based on TZ , and not on Z .
Then, the update algorithm for method (a) is expressed as:

)][]([max][][
)(jlil

T

jlij
T

ij
T XZZZ +⊕←

∈P
.

By contrast, the algorithm for method (b) is expressed as :

)][]([][][
1

jlil
T

n

l
ij

T
ij

T XZZZ +⊕← ⊕
=

.

This conversion simplifies the process to be additions of the
corresponding elements of the i th row vector of TZ and
the j th row vector of X . After all processes have finished,
we compute the transposition of the working matrix TZ to
obtain *X .

V. RESULTS OF PERFORMANCE EVALUATION
The effect of ‘SIMDization’ and the performances of the

PPE and SPE processors are measured.
Setting the number of nodes to n , consider two cases

where the adjacency matrix 0F is (A) dense and (B) sparse.
For (A), let all pairs of elements),(ji that satisfy ji p
have a precedence constraint ji → with probability 1/2.
For (B), consider the precedence constraints where all nodes
are connected in tandem, as presented in Fig. 6. In both
cases (A) and (B), after the initial adjacency matrix has been
set, we sort the indexes of the nodes randomly to create
experimental adjacency matrices. For the weight matrix kP ,
we generate the diagonal elements obeying a]1,0[uniform
distribution. The computation times for computing the
transition matrix kkk PFPA *

0)(= from the time that both
0F and kP are avilable. This is performed for a varying

number of nodes, with 80,40,20,10=n , using the follow-
ing two methods; (a) Based on (4): the theoretical time
complexity is))((mnn +⋅Ο , and (b) Based on (5): the
theoretical time complexity is)(3nΟ .

Since the main objective to estimate the effect of SIM-
Dization, we measure the execution times only when using a
single PPE and SPE. The maximum size 80=n is bounded
by the size of the LS, since the required storage including all
temporary areas is about 256KB for 80=n .

The execution environment is Sony Playstation III, Fe-
dora Core 10. We used gcc-4.1.1 and CELL SDK (Software
Development Kit) [8] Version 3.1 as complier and library,
respectively. We used only a single SPE and PPE, and made
experiments for both with SIMD and without SIMD. The

728

various experimental cases and the corresponding compila-
tion options are summarized in Table 1.

The experiment is performed for cases (1)—(4). In each
case, the execution time is measured for hundred trials with
a different set of adjacency and weight matrices, and the
average computation time is then recorded. The time is
measured using the ‘gettimeofday()’ function. Tables 2—5
show the results, with all times expressed in microseconds.
Tables 2 and 3 present the results for dense adjacency
matrices.

First, let us consider Table 2. Comparing cases (1) and
(2), the effect of SIMDization using an SPE is a speedup of
about 2.0 times for 20=n and about 2.8 times for 80=n .
Comparing cases (3) and (4), the effect of SIMDization
using a PPE is a speedup of about 3.0 times for 20=n and
about 3.6 times for 80=n .

Next, we inspect the results in Table 3. Since method (b)
does not create an adjacency list, the effect of SIMDization
may be more significant compared with method (a). In fact,
comparing cases (1) and (2), the effect of SIMDization is a
speedup of about 2.7 times when 20=n and about 4.1
times when 80=n . In addition, comparing cases (3) and (4),
the speedup is about 5.3 times with 20=n and about 7.1
times with 80=n .

Comparing SPEs and PPEs, the absolute computation
times using an SPE for 20≥n are smaller than those using
a PPE. Since it is often said that SPEs are more suitable for
calculation than a PPE, the results might be consistent with
the common belief. However, in SPEs, even scalar variables
must be calculated using 128 bit registers, the advantage
may not be remarkable if we use many scalar control
variables. In fact, for 10=n , the computation times using a
SPE are greater than using a PPE. This may be due to the
above feature. In addition, we should note that the effect of
SIMDization using a SPE is less significant, which may also
due to the same reason.

Comparing methods (a) and (b), it appears that the dif-
ference in execution times is not significant when

20,10=n . However, as n increases, the execution time for
method (a) decreases when SIMD instructions are not used.
In contrast, the execution time based for method (b) is
smaller if we apply SIMD instructions. These results seem
to imply that method (b) is suitable for processors in which
vector operations are available.

With respect to Tables 4 and 5, the overall ratio of the
ratio of timings for SPEs and PPEs and the effect of
SIMDization on calculation times are roughly the same as
discussed for Tables 2 and 3. However, since these cases
focus on sparse adjacency matrices, the time spent on
creating the adjacency list is relatively short. This makes the
adjacency-list-based method (a) more advantageous than
method (b). By contrast, focusing on Tables 2 and 3 again,
if the adjacency matrix is dense, it would be better to avoid
utilizing an adjacency list. This is confirmed by the fact that
the cases based on the adjacency-matrix, method (b), are
computed faster than those based on method (a).

As indicated by these results, case (1), using an SPE
with SIMD instructions, is the fastest. However, method (a)

TABLE I. COMPILATION OPTIONS.

Case Processor SIMD Option
(1) YES
(2) SPE NO -O3 -m64 –maltivec -mabi=altivec

(3) YES
(4) PPE NO -O3

TABLE II. CALCULATION TIMES FOR DENSE MATRICES BASED ON
METHOD (A).

n 10 20 40 80
(1) 57 148 763 5,293
(2) 75 296 1,946 14,703
(3) 35 201 1,372 10,261
(4) 82 611 4,700 37,164

TABLE III. CALCULATION TIMES FOR DENSE MATRICES BASED ON
METHOD (B).

n 10 20 40 80
(1) 56 133 670 4,592
(2) 83 358 2,454 18,792
(3) 28 146 948 6,780
(4) 103 781 6,081 48,239

TABLE IV. CALCULATION TIMES FOR SPARSE MATRICES BASED ON
METHOD (A).

n 10 20 40 80
(1) 56 124 549 3,429
(2) 73 268 1,677 12,355
(3) 28 132 769 5,067
(4) 73 518 3,857 29,749

TABLE V. CALCULATION TIMES FOR SPARSE MATRICES BASED ON
METHOD (B).

n 10 20 40 80
(1) 56 135 676 4,620
(2) 81 349 2,362 17,978
(3) 29 147 954 6,803
(4) 99 728 5,608 44,017

or method (b) is better, is dependent on the density of the
adjacency matrix.

VI. CONCLUSION
In this research, a CELL/B.E. processor has been used to

examine the effect of a fast computation method for a
transition matrix. We have focused on repetitive discrete
event systems whose precedence constraints regarding the
execution of jobs can be expressed as a DAG. The absolute
computation times using the SPE are smaller than those
using a PPE. However, it has been proved that the effect of
SIMDization is more significant when using a PPE.
Comparing the two methods (a) and (b), where the former is
based on an adjacency list and the latter on an adjacency
matrix, method (a) is faster if the adjacency matrix is sparse,
while method (b) is faster if the matrix is dense.

Note that only a single SPE is used in this research
whereas six SPEs are available in Linux on the Playstation3.
If all these processors are used in parallel, the speedup effect
would be much more significant. The implementation and
examination thereof remain our future work.

729

REFERENCES
[1] D. Pham, S. Asano, M. Bolliger, M. Day, and H. Hofstee,

“The design and implementation of a first-generation CELL
processor,” ISSCC Digital Technical Papers, pp. 184–185,
2005.

[2] M. Scarpino, Programming the Cell Processor: For Games,
Graphics, and Computation. New York: Prentice Hall, 2008.

[3] G. Schullerus, V. Krebs, B. Schutter, and T. Boom, ”Input
signal design for identification of max-plus-linear-systems,”
Automatica, vol. 42, no. 6, pp. 937–943, 2006.

[4] A. Moh, M. Manier, H. Manier, and A. Moudni, “A max-plus
algebra modeling for a public transport system., “Cybernetics
and Systems,” vol. 36, pp. 1–16, 2005.

[5] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat,
Synchronization and Linearity. New York: John Wiley &
Sons, 1992. [Online]: Available: http://maxplus.org

[6] B. Heidergott, G. J. Olsder, and L. Woude, Max Plus at Work:
Modeling and Analysis of Synchronized Systems. New Jersey:
Princeton University Pr., 2006.

[7] H. Goto, “Efficient calculation of the transition matrix in a
max-plus linear state-space representation, “IEICE
Transactions on Fundamentals, vol. E91-A, no. 5, pp. 1278–
1282, 2008.

[8] IBM, CBE Programmer’s Guide version 3.1. IBM, 2008.

[9] T. Cormen and C. Leiserson, Introduction to Algorithms.
Massachusetts: MIT Press, 2001.

730

