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Abstract—A new trend in modern Assistive Technologies
implies making extensive use of ICT to develop efficient
and reliable “Ambient Intelligence” applications dedicated to
disabled, elderly or frail people.

In this paper we describe two fall detectors, based on
bio-inspired algorithms. Such devices can either operate in-
dependently or be part of a modular and easily extensible
architecture, able to manage different areas of an intelligent
environment. In this case, effective data fusion can be achieved,
thanks to the complementary nature of the sensors on which
the detectors are based.

One device is based on vision and can be implemented on a
standard FPGA programmable logic. It relies on a simplified
version of the Particle Swarm Optimization algorithm. The
other device under consideration is a wearable accelerometer-
based fall detector, which relies on a recent soft-computing
paradigm called Hierarchical Temporal Memories (HTMs).

I. INTRODUCTION

The number of elderly people who fall and are not
injured or sustain minor or moderate injuries is substantially
unknown, but is definitely very large. Recent researches
estimated that each year, in the U.S., nearly 30% of elderly
people incur in falls, and the likelihood of falling increases
substantially with age. Falls may directly result in traumas,
fractures, permanent disability, or even death. The injuries
suffered as consequences of falls can impact strongly on the
quality of life of older people, both from a physical and
a psychological point of view. Falls can also significantly
affect households and national healthcare systems, from both
an economical and organizational point of view [1].

The situation of the U.S. is similar to that of all most
industrialized countries; in particular, in Europe, the effects
of ageing trace worrying scenarios for 2050 [2]. For this
reason, many countries support scientific research aimed at
finding technological solutions that optimize the costs of
healthcare and increase quality of life of elderly, frail or
partially autonomous people [3].

One of the most recent trends in “Ambient Intelligence” is
to make extensive use of ICT to develop ever more efficient,
reliable and economic Assistive Technologies [4], [5], [6].
This approach can be made most effective by integrating
several technological aids within a single intelligent envi-
ronment, in which large amounts of heterogeneous data can

be processed. Data fusion can achieve much better and more
robust results than single devices integrating simple and
cheap devices in a cooperative approach.

Within this framework, automatic recognition of human
body movements is a well-known problem which has been
tackled in several ways. In [7], for example, knowledge
about the kinematics of the movements under investigation
has been included in the classifier. This approach yields very
high accuracy in detecting such events but, at the same time,
limits the type of events that can be addressed.

The mid/long-term goal of our research is to design
intelligent systems which, while not interfering with the
activities of everyday life, are able to detect events in a
timely manner, or even possibly provide reliable predictions
by which traumatic events may be anticipated and avoided.

This paper describes two fall detectors, based on bio-
inspired algorithms, which can cooperate in a data-fusion
oriented way. The two sensors can be integrated into a
modular architecture to compensate for each other’s limits,
favoring the development of a harmonic, modular and easily
extensible system able to manage different areas of the
environment. The former is a video fall detector which can
be implemented in hardware. This cheap embedded video
sensor is based on a computationally light algorithm (Particle
Swarm Optimization, PSO), that is easily implementable
on a standard FPGA programmable logic [8]. The latter
is a wearable accelerometer-based fall detector, based on
a recent neural network paradigm called Hierarchical Tem-
poral Memories (HTMs). HTM is a biologically-inspired
computational paradigm which is specialized in discovering
invariant patterns in spatial-temporal data [9].

In the following we describe these two devices and report
results of a preliminary experimental evaluation of their
potential. Finally, we give some specifications for a possible
architecture that can integrate them into a simple hybrid
remote sensor network.

II. VISUAL SENSOR BASED ON PSO

The first device we are considering is an embedded system
able to analyze and process data locally. This sensor is
expected to send a central supervision system only aggre-
gated information and not the whole video stream, with clear
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Figure 1. The sensor operating principle.

advantages in terms of privacy and bandwidth occupation.
The sensor output consists only of signals that account
for the ’state of alert’ on the potential occurrence of a
fall. These data can describe ’levels of alert’ as do traffic
lights: green (normal state), yellow (alert), red (potential
danger). When used in conjunction with other sensors (au-
dio, wearable, etc.), such a compact, economical and little-
invasive device can provide a description of the environment
being monitored, which may be accurately evaluated by an
ambient intelligence system as the one described in [10].
The operating principle of the sensor is illustrated in Fig. 1.

The detector is based on a variation of the PSO al-
gorithm [11], which is implemented in hardware on an
FPGA programmable logic. Simplified versions of PSO
for hardware implementations have been described in other
contexts [8], [12]. The device under cosideration can be seen
as an embedded, compact and cheap implementation of PSO,
customized to detect falls.

Its development takes into account how several computer
vision problems can be reformulated in terms of the opti-
mization of a task-dependent function whose value is higher
near the objects, if any, which are to be detected in a
scene. PSO is a bio-inspired optimization algorithm that
searches for the optimum of a function (fitness-function),
mimicking the behavior of flocks of birds in search of food
(i.e., areas where the values of such a function are high).
A set (swarm) of agents (particles) move within the search
space (the domain of the function) seeking its extrema. The
motion of each particle can be modeled by the following
two simple difference equations that describe the position
of each particle and its velocity in time:

Pn(t) = Pn(t − 1) + vn(t) (1)

vn(t) = w ∗ vn(t − 1)
+c1 ∗ rand() ∗ [BPn − Pn(t − 1)] (2)

+c2 ∗ rand() ∗ [BPG − Pn(t − 1)]

where Pn is the position of the nth particle, vn its velocity,
c1 and c2 are two positive constants, w is the so-called
’inertia weight’, BPn is the point with highest fitness
visited so far by the nth particle, and BPG is the highest-
fitness point visited by any member of the swarm so far.
The function rand() returns a random value taken from a

Figure 2. The architecture of the sensor.

uniform distribution in the interval [0,1]. The value of the
constants w, c1 and c2 must be chosen carefully to optimize
convergence of the algorithm.

In our application, the particle swarm moves over the
image acquired from the video sensor in search of points
of interest. The fitness function is computed only for pixels
that are actually visited by particles, and returns a value that
is high where local visual features are similar to those which
are being sought.

The hardware of the sensor includes a digital video
camera, connected to a FPGA programmable logic, to which
two RAMs are connected. Fig. 2 outlines the architecture of
the sensor.

In an initial set-up phase, an image from the digital
camera is taken as background (BG) and stored in RAM1.
At runtime, the current picture (CF) is sent to the FPGA
from the camera and stored in RAM2. The background is
usually refreshed periodically, while no significant event is
being detected, to compensate for possible variations of the
environmental conditions (light intensity and direction, etc.)

The basic task to be accomplished by the swarm is to
detect any moving person who enters the scene and spread
over it as uniformly as possible, in order to outline its current
position (standing, bending, lying on the floor, etc.).

The simplest method of detecting moving objects is based
on the computation of local differences between correspond-
ing pixels of the BG and the CF images (eq. 3).

δ(Pn) = BG(Pn) − CF (Pn)

f(Pn) =
{

δ(Pn) if δ(Pn) > threshold
0 otherwise

(3)

Basically, our fitness function checks if, at a given point in
space, there is a significant difference between the reference
background and the current frame, which would mean that
someone has entered the scene since the last background
refresh.

To detect a possible fall, the algorithm works as follows:
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Figure 3. The architecture of a particle.

Given K particles and Niter iterations,

1) At time t=0, initialize the positions of the K particles
P1(0), . . . , PK(0) randomly;

2) For i = 1,K let BPi = Pi(0) and BPG =
maxi(BPi);

3) For t = 1, Niter

For j = 1,K
- Compute Pj(t) and the corresponding

fitness function f(Pj)
- If f(Pj) > f(BPj) let BPj = Pj

- If f(Pj) > f(BPG) let BPG = Pj

After Niter iterations most particles of the swarm are
expected to have spread over a region, which includes
BPG, that features high fitness values. A bounding box
can then be drawn that contains all high-fitness particles.
When the aspect ratio of the rectangle changes from a stable
vertical position (height > width) to a stable horizontal one
(width > height), a fall is detected (see Fig. 3).

From a hardware point of view, the use of an FPGA can
take advantage of the intrinsic parallelism of PSO as follows:

• The motion equations can be computed independently
and in parallel for each particle, returning their next
positions and fitness-function values;

• Using two RAMs allows one to access corresponding
pixels of the background frame (BG) and of the current
frame (CF) at the same time.

The algorithm has been first simulated using Matlab,
then, by means of a VHDL description, we implemented
the electronic circuit that performs PSO and all the control
logic required for its operation. The simulations have been
carried out on a back-annotated netlist, which corresponds
to the last stage of FPGA implementation; this guarantees
that performances are accurate estimates of the ones which
can be obtained by an actual hardware implementation.

III. WEARABLE WIRELESS SENSOR BASED ON HTM

Recently, smaller and cheaper accelerometers that may
be used as non-obtrusive continuous monitoring devices
attached to one’s body have become available, along with

Figure 4. Front and rear sides of the electronic module used in the
experiments.

low-power wireless data transmission devices, able to stream
data directly to a remote server for instant evaluation. A
novel neural network paradigm, modeled after the human
neocortex and aimed at recognizing spatial-temporal pat-
terns, named Hierarchical Temporal Memory (HTM), has
also attracted significant attention from researchers.

Combining these technologies allowed us to introduce a
new type of sensory channel, based on a wireless triaxial
acceleration sensor module mounted on one’s body, which
streams data to a server that is able to detect events, such
as a fall, in real time.

As regards event detection and classification, our approach
is deeply rooted in the assumption that for us, as humans,
it is easy to understand motion patterns, even very noisy,
by finding “invariants” [9] in the signals that our body
generates. The final aim of this research is to build a system
able to recognize and correctly classify different movements
performed by different people, even in “noisy” situations.

In our method we do not add any a-priori knowledge
about the movements we want to classify, besides the fact
that they develop over time. This approach has already been
successfully validated in a more limited environment where
accelerometer data was sent to a IEEE 802.15.4-enabled
PDA and then classified off-line using an HTM. The data
collection platform consists of a low-cost wireless module,
incorporating a triaxial high resolution accelerometer 1 and a
IEEE 802.15.4 RF transmitter 2, which continuously sends
data to a IEEE 802.15.4-enabled server that receives and
evaluate accelerometer data in real-time.

The wireless sensor module was entirely designed and
developed by Henesis s.r.l. and is being used for distributed
sensing within Henesis WISnP 3.

From the point of view of software, HTM is a compu-
tational paradigm, inspired by the biological structure and
algorithmic properties of the neocortex, which derives from
a more general theory, called Memory-Prediction Frame-
work [9]. A HTM is a hierarchical network of nodes where
the sensory data enter at the bottom while the outputs of
the network are the output of the top nodes, which represent

1ST LIS3LV02DL; BW: up to 640Hz; range: ±2.0g; max res: 1mg
2a.k.a. MAC level of a ZigBee network, transmission range outdoor:

100mt; indoor: 10mt (0dBm output power)
3WIreless Sensor Network Platform: http://wisnp.henesis.eu
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Figure 5. The HTM used in the experiments

the possible causes of the input. Every node in the hierarchy
runs the same algorithm, looking for spatial-temporal pattern
(invariants) [13], [14] in its input and grouping them as
causes. Every node is trained in an unsupervised manner,
in the classical meaning, but time is considered to be the
supervisor: if two events (inputs) occur often consecutively,
they are expected to share the same cause (output). HTMs
have been successfully used in vision and speech recognition
problems.

In our experiment we firmly attached the wireless accel-
eration sensor to a medical chest-band and placed the sensor
corresponding to the lower end of the sternum, to prevent
it from hampering movements and to keep it stable over
subsequent data acquisitions. This location, very close to
the body center of mass, is ideal for acquiring accelerometer
data for “whole body” movements.

The sampling rate of the wireless module, which is able
to sample acceleration data at rates up to 640Hz, is set at
160Hz. The acquired data are transmitted to a server which
implements an HTM and performs fall detection.

Data are processed by a 2-level HTM. In the first level
there is one HTM node per axis of the accelerometer data,
so every node in this level learn and recognize temporal
patterns only of one particular axis. In the second level one
single HTM node is fed by all three outputs from the first
level nodes. This node runs the very same algorithm of the
lower level with the sole difference that its inputs are already
“sequences”. Therefore this node processes “sequences of
sequences”. The output of the HTM network is eventually
classified by a Support Vector Machine. Fig. 5 shows the
HTM network.

This network has been trained on a dataset composed of
4 categories of movements: Standing, Jumping, Walking On
and Falling. The training set includes 10 events per category
while the test set includes 20 events per category. Data
sequences were recorded from three different volunteers.

Figure 6. Some results of the simulation.

Every event lasts about 3 to 5 seconds.

IV. EXPERIMENTAL RESULTS

This section reports the results of the tests we have
performed to evaluate the performance of the detectors,
considered as stand-alone devices.

A. Video-based Detector

Tests performed on a limited set of image sequences were
more than satisfactory, both in terms of quality (see, as an
example, Fig. 6) and in terms of computation time. In fact,
in traditional computer vision applications, the whole differ-
ence image usually needs to be computed and then analysed
by some global algorithm. With PSO, instead, differences
are computed between a limited sample of corresponding
pixels, thanks to the ability of PSO to rapidly converge onto
the most ’relevant’ parts of the search space.

Using this approach with a swarm of 11 particles
which perform 1500 iterations, and processing an image
of 320x240 pixels, 16500 pixels are evaluated per frame,
instead of 76800 (=320x240). The average processing time
(PSO + bounding box extraction) for a frame is approxi-
mately 5ms, allowing for real-time performance or for the
introduction of more sophisticated post-processing. It should
be pointed out that the resolution at which our tests have
been performed can be considered a worst-case scenario for
our algorithm, since the gain in term of image sampling ratio
obviously becomes more and more favourable to our PSO
approach as image size increases.

Evaluations and simulations have been carried out using
a Xilinx S3E1200-FPGA device. Table I summarizes the
percentage of use of the main FPGA resources.
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Table I
ESTIMATED DEVICE UTILIZATION

FPGA resources % of use
Slices 77%

Slice Flip Flops 23%
4-input LUTs 72%
RAM Block 7%

MULTIPLIERS (18X18) 82%

B. Accelerometer-based Detector

To simulate a real-life situation the classifier has been
tested with a continuous flow of different events, without
pre-segmenting them. The HTM classifies each time point;
then, to obtain a more stable classification, the predicted
and the expected output are averaged over time windows
whose width is equal to 3 seconds (480 timepoints, which
is about the average length of an event) in steps half a
second long (80 timepoints). The event which occurs in
the sliding window is labeled based on the class that has
been detected more frequently by classifying each sample
within the current window, both for the predicted and for
the expected categories. The good results obtained on the
test set are shown in Table II.

To explain the slightly worse performances on events
labeled as Falls, it can be observed that the classifier might
suffer from the potential co-occurrence of two uncorrelated
events within the same time window. Falls are shorter events
than the others and may be more sensitive to the above
problem. While integrating this sensory channel inside a
broader architecture, it may be useful to assign a degree of
confidence to the HTM classification of the current input,
for example by performing a fuzzy grouping and analysis
of predicted and expected classifications inside the sliding
windows.

V. DATA-FUSION ARCHITECTURE

Even if work about fall detection is common in the
literature, and many patents, as well, have been filed on
this topic, these systems are not common in daily geriatric
practice. This is partly due to a natural resistance of people
to being monitored but, above all, to the many “false alarms”
that such devices can generate [15].

Among the main factors that could make such sensors
more acceptable are:

• producing as output only the parameters that are strictly
necessary for detection, preserving users’ privacy;

• the use of passive sensors that can be located in the
environment and kept in operation without requiring
users’ active participation;

• the use of wearable wireless sensors which, while
possibly moderately constraining movements, remain
active also within areas that can not be covered, for
example, by video surveillance systems.

Table II
CONFUSION MATRIX FOR THE TEST SET.

Expected—Predicted Other events Fall
Other events 99.54% 0.46%

Fall 2.95% 97.05%

The problem of sensor reliability limits ICT services ac-
ceptance by people who are specialized in elderly assistance.
Improving service reliability can be achieved by introducing
some redundancy or synergy among sensors. This could
also lead to offering even more important services, such
as predicting (and avoiding) falls or dangerous situations.
Such an integration can be achieved by defining a multi-
level scalable architecture which offers the possibility to add
more services (for example, fall detection with the ability to
immediately locate the point where someone has fallen) and
to integrate data from different sensors for the detection of a
single critical condition using flexible and extensible models
based, for example, on multiple classifier sets and/or fuzzy
decision trees. Examples of integration can be found in [16]
and in [17].

The two fall detectors taken into consideration are the
first prototypes of devices that are to be integrated into a
larger architecture of ICT services suitable for a non-invasive
monitoring of elderly or partially-autonomous people during
their daily activities. Both sensors interfere minimally with
normal daily activities and the privacy of the patients while,
jointly, being able to guarantee a good level of fault-
tolerance, thanks to their complementary features. The video
fall detector is completely passive and can be used without
any user collaboration, while the other one is based on
an accelerometer which is wearable. The use of both fall
detectors increases the operability of an assistance service
in situations in which one of them fails (as, for example, if
the subject forgets to wear the former or when the camera
of the latter cannot operate because the light is off or too
dim).

Therefore, in designing services based on the fusion
of data coming from our two sensors, different levels of
warning can be defined, such as:

• L0: the two sensors are active and not detecting a fall;
• L1: only one sensor is active and is not detecting a fall;
• L2: both sensors are active and one is detecting a fall;
• L3: only one sensor is active and is detecting a fall;
• L4: both sensors are active and detecting a fall.
Even if detecting falls after their occurrence is important,

it would be even more important if a service could recognize
dangerous situations which could likely cause a fall. To
achieve this goal, one can consider that both sensors are
working on data sequences and that they are both based on
adaptive algorithms. Therefore, one could maintain a history
of data acquired before the system recognizes a user fall and
learn to recognize such a situation.
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Moreover, fall detectors can be integrated with other
services such as monitoring of blood pressure, body temper-
ature, heart rate, as well as sensors for people localization or
for their tracking [18], [19]. Such developments would allow
one to offer a global service that is more reliable and able
to provide the inputs which allow predictions about falls to
be made and, perhaps, to recognize dangerous behaviors of
the subjects who are being monitored.

VI. CONCLUSIONS AND FUTURE WORK

We have presented two fall sensors, an embedded video-
based one and a wearable accelerometer-based one, which
can be managed within a data-fusion-oriented framework,
implementing policies aimed at maximizing system relia-
bility and minimizing the presence of false alarms. The
video fall detector is based on a digital camera and a FPGA
programmable logic, able to locally process the images
and to transmit to a server only aggregated information
relating to the ’state of alert’, with obvious advantages in
terms of end users’ privacy. The sensor uses a hardware
implementation of the PSO algorithm, designed to exploit its
intrinsic parallelism. The wearable sensor is based on a new
powerful soft-computing paradigm which makes it possible
to extend the task it performs to detecting a whole set of
situations, and therefore to make the whole architecture more
flexible.

Future developments of this work will be mostly aimed
at implementing the solutions we anticipated for the data-
fusion framework, with particular regard to increasing reli-
ability and to predicting falls before they occur.
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