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Abstract—This research implements an efficient solver for 
scheduling problems in a class of repetitive discrete event 
systems using a CELL/B.E. (CELL Broadband Engine). The 
essence of this involves efficiently computing the transition 
matrix of a system whose precedence constraints regarding the 
execution sequence of jobs can be described by a weighted 
DAG (Directed Acyclic Graph). This means solving the longest 
path problem efficiently for all pairs of source and destination 
nodes. For the first step towards a high-speed computation, we 
utilize SIMD (Single Instruction Multiple Data) functions. 

Keywords-CELL/B.E.; repetitive discrete event systems; 
directed acyclic graph; SIMD; transition matrix; 

I. INTRODUCTION 
In this research, we implement an efficient solver for 

scheduling problems in a certain class of repetitive discrete 
event systems using a CELL/B.E. [1], [2] processor. The 
focused systems are flow-line style where the same facilities 
are used repeatedly. We assume that the relationships 
between the execution sequences of jobs and the occupation 
times in facilities can be represented by a weighted DAG. 
Typical systems include: production systems [3], transporta-
tion systems [4], etc. 

It is known that the behavior of this kind of system can 
be formulated by linear equations called state equation in 
max-plus algebra [5], [6], a class of discrete algebra. The 
state equations in this algebra provide the earliest and/or 
latest event occurrence times. They include a state vector 
that represents the state of the system, a transition matrix 
that reflects the propagations times of events, and an input 
vector that supplies the feeding times to the system. The 
bottleneck of the solver is in calculating the transition 
matrix. 

For a system whose precedence constraints can be ex-
pressed by a DAG with n  nodes and m  arcs, the time 
complexity for computing the transition matrix based on a 
simple method is )(O 4n . On the other hand, more efficient 
methods for computing the transition matrix with a time 
complexity of either (a) ))((O mnn +⋅  or (b) )(O 3n  have 
been proposed in [7]. Method (a) is based on an adjacency 
list, whereas method (b) uses an adjacency matrix. Since 

2/)1( −⋅≤ nnm  is followed for systems with a DAG 
structure, method (a) appears more efficient. However, in 
systems with dense adjacency matrices, the overhead for 

generating the adjacency lists is relatively high, in which 
case method (b) may be more efficient. In addition, method 
(b) is predicted to achieve a remarkable reduction in 
computation time when utilizing processors with vector 
instructions that allow multiple elements to be computed 
simultaneously. 

An approach to these functions is using the set of SIMD 
instructions [8] with SSE extensions that has become 
common in recently released Intel-compatible processors 
such as Pentium 4 and Athlon 64, etc. However, the set of 
relevant instructions have been extended repeatedly, which 
now requires advanced techniques for implementation and is 
time-consuming for maintenance. By contrast, there are 
alternative processors, CELL/B.E., to make use of the 
benefits of SIMD instructions. In recent years, reasonable 
CELL/B.E. processors have been released and installed in 
several portable PCs and home-use game machines. Since 
CELL/B.E. processors are designed for vector calculations 
from the initial version, a unified and user-friendly interface 
can be utilized for using SIMD functions. 

Therefore, this paper focuses on a CELL/B.E. processor 
and examines the effect of speedup in the computation of 
the transition matrix for systems with a DAG structure. A 
Sony Playstation III (TM) equipped with a CELL/B.E. 
processor is used in this study. 

II. MATHEMATICAL BACKGROUND 
Denoting the real field by R , define }{−∞∪= RD . If 
D∈yx, , the following basic operators are defined: 

),(max yxyx =⊕ , yxyx +=⊗  and =⊗ yx  yx ⋅ . Let the 
unit elements for operators ⊕  and ⊗  be )( −∞=ε  and 

)0(=e , respectively. If nm ≤ , 

.),,,max( 1 nmmk

n

mk
xxxx L+

=

=⊕   

In the representation of matrices, ij][X  stand for the ),( ji th 
element of matrix X , and TX  represents the transposed 
matrix. If nm×∈DYX , , ln×∈DZ , 

,)][,]([max][ ijijij YXYX =⊕   
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Let the unit matrices for operators ⊕  and ⊗  be ε  and e , 
respectively. ε  is a matrix, the elements of which are all ε , 
and e  is a matrix, of which the diagonal elements are e  
and all off-diagonal elements are ε . The priority of 
operator ⊗  is higher than ⊕ , and it is omitted when no 
confusion is likely to arise. 

Assuming that the number of facilities is n , we consider 
the behavior of the k th job. Let the processing completion 
time of job k  be )(kx , and assume that its minimum value 
is supplied by )(ku . Furthermore, let the processing time in 
each facility and the list of preceding facilities of facility i  

)1( ni ≤≤  be )(kd  and )(iP , respectively. Under these 
assumptions, the earliest processing completion times of the 
corresponding job )(kEx  can be calculated using the 
following equation: 

)]()1([)( kkk kE uxAx ⊕−⊗= , (2)

where 

kkk PFPA *
0 )(= , )]([diag kk dP = ,  

⎩
⎨
⎧

∉
∈

=
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,)(if:
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ije

ij P
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Equation (2) is referred to as the state equation, kA  as the 
transition or system matrix, and 0F  as the adjacency matrix. 
Operator * is referred to as the Kleene star operator. For 
systems with a DAG structure, if the adjacency or weighted 
adjacency matrix is given by nn×∈DX , *X  is calculated 
as: 

1
1

0

* −
−

=

⊕⊕⊕==⊕ sl
s

l
XXeXX L , (3)

where εX ≠−1s , εX =s  )1( ns ≤≤ . s  is an instance that 
depends on the precedence constraints of the system. In 
terms of graph theory, calculating the Kleene star is 
equivalent to solving a kind of the longest paths problem. 

For a given adjacency matrix nn×∈DX , efficient algo-
rithms for calculating *X  are proposed in [7]. These 
include the following two or three steps. 

 
(1) Topological sort 

If node j  is located upstream of node i , represent this 
as ij p . The topological sort [9] aligns the nodes to satisfy 

)()( jj SS <  if ij p , where the index of node i  is 
represented by )(iS . As it is based on a DFS (Depth First 
Search) method, the time complexity is )( mn +Ο . Note that 
the result is not unique and depends on both the initial 
parameters and implementation. 

 

(2) Create an adjacency list (only for method (a)) 
If node i  is a preceding and adjacent node of node j , 

denote this precedence constraint by ji → . Then, for a 
given destination node j , obtain the set )( jP  of source 
nodes i  that satisfy ji → . This is done by obtaining the set 
of i  that satisfy ε≠ij][X  for a given j , and repeating the 
same procedure for all j  )1( nj ≤≤ . 

 
(3) Iterative calculation of *X  

After preparing a working matrix nn×∈DZ  for comput-
ing *X , initialize this to eZ = . Then, we update the value 
of ji][Z  topologically from upstream nodes to downstream 
nodes. In method (a), this update is performed by creating 
an adjacency list )( jP  in the following manner: 

)][]([max][][
)( lijljljiji ZXZZ +⊕←

∈P
. (4)

On the other hand, method (b) updates the value using an 
adjacency matrix X , as follows: 

lijl

n

l
jiji ][][][][

1
ZXZZ ⊗⊕← ⊕

=

. (5)

For an instance i , the time complexities of (4) and (5) are 
)( mn +Ο  and )( 2nΟ , respectively. By repeating this 

procedure for all i  )1( ni ≤≤ , the time complexity of 
computing the transition matrix is ))((O mnn +⋅  in method 
(a), and )(O 3n  in method (b). 

 
As mentioned above, if X  is the weighted adjacency 

matrix of a DAG, the theoretical time complexity of method 
(a) is lower than that of method (b). However, (4) requires 
creating adjacency lists to calculate the second term of the 
right hand-side, whereas the corresponding term in (5) only 
requires max and ‘+’ operations for fixed size row and 
column vectors. 

Various processors designed for fast computation can 
calculate fixed size arrays very quickly. Thus there may be 
several cases where the algorithm based on (5) is faster. 
This is confirmed in subsequent sections. 

III. CELL BROADBAND ENGINE 
We overview the structure of a CELL/B.E. installed in 

the Sony Playstation III. The CELL/B.E. consists of a PPE 
(PowerPC processor Element) and a SPE (Synergetic 
Processor Element). The former has an all-purpose proces-
sor core, while the latter includes a specialized core for 
calculation. Fig. 1 gives an outline of this structure. 

The PPE is an all-purposed processor with a 64 bit 
PowerPC architecture. It controls the SPEs as well as 
running the operating system. A set of vector calculations 
called ‘Altivec’ is available. It has, however, frequently 
noted that the processor is not suitable for floating-point 
calculations. 

The SPE is a processor with a 128 bit SIMD architecture 
which allows for simultaneous operations on multiple elem- 
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Figure 1.  Internal structure of CELL/B.E. 

 
ements. For computation of floating-point values of 32 bits, 
it can handle four elements simultaneously, while it can 
handle sixteen elements for ‘char’ type values of 8 bits. As 
such, it is expected that an elaborate optimization can 
achieve a remarkable reduction in computation time for 
vector and matrix calculations. On the other hand, the 
processor is not suited to the calculation of single elements, 
that is, of scalars. 

For the main memory of the entire processor, fast acces-
sible memory called XDR (eXtreme Data Rate) DRAM is 
used. In addition to this, each SPE has an internal RAM 
called the LS (Local Store) independently. This is a kind of 
L2 cache, with the result that each SPE can access its own 
LS very quickly. Data transfers between the LS and XDR 
are performed using the DMA interface called the MFC 
(Memory Flow Controller). In the case of a CELL/B.E. 
installed in the Playstation III, thre is only a single PPE with 
an operating frequency of 3.2 GHz. The number of SPEs 
available in Linux is six, and the size of each LS is 256KB. 

IV. IMPLEMENTATION 
In this research, we use ‘float’ variables of 32bits for 

storing data for D . A special value ‘-FLT_MAX’ is used to 
represent ε . As mentioned in the previous section, SPEs 
perform basic operations using 128 bit registers. For ‘float’ 
variables, four values can be computed simultaneously. 
However, the same registers are used even for operating on 
scalars. This means that, for an operation on five elements, 
for example, requires two SIMD operations. Moreover, it 
should be noted here that calculating the Kleene star 
requires frequent computations on the transposed matrix and 
powers of the matrix. Consequently, this research focuses 
particularly on optimizations regarding the following two 
aspects. 

• Computation per block: each block includes four ‘float’ 
variables. 

• Efficient computation of the transposed matrix and 
multiplication of two matrices. 

Hereafter, we outline the optimization in the implementation. 

A. Internal structure of vectors and matrices 
For vector data, we prepare a one-dimensional array 

consisting of the minimum number of blocks required to 
store the data. Since each block includes four ‘float’ type 
variables, the number of required blocks for storing vector 

nD∈a  is: 

]4/)1int[(1 −+= nbn . (6)

Fig. 2 depicts the case for 5=n . For any unused elements, 
ε  is substituted. For storing matrices, keeping in mind that 
transposed matrices must be calculated frequently, we 
prepare a verbose square matrix as the internal structure. 
Now, consider storing the values of matrix nm×∈DM  
( 1>m , 1>n ). Recalling (6), the number of blocks required 
to store a ),(max nm -sized vector is: 

]4/)1),(int[(max1, −+= nmb nm .  

Noting that nmb ,4 ⋅  ‘float’ variables can be stored in this 
area, we prepare a one-dimensional array where nmb ,4 ⋅  
variables can be stored in both row and column directions. 
Accordingly, the required number of blocks is nmnm bb ,,4 ⋅⋅ , 
as illustrated in Fig. 3. 

B. Calculation of transposed matrix 
First, we introduce an efficient algorithm for computing 

the transposed matrix. It is applicable only for a 44× -sized 
matrix, and this makes use of an instruction called ‘permuta-
tion’. An illustration thereof is presented in Fig.4. Elements 
shaded gray represent the cells to be moved to other 
locations with the permutation instruction. In view of this, 
we propose computing the transposed matrix by executing 
two steps as shown in Fig. 5. First, the original matrix is 
divided into block matrices. Then, blocks ),( ji , ),( ij  are 
swapped for all blocks )1( ,nmbji ≤<≤ , ignoring the 
diagonal block matrices. In the second step, transposed 
matrices of all block matrices are computed for all i  and j  

)1,1( ,, nmnm bjbi ≤≤≤≤ . 

C. Multiplication 
According to (1), to obtain the ),( ji th element of 

ZX ⊗ , an inner product of the i th row vector of X  and 
the j th column vector of Z  must be calculated. However, 
as shown in Fig. 3, we can perform operations on rows very 
quickly whereas operations on elements in a vertical 
direction are not so easy. Hence, this research first computes 
the transposed matrix of Z , then adds the corresponding 
elements of the i th row vector of X  and the j th row 
vector of TZ , and finally finds the maximum value of these. 

D. Kleene star 
We explain algorithms for calculating the Kleene star for 

a given weighted adjacency matrix nm×∈DX . 
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Figure 2.  Internal structure of vector-type variables. 
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Figure 3.  Internal structure of matrix-type variables. 
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Figure 4.  Computation of the transposed matrix of a 4*4-sized matrix. 
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Figure 5.  Calculation of the transposed matrix. 

In a simple method based on (3), we first prepare two 
working matrices nn×∈D)0()0( ,WZ , initialized to e , 
where the upper suffix (*) represents the number of updates 
with 0 representing the initial value. The values of W  are 
updated in the following manner: 

.)1()( XWW ⊗= −ii  (7)

Subsequently, the values of Z  are updated as follows: 

.)1()1()( −− ⊕= iii WZZ  (8)

Equations (7) and (8) are applied repeatedly until εW =)(i . 
At this stage, the values of *X  are stored in Z . 

n21 ... n21 ...
 

Figure 6.  A system with tandem-structured precedence constraints. 

Next, the computation algorithms based on methods (a) 
and (b) are explained. After performing a topological sort on 
the adjacency matrix nm×∈DX , both methods update the 
values of Z  based on either (4) or (5). However, we note 
here that it is better to avoid calculations on rows. Thus, we 
handle the working matrix based on TZ , and not on Z . 
Then, the update algorithm for method (a) is expressed as: 

)][]([max][][
)( jlil

T

jlij
T

ij
T XZZZ +⊕←

∈P
.  

By contrast, the algorithm for method (b) is expressed as : 

)][]([][][
1

jlil
T

n

l
ij

T
ij

T XZZZ +⊕← ⊕
=

.  

This conversion simplifies the process to be additions of the 
corresponding elements of the i th row vector of TZ  and 
the j th row vector of X . After all processes have finished, 
we compute the transposition of the working matrix TZ  to 
obtain *X . 

V. RESULTS OF PERFORMANCE EVALUATION 
The effect of ‘SIMDization’ and the performances of the 

PPE and SPE processors are measured. 
Setting the number of nodes to n , consider two cases 

where the adjacency matrix 0F  is (A) dense and (B) sparse. 
For (A), let all pairs of elements ),( ji  that satisfy ji p  
have a precedence constraint ji →  with probability 1/2. 
For (B), consider the precedence constraints where all nodes 
are connected in tandem, as presented in Fig. 6. In both 
cases (A) and (B), after the initial adjacency matrix has been 
set, we sort the indexes of the nodes randomly to create 
experimental adjacency matrices. For the weight matrix kP , 
we generate the diagonal elements obeying a ]1,0[  uniform 
distribution. The computation times for computing the 
transition matrix kkk PFPA *

0 )(=  from the time that both 
0F  and kP  are avilable. This is performed for a varying 

number of nodes, with 80,40,20,10=n , using the follow-
ing two methods; (a) Based on (4): the theoretical time 
complexity is ))(( mnn +⋅Ο , and (b) Based on (5): the 
theoretical time complexity is )( 3nΟ . 

Since the main objective to estimate the effect of SIM-
Dization, we measure the execution times only when using a 
single PPE and SPE. The maximum size 80=n  is bounded 
by the size of the LS, since the required storage including all 
temporary areas is about 256KB for 80=n . 

The execution environment is Sony Playstation III, Fe-
dora Core 10. We used gcc-4.1.1 and CELL SDK (Software 
Development Kit) [8] Version 3.1 as complier and library, 
respectively. We used only a single SPE and PPE, and made 
experiments for both with SIMD and without SIMD. The 
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various experimental cases and the corresponding compila-
tion options are summarized in Table 1. 

The experiment is performed for cases (1)—(4). In each 
case, the execution time is measured for hundred trials with 
a different set of adjacency and weight matrices, and the 
average computation time is then recorded. The time is 
measured using the ‘gettimeofday()’ function. Tables 2—5 
show the results, with all times expressed in microseconds. 
Tables 2 and 3 present the results for dense adjacency 
matrices. 

First, let us consider Table 2. Comparing cases (1) and 
(2), the effect of SIMDization using an SPE is a speedup of 
about 2.0 times for 20=n  and about 2.8 times for 80=n . 
Comparing cases (3) and (4), the effect of SIMDization 
using a PPE is a speedup of about 3.0 times for 20=n  and 
about 3.6 times for 80=n . 

Next, we inspect the results in Table 3. Since method (b) 
does not create an adjacency list, the effect of SIMDization 
may be more significant compared with method (a). In fact, 
comparing cases (1) and (2), the effect of SIMDization is a 
speedup of about 2.7 times when 20=n  and about 4.1 
times when 80=n . In addition, comparing cases (3) and (4), 
the speedup is about 5.3 times with 20=n  and about 7.1 
times with 80=n . 

Comparing SPEs and PPEs, the absolute computation 
times using an SPE for 20≥n  are smaller than those using 
a PPE. Since it is often said that SPEs are more suitable for 
calculation than a PPE, the results might be consistent with 
the common belief. However, in SPEs, even scalar variables 
must be calculated using 128 bit registers, the advantage 
may not be remarkable if we use many scalar control 
variables. In fact, for 10=n , the computation times using a 
SPE are greater than using a PPE. This may be due to the 
above feature. In addition, we should note that the effect of 
SIMDization using a SPE is less significant, which may also 
due to the same reason. 

Comparing methods (a) and (b), it appears that the dif-
ference in execution times is not significant when 

20,10=n . However, as n  increases, the execution time for 
method (a) decreases when SIMD instructions are not used. 
In contrast, the execution time based for method (b) is 
smaller if we apply SIMD instructions. These results seem 
to imply that method (b) is suitable for processors in which 
vector operations are available. 

With respect to Tables 4 and 5, the overall ratio of the 
ratio of timings for SPEs and PPEs and the effect of 
SIMDization on calculation times are roughly the same as 
discussed for Tables 2 and 3. However, since these cases 
focus on sparse adjacency matrices, the time spent on 
creating the adjacency list is relatively short. This makes the 
adjacency-list-based method (a) more advantageous than 
method (b). By contrast, focusing on Tables 2 and 3 again, 
if the adjacency matrix is dense, it would be better to avoid 
utilizing an adjacency list. This is confirmed by the fact that 
the cases based on the adjacency-matrix, method (b), are 
computed faster than those based on method (a).  

As indicated by these results, case (1), using an SPE 
with SIMD instructions, is the fastest. However, method (a)  

TABLE I.  COMPILATION OPTIONS. 

Case Processor SIMD Option 
(1) YES 
(2) SPE NO -O3 -m64 –maltivec -mabi=altivec 

(3) YES 
(4) PPE NO -O3 

TABLE II.  CALCULATION TIMES FOR DENSE MATRICES BASED ON 
METHOD (A). 

n 10 20 40 80 
(1) 57 148 763 5,293
(2) 75 296 1,946 14,703
(3) 35 201 1,372 10,261
(4) 82 611 4,700 37,164

TABLE III.  CALCULATION TIMES FOR DENSE MATRICES BASED ON 
METHOD (B). 

n 10 20 40 80 
(1) 56 133 670 4,592
(2) 83 358 2,454 18,792
(3) 28 146 948 6,780
(4) 103 781 6,081 48,239

TABLE IV.  CALCULATION TIMES FOR SPARSE MATRICES BASED ON 
METHOD (A). 

n 10 20 40 80 
(1) 56 124 549 3,429
(2) 73 268 1,677 12,355
(3) 28 132 769 5,067
(4) 73 518 3,857 29,749

TABLE V.  CALCULATION TIMES FOR SPARSE MATRICES BASED ON 
METHOD (B). 

n 10 20 40 80 
(1) 56 135 676 4,620
(2) 81 349 2,362 17,978
(3) 29 147 954 6,803
(4) 99 728 5,608 44,017

 
or method (b) is better, is dependent on the density of the 
adjacency matrix. 

VI. CONCLUSION 
In this research, a CELL/B.E. processor has been used to 

examine the effect of a fast computation method for a 
transition matrix. We have focused on repetitive discrete 
event systems whose precedence constraints regarding the 
execution of jobs can be expressed as a DAG. The absolute 
computation times using the SPE are smaller than those 
using a PPE. However, it has been proved that the effect of 
SIMDization is more significant when using a PPE. 
Comparing the two methods (a) and (b), where the former is 
based on an adjacency list and the latter on an adjacency 
matrix, method (a) is faster if the adjacency matrix is sparse, 
while method (b) is faster if the matrix is dense. 

Note that only a single SPE is used in this research 
whereas six SPEs are available in Linux on the Playstation3. 
If all these processors are used in parallel, the speedup effect 
would be much more significant. The implementation and 
examination thereof remain our future work. 
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