
Postponed Updates for Temporal-Difference Reinforcement Learning

Harm van Seijen
TNO Defence, Security and Safety

Oude Waalsdorperweg 63
2597 AK The Hague, The Netherlands

harm.vanseijen@tno.nl

Shimon Whiteson
Informatics Institute, University of Amsterdam

Science Park 107
1098 XG Amsterdam, The Netherlands

s.a.whiteson@uva.nl

Abstract

This paper presents postponed updates, a new strategy
for TD methods that can improve sample efficiency with-
out incurring the computational and space requirements of
model-based RL. By recording the agent’s last-visit experi-
ence, the agent can delay its update until the given state
is revisited, thereby improving the quality of the update.
Experimental results demonstrate that postponed updates
outperforms several competitors, most notably eligibility
traces, a traditional way to improve the sample efficiency
of TD methods. It achieves this without the need to tune an
extra parameter as is needed for eligibility traces.

1 Introduction

In reinforcement learning (RL) [4, 13], an agent seeks
an optimal control policy for a sequential decision prob-
lem. Unlike in supervised learning, the agent never sees
examples of correct or incorrect behavior. Instead, it re-
ceives only positive and negative rewards for the actions
it tries. When the sequential decision problem is mod-
eled as a Markov decision process (MDP) [2], the agent
can learn an optimal policy using temporal-difference (TD)
methods [11, 14]. Each time the agent acts, the result-
ing feedback is used to update estimates of its action-value
function, which predicts the long-term discounted reward it
will receive if it takes a given action in a given state. Once
the optimal action-value function has been learned, an opti-
mal policy can easily be derived.

TD methods are appealing due to their simplicity and
computational efficiency. However, they are often criticized
for a lack of sample efficiency, as the agent may need infea-
sibly many interactions with its environment to discover a
good policy. By contrast, in model-based RL [12, 6], the
agent uses its experience interacting with the environment
to estimate a model of the MDP and then computes a policy
via off-line planning techniques such as dynamic program-

ming [1]. While model-based methods can be more sam-
ple efficient [3, 5, 9] than TD methods, they also require
more computation, for planning, and space, to represent the
model.

This paper presents postponed updates, a new strategy
for TD methods. By recording the agent’s last-visit experi-
ence in each state or state-action pair, it is possible to post-
pone the update until later. Doing so can speed learning by
improving the quality of the update, as the value estimates
of other state-action pairs involved in the update may have
improved in the meantime.

Our experimental results demonstrate that in its most ba-
sic form, postponed updates can improve the sample effi-
ciency at no extra computational cost. The sample effi-
ciency can be further improved by using provisional up-
dates, that allow the final updates to be further postponed.
Based on provisional updates we discuss three different al-
gorithms that trade-off computation time for an increased
sample efficiency in different ways. The extended postpon-
ing method offers an improved sample efficiency for limited
extra computation, while pushing the trade-off all the way
to unlimited computation, the agent can compute the best-
match Q-values, resulting in still larger performance gains.
Finally, we demonstrate that prioritized sweeping [6], a
method for reducing the computational costs of model-
based RL, can also be applied to speed the computation of
best-match Q-values. Experimental results show that this
method outperforms several competitors, including eligibil-
ity traces, a traditional way to increase the sample efficiency
of TD methods, while it does not require tuning an extra pa-
rameter. By contrast, eligibility traces requires tuning the
trace decay parameter λ for optimal results.

2 Background

Sequential decision problems are often formalized as
Markov decision processes (MDPs), which can be described
as 4-tuples 〈S,A, T ,R〉 consisting of S, the set of all states;
A, the set of all actions; T (s, a, s′) = P (s′|s, a), the tran-

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.76

665

sition probability from state s ∈ S to state s′ when ac-
tion a ∈ A is taken; and R(s, a) = E(r|s, a), the re-
ward function giving the expected reward r when action a
is taken in state s. Actions are selected at discrete time steps
t = 0, 1, 2, ... and rt+1 is defined as the reward received af-
ter taking action at in state st at time step t. The goal of
the agent is to find an optimal policy π∗ that maximizes the
expected discounted return:

Rt = rt+1 + γ rt+2 + γ2 rt+3 + ... =
∞∑

k=0

γkrt+k+1 (1)

where γ is a discount factor with 0 ≤ γ ≤ 1.
Most solution methods are based on estimating a value

function V π(s), which gives the expected return when the
agent is in state s and follows policy π, or an action-value
function Qπ(s, a), which gives the expected return when the
agent takes action a in state s and follows policy π there-
after.

Most TD methods seek to learn the optimal action-value
function Q∗(s, a) by iteratively updating the current esti-
mate Qt(s, a) each time new experience is obtained. A
common form for these updates is:

Qt+1(st, at)← (1− α)Qt(st, at) + α v (2)

where α is the learning rate and v is the update target. Many
update targets are possible, such as the Q-learning [14] up-
date target:

vt = rt+1 + γ max
a

Qt(st+1, a) (3)

Alternatively, the agent can take a model-based ap-
proach [12, 6], in which its experience is used to com-
pute maximum-likelihood estimates of T and R. Using
the model, the agent can compute the optimal value func-
tion V ∗ using dynamic programming methods [1] such as
value iteration [7]. Each time new experience is gathered,
the model is updated and V ∗ recomputed.

3 Postponed Updates

This section introduces four different algorithms that
make use of last-visit experience to postpone the updates
performed by TD methods, thus improving the update target
and speeding learning. The algorithms differ in the trade-off
they make between computation per time step and improve-
ment of the update target.

3.1 Basic Postponing

The most simple TD method is the Q-learning algo-
rithm [14]. It performs updates (Equation 2) based on vt

(Equation 3) right after a given state-action pair (st, at) is
visited. However, this updated value is not used until st is
revisited, at which point it is used in the update target of the
preceding state and to select a new action. Therefore, the
actual update of the Q-value of (st, at) with vt can be post-
poned till just before it is used at the moment of revisit of
st, without affecting the online performance.

Following this reasoning further, it is easy to see that the
above is also valid when applied to all state-action pairs si-
multaneously. In other words, a method that postpones the
update of all Q-values till its states are revisited has the same
online performance as regular Q-learning. Overall, the Q-
values of this method are behind in the number of updates
they have received. However, the relevant Q-values, which
are the Q-values from the current state, have received ex-
actly the same updates as with regular Q-learning, resulting
in the same online performance.

Although postponing the updates based on vt results in
a method with the same performance, delaying the update
makes it possible to use an alternative update target that is
more accurate than vt. Before explaining why, we define
the more general update target vt+n

t :

vt+n
t = rt+1 + γ max

a
Qt+n−1(st+1, a) (4)

This update target is the same as the Q-learning update tar-
get vt, except that the Q-values of state st+1 are from a later
time. Note that vt is equal to vt+1

t . If we now define t∗ to
be the time of the first revisit of state st, than by postponing
till the revisit of st, it becomes possible to use the update
target vt∗

t instead of vt. Comparing vt with vt∗
t leads to two

cases. If state st+1 has not been revisited between t+1 and
t∗, then vt = vt∗

t since the last update for st+1 occurred at
time t + 1. Note that this is also true for a returning action
(t∗ = t + 1). On the other hand, if state st+1 is revisited
before t∗ (like in Figure 1), one of the Q-values of st+1 has
received an extra update in the meantime. Since TD updates
cause the expected error in the Q-values to decrease over
time [14, 8], due to this extra update vt∗

t will be on average
more accurate than vt. So, although at time t∗ the Q-values
of st have received just as many updates with postponed up-
dates as with regular updates, due to the different order of
the updates the update target for postponed updates is more
accurate, resulting in faster learning. This counterintuitive
property is the key property behind the sample efficiency
improvement of all our postponed updates methods.

Figure 1. A state transition sequence in which
postponed updates can lead to faster learn-
ing. Subscripts indicate state indices.

666

Simply postponing the update till the revisit of a state
we call basic postponing. Algorithm 1 shows pseudocode
for the basic postponing implementation of Q-learning with
ε-greedy action selection. The same idea can easily be com-
bined with other TD methods or exploration strategies. In
order to compute vt∗

t we need to store the last-visit expe-
rience for each state, i.e., the action, reward and next state
experienced at the last visit of a state. We store these values
in Â(s), R̂(s) and Ŝ′(s), respectively. If Ŝ(s) = −1, then
state s has not been visited yet and no update can be per-
formed. Note that the last-visit experience is not reset at the
end of an episode, but maintained across episodes.

Algorithm 1 Q-Learning with Basic Postponing
1: Initialize Q(s, a) arbitrarily for all s,a
2: Initialize Ŝ′(s) = −1 for all s
3: loop {over episodes}
4: Initialize s
5: repeat {for each step in the episode}
6: if Ŝ′(s) �= −1 then
7: Q(s, Â(s))← (1− α)Q(s, Â(s))+

α [R̂(s) + γ maxa Q(Ŝ′(s), a)]
8: end if
9: with probability ε select random a,

otherwise a← argmaxa′ Q(s, a′)
10: take action a, observe r and s′

11: Ŝ′(s)← s′; R̂(s)← r; Â(s)← a
12: s← s′

13: until s is terminal
14: end loop

3.2 Extended Postponing

In the example shown in Figure 1, the update of
Q(s0, at) is postponed until the first time state s0 is revis-
ited. In this section, we demonstrate that the update can
be postponed even further in the case where a different ac-
tion is selected upon revisit. Consider the example shown
in Figure 2, which extends the previous example to include
a second revisit of s0 at time t + 7. Suppose that a differ-
ent action is selected on the first revisit (at �= at+4) but the
original action is chosen on the second revisit (at = at+7).

Figure 2. A state transition sequence in which
provisional updates can enable further post-
poning. Subscripts indicate state indices;
timesteps are shown above each state.

At time t+4, updated Q-values of state s0 are needed to
perform action selection. Therefore, the agent can perform
a provisional update of Q(s0, at). However, since no new
experience about Q(s0, at) is obtained between time t + 4
and time t+7, the agent can discard this provisional update

and redo the update at time t+7, using the same experience,
but with more recent Q-values for s1. Since s1 is revisited
again at time t + 6, these Q-values may have further im-
proved in the meantime. Since the agent reselects at after
this update, it is also the final update of Q(s0, at).

Extending the postponing period in this way requires ad-
ditional computation, as the agent typically performs mul-
tiple updates per time step. In the example, at time t + 7
the agent must perform both a final update of Q(s0, at),
but also a provisional update of Q(s0, at+4). In the worst
case, when all state-actions pairs have been visited at least
once, the agent performs |A| updates per time step. Fur-
thermore, some old Q-values must be remembered in order
to undo provisional updates and last-visit experience must
be tracked per state-action pair instead of per state. How-
ever, this bookkeeping requires only O(|S||A)| space, so
the space complexity of TD learning remains unchanged.

Algorithm 2 shows the generic pseudocode of using Q-
learning with provisional updates, again with ε-greedy ex-
ploration. The last-visit experience is stored in R̂(s, a) and
Ŝ′(s, a) and old Q-values in Qold(s, a). For the extended
postponing approach discussed in this section line 6 is im-
plemented by the following code:

1: for all a ∈ A do
2: if Ŝ′(s, a) �= −1 then
3: Q(s, a)← (1− α)Qold(s, a)+

α [R̂(s, a) + γ maxa′Q(Ŝ′(s, a), a′)]
4: end if
5: end for

Algorithm 2 Q-learning with Provisional Updates
1: Initialize Q(s, a) arbitrarily for all s,a
2: Initialize Ŝ′(s, a) = −1 for all s,a
3: loop {over episodes}
4: Initialize s
5: repeat {for each step in the episode}
6: Perform provisional updates of Q-values based on Qold, Ŝ′ and R̂
7: With probability ε select random a,

otherwise a← argmaxa′ Q(s, a′)
8: Take action a, observe r and s′

9: Ŝ′(s, a)← s′, R̂(s, a)← r
10: Qold(s, a)← Q(s, a)
11: s← s′

12: until s is terminal
13: end loop

3.3 Best-Match Q-Values

In the approach described above, provisional updates oc-
cur only when a state is revisited. Consequently, when re-
visits do not occur, the experience from the initial state visit
is not employed when updating other states. For example,
Figure 3 shows a scenario in which s1 is visited only once
before s0 is revisited. As a result, both of the algorithms
described above will perform at time t + 3 the same update
as regular Q-learning, without exploiting the experience for
s1 gathered at time t + 2.

667

Figure 3. A state transition sequence in which
s1 is not revisited.

Fortunately, it is not necessary to wait for a revisit of
s1 to perform a provisional update. Instead, it can be per-
formed at the moment it is needed: when s0 is revisited.
Thus, if at time t + 3 the agent performs a provisional up-
date of Q(s1, at+1), before updating Q(s0, st), the latter
update will exploit more recent Q-values for s1, just as if
s1 had been revisited. However, performing these updates
further increases the computational cost. In the worst case,
if the agent updates the Q-values of the next state of every
action of s0, it will perform |A|2 updates per time step.

Taking this idea further, the agent can first update the Q-
values of s2 before updating the Q-values of s1. In other
words, the agent uses the Q-values of s0 to perform a pro-
visional update of s2, then performs a provisional update of
s1 and finally s0. However, once the Q-values of s0 have
changed, it is possible to further improve the Q-values of
s2 even more by redoing its provisional update. The new
Q-values of s2 can then be used to redo the update of s1,
which in turn can be used to re-update s0. This process can
repeat until the Q-values reach a fixed point.

From a mathematical perspective, this situation can be
described using a system of |S||A| non-linear equations
based on the provisional update rule:

Q(s, a) = (1− α)Qold(s, a) + α [R̂(s, a) +
γ max

a′
Q(Ŝ′(s, a), a′)] (5)

for all s ∈ S and all a ∈ A. The values of Qold, Ŝ and R̂
are known and there are |S||A| unknown Q-values. These
equations have a unique solution that can be found by iter-
atively performing updates based on these equations until
all Q-values converge. The solution is the set of best-match
Q-values, i.e., those that best match the last-visit experi-
ence from all state-action pairs. The methods described in
Sections 3.1 and 3.2 can be seen as approximating this best-
match solution under different computation constraints.

We can compute the best-match Q-values by implement-
ing line 6 of algorithm 2 by the following code:

1: repeat
2: Δ← 0
3: for all s,a do
4: if S′(s, a) �= −1 then
5: υ ← Q(s, a)
6: Q(s, a)← (1− α)Qold(s, a)+

α [R̂(s, a) + γ maxa′Q(Ŝ′(s, a), a′)]
7: Δ← max(Δ, |υ −Q(s, a)|)
8: end if
9: end for

10: until Δ < θ (a small positive number)

The resulting algorithm is closely related to model-based
methods in which the planning step is performed with value
iteration [7]. In value iteration, the set of Bellman optimal-
ity equations is solved via iterative update sweeps through
the state space. When α = 1, Equation 5 reduces to the set
of Bellman optimality equations with the last-visit experi-
ence treated as a deterministic model. Therefore, in a deter-
ministic environment the best-match method with α = 1 is
equal to model-based learning. However, in the general case
of a stochastic environment this deterministic model is in-
correct and α has to be set smaller than 1, causing Q to be an
update of Qold based on the last-visit experience. Note that
if Qold(s, a) is replaced by Q(s, a) in Equation 5, the solu-
tion of the set of equations depends only on the last visit ex-
perience, just like in the α = 1 case, and it becomes impos-
sible to effectively deal with a stochastic environment. This
illustrates the importance of Qold, which ensures proper
averaging over stochastic experience. The resulting algo-
rithm is as computationally expensive as model-based RL
methods that plan between each step. However, the space
complexity remains O(|S||A|), whereas representing a full
stochastic model requires O(|S|2|A|) space.

3.4 Model-Free Prioritized Sweeping

Computing the best-match Q-values can be very compu-
tationally expensive. However, it is possible to efficiently
compute good approximations of these values with the same
strategies used to improve the computational efficiency of
model-based RL. In this section, we show how one such
strategy, prioritized sweeping [6], can be applied to speed
computation of the best-match Q-values.

The prioritized sweeping algorithm makes the planning
step of model-based RL more efficient by focusing on the
updates expected to have the largest effect on the value
function. The algorithm maintains a priority queue of state-
action pairs in consideration for updating. When a state-
action pair (s, a) is updated, all predecessors (i.e., those
state-action pairs whose transition probabilities to s are
greater than 0) are added to the queue according to a heuris-
tic priority estimating the impact of the update. At each
time step, the top N state-action pairs from this queue are
updated, with N depending on the available computation
time.

Prioritized sweeping can also be applied to model-free
learning to speed computation of the best-match Q-values.
The resulting method, which we call model-free prioritized
sweeping, can compute good approximations of these val-
ues in a computationally efficient way, without the space
requirements of model-based learning. The pseudocode for
this method implements line 6 of algorithm 2 as:

1: loop {N times, while PQueue is not empty}
2: s, a← first(PQueue)

668

3: Vs′ ← maxa′ Q(Ŝ′(s, a), a′)
4: Q(s, a)← (1− α)Qold(s, a) + α [R̂(s, a) + γVs′]
5: Vs ← maxa Q(s, a)
6: for all s, a with S′(s, a) = s do
7: p← |(1− α)Qold(s, a) + α [R̂(s, a) + γ Vs]−Q(s, a)|
8: if p > θ, insert s, a into PQueue with priority p
9: end for

10: end loop

Besides that, the priority queue PQueue has to be
initialized as an empty queue and after line 11 the
line

promote pair (s, a) to top of priority queue

should be added.
This algorithm is very similar to the deterministic ver-

sion of model-based prioritized sweeping from Sutton and
Barto [13] with one crucial difference: the updates happen
with respect to Qold instead of Q. In other words, we per-
form provisional updates instead of regular updates. As ex-
plained in Section 3.3 this ensures proper averaging of expe-
rience making it possible to use the algorithm in a stochas-
tic environment. We demonstrate the importance of provi-
sional updates in Section 4.2 by comparing the performance
of our model-free prioritized sweeping algorithm with the
deterministic model-based version of Sutton and Barto on a
stochastic task.

4 Results and Discussion

In this section we compare the performance of the var-
ious postponed updates methods and several alternatives.
We pay special attention to the comparison with eligibil-
ity traces, since this method has much in common with the
postponed updates approach.

4.1 Comparing Different Postponed Up-
dates Methods

We begin our empirical evaluation by comparing the per-
formance of Q-learning to the novel methods presented in
Section 3 on a stochastic variation of the Dyna Maze prob-
lem [12]. In this navigation task, depicted in Figure 4, the
agent has to find its way from start to goal. The agent can
choose between four movement actions: up, down, left and
right. To determine whether the methods we evaluate are ro-
bust in stochastic environments, we employ a probabilistic
transition function: with a 20% probability, the agent moves
in an arbitrary direction instead of the direction correspond-
ing to the action. All actions result in 0 reward, except for
when the goal is reached, which results in a reward of +1.
The discount factor γ was set to 0.95.

To compare performance, we measure the average return
each method accrued from the start state during the first 200
episodes, averaged over 1000 independent runs per method.
Each method uses ε-greedy action selection with ε = 0.1

S

G

Figure 4. The Dyna Maze task, in which the
agent must travel from S to G.

and an initial learning rate α0 of 0.9 that is decayed in the
following manner:

α = α0d
n(s,a) (6)

where n(s, a) is the number of times the current action a
was previously selected in the current state s. We optimize
d for each method individually: we first test d = 0.9 and
then decrease it by increments of 0.05 until the average re-
turn in the 200th episode stops improving. All Q-values are
initialized to 1/(1−γ) in order to be consistent with delayed
Q-learning, discussed later in this section.

Figure 5 shows the results of these experiments, com-
paring the average return per episode of each method. The
potential benefits of recording last-visit experience and us-
ing it to postpone updates is evident from the performance
of the basic postponing method, which substantially out-
performs regular Q-learning. Remarkably, it achieves this
performance gain without any additional computational or
space requirements. The results also demonstrate that com-
putation time can be traded for even better performance, as
the extended postponing method obtains a much larger per-
formance gain over Q-learning. Since there are 4 actions
in this task, the extended postponing method typically per-
forms 4 updates per time step instead of 1.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

episodes

av
er

ag
e

re
tu

rn

Q−learning
Basic Postponing
Extended Postponing
MF PrioSweep, N = 4
MF PrioSweep, N =10
Best Match

Figure 5. The average return per episode of
Q-learning and various postponed updates
algorithms on the stochastic Dyna Maze task.

The computational requirements of model-free priori-
tized sweeping are controlled by the parameter N , the num-

669

ber of updates performed per time step. With N = 4, this
method requires approximately the same number of updates
per step as extended postponing on this task. However, the
results show that, by using a priority queue to determine
which state-action pairs to update, it performs even bet-
ter. Note that this performance is achieved using the same
O(|S||A|) space complexity as Q-learning.

The graph also shows the performance of the best-match
algorithm, which can be thought of as a computationally
expensive upper bound on the performance achievable with
this space complexity. While computing the best-match val-
ues will be infeasible in many realistic problems, the results
demonstrate that they can be effectively approximated in
a computationally efficient way, as model-free prioritized
sweeping requires only N = 10 before its performance be-
comes indistinguishable from the best-match approach.

4.2 Comparing Against Other Methods

In this subsection, we compare the performance of
model-free prioritized sweeping to several alternative meth-
ods from the literature that balance computational, space,
and sample efficiency in various ways.

We start by comparing against methods using eligibil-
ity traces [11], to which the postponed updates approach is
closely related. Whereas postponed updates methods keep
track of their recent history by storing last-visit experience,
methods based on eligibility traces keep track of recently
visited states by maintaining a trace parameter per state or
state-action pair. This trace parameter is increased when
a state is visited and decreased by γ λ otherwise, where λ
is the trace-decay parameter. At each time step, all states
are updated proportional to their trace parameter. Since re-
cently visited states have a higher trace value, they receive
a larger correction. There are two commonly used variation
of eligibility traces. Methods that use accumulating traces
increase the trace parameter of a visited state by 1, while
methods that use replacing traces set the trace parameter
equal to 1.

Both postponed updates and eligibility traces aim to im-
prove the Q-value estimates by using experience to perform
multiple updates, though they do so in different ways. To il-
lustrate the differences, we first compare their performance
on a policy evaluation task. We consider the small network
shown in Figure 6. The network consists of 4 equivalent
states, each with only a single action pointing to a neighbor
state. Each action results in a reward drawn from a normal
distribution with mean 1 and a standard deviation of 0.5,
making it a stochastic problem. With a discount factor of
0.95, we can easily determine analytically that the value
of each state is 20. We compare the root mean-squared
(RMS) error across the 4 states for the best-match method
and model-free prioritized sweeping to TD(λ) for different

values of λ. We initialize the Q-values at 0 and used anneal-
ing learning rates according to equation 6, with a0 = 1 and
optimized the decay parameter d per method. We averaged
over 1000 independent runs. For TD(λ) we use accumu-
lating traces, since it outperforms replacing traces on this
task. Figure 6 shows the results for the first 50 timesteps.
Although we determined the error for λ values from 0 to 1
with steps of 0.1, we only show the results for 3 λ-values,
including the optimal λ-value, which was 0.9.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

timesteps

R
M

S
 e

rr
or

TD(0)
TD(0.5)
TD(0.9)
BestMatch
MFprioSweep, N = 10

Figure 6. The small circular network (top) and
the RMS error of various methods on its pol-
icy evaluation (bottom).

This example shows that model-free prioritized sweep-
ing outperforms eligibility traces at all its λ values, without
the need to tune an extra parameter.

While the previous experiment focused on the quality of
value estimates, the performance of the postponed update
methods can also be compared to eligibility traces in the
control case. To do so, we compare our model-free priori-
tized sweeping algorithm to Watkins’s Q(λ), the off-policy
implementation of eligibility traces, on the Dyna Maze task.
As before, we optimize λ for the range from 0 to 1 with
steps of 0.1.

We also compare against several other alternatives. The
second alternative is model-based prioritized sweeping [6].
As mentioned in Section 3.4, this method maintains a
maximum-likelihood model and performs N value itera-
tion updates per time step, prioritizing updates based on
the expected impact on the value function. For a given
N , model-based prioritized sweeping has similar computa-
tional requirements as our model-free alternative. However,
maintaining a model requires O(|S|2|A|) space.

670

The third alternative is deterministic model-based pri-
oritized sweeping [13], a simpler variation on prioritized
sweeping that learns only a deterministic model, uses a
slightly different priority heuristic, and performs Q-learning
updates to its Q-values. While this method was clearly de-
signed with deterministic tasks in mind, it can be applied
to stochastic tasks, in which case updates are based on a
model consistent with the last-visit experience. This ap-
proach can be viewed as a naı̈ve alternative way of achiev-
ing the O(|S||A|) space requirements of model-free priori-
tized sweeping.

The fourth alternative is delayed Q-learning [10], a
model-free method that, like some model-based methods [3,
5, 9], is proven to be probably approximately correct (PAC),
i.e., its sample complexity is polynomial with high proba-
bility. Delayed Q-learning works by initializing its Q-values
optimistically and ensuring that value estimates are not re-
duced until the corresponding state-action pairs have been
sufficiently explored. Because it does not maintain a model,
it has the sameO(|S||A|) space requirements as model-free
prioritized sweeping. However, to our knowledge, its em-
pirical performance has never been evaluated before.

As in the previous experiments, we optimized the learn-
ing rate decay shown in Equation 6 for each method except
model-based prioritized sweeping and delayed Q-learning,
which do not use learning rates. For delayed Q-learning we
optimized the two free parameters m and ε1 by testing ev-
ery combination of the following values: m ∈ [1, 10] and
ε1 ∈ {0.001, 0.005, 0.010, 0.015, 0.020} and found that
m = 6 and ε1 = 0.015 performed the best. All methods
use ε-greedy action selection with ε = 0.1, except for de-
layed Q-learning, which relies on optimistic initialization
for exploration. The top graph of Figure 7 shows the aver-
age return of the start state for the first 500 episodes, aver-
aged over 1000 runs for each method. The graph also in-
cludes the performance of regular Q-learning as a baseline
for comparison.

As expected, the performance of model-free prioritized
sweeping falls between that of Q-learning and model-based
prioritized sweeping. Each alternative represents a different
trade-off: Q-learning requires less computation but achieves
inferior performance; model-based prioritized sweeping
achieves superior performance but has higher space com-
plexity. In this domain, Q(λ) performs similarly to model-
free prioritized sweeping. However, achieving this perfor-
mance requires optimizing the λ parameter; for other λ val-
ues the performance is considerably worse. By contrast,
model-free prioritized sweeping has one fewer parameter to
optimize.

Surprisingly, delayed Q-learning performs quite poorly,
worse even than regular Q-learning. While the algorithm
represents an important theoretical contribution, its theoret-
ical properties do not guarantee good performance in prac-

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

episodes

av
er

ag
e

re
tu

rn

Qlearning
Q(lambda)
MF PrioSweep, N = 10
det. MB PrioSweep, N = 4
delayed Qlearning
MB PrioSweep, N = 10

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

episodes
av

er
ag

e
re

tu
rn

Qlearning
Q(lambda)
MF PrioSweep, N = 10
MB PrioSweep, N = 10

Figure 7. The average return per episode of
model-free prioritized sweeping and various
alternatives on the stochastic (top) and de-
terministic (bottom) Dyna Maze task.

tice. Unlike both model-based and model-free prioritized
sweeping, it does not use extra computation time to speed
performance. While its exploration strategy ensures the al-
gorithm is PAC, the results show it is not always effective
in practice, as simple ε-greedy Q-learning performs better.

The performance of deterministic model-based priori-
tized sweeping was very unstable on the Dyna Maze prob-
lem. At many parameter settings we were unable to com-
plete any runs because individual episodes ran infeasibly
long, as the agent was unable to find the goal. The results
shown occurred on the only parameter setting for which we
successfully completed 1000 runs. We also found other pa-
rameter settings that performed better (though never as well
as the regular Q-learning baseline) on some runs, but failed
to terminate on others.

The bottom graph of Figure 7 shows the results for the
deterministic case. The results are averaged over 500 inde-
pendent runs. As expected, model-free prioritized sweeping
performs now similar to model-based prioritized sweeping
and outperforms Q(λ) at an optimal λ of 0.7 by a large mar-
gin.

Finally, we compare the performance of model-free pri-
oritized sweeping to that of Q-learning and Q(λ) on a larger
maze problem (see Figure 8), to determine if its perfor-

671

mance scales to more challenging tasks. In this case, the
agent receives only a reward of -0.1 per time step, but it re-
ceives a reward of -2 if a wall or the border is hit. Upon
reaching the goal state, the agent receives a reward of 100.
The discount factor is 0.99 and the Q-values are initialized
to 0. The environment is stochastic and moves the agent
with a probability of 10% in a random direction instead of
the preferred direction. ε-greedy exploration is used with
ε = 0.05. We anneal the learning rate according to Equa-
tion 6 with α0 set to 0.9 and optimize d to get the best av-
erage performance over the first 200 episodes. For Q(λ) we
also optimize λ. Results are averaged over 100 independent
runs.

The bottom graph of Figure 8 shows the results. For
this task, model-free prioritized sweeping significantly out-
performs Q(λ), demonstrating that model-free prioritized
sweeping can significantly outperform Q(λ) in stochastic
environments also. The performance of model-free prior-
itized sweeping very closely follows the performance of
model-based prioritized sweeping for the initial learning
phase, but shows no significant improvement anymore after
the first 20 episodes because the optimal decay parameter is
relatively large causing the learning rate to be close to zero
after the initial learning phase.

S
G

0 50 100 150 200
−60

−40

−20

0

20

40

60

episodes

av
er

ag
e

re
tu

rn

Q−learning
Q(lambda)
MFprioSweep, N = 10
MBprioSweep, N = 10

Figure 8. Large maze task (top) and the av-
erage return per episode of model-free prior-
itized sweeping and various alternatives on
this task (bottom).

Overall, these empirical results validate the potential
of postponed updates for improving the performance of
temporal-difference reinforcement learning.

5 Future Work

In the future, we plan to investigate what formal con-
vergence guarantees are obtainable for the various post-
poned updates methods presented here. We also plan to con-
duct more extensive empirical comparisons and to combine
model-free prioritized sweeping with function approxima-
tion, which we hope will yield an effective algorithm for
complex domains for which learning models is infeasible.

References

[1] R. E. Bellman. Dynamic Programming. Princeton Univer-
sity Press, Princeton, NJ., 1957.

[2] R. E. Bellman. A Markov decision process. Journal of
Mathematical Mechanics, 6:679–684, 1957.

[3] R. I. Brafman and M. Tennenholtz. R-MAX - a general
polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3:213–
231, 2002.

[4] L. P. Kaelbling, M. L. Littman, and A. P. Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[5] M. Kearns and S. Singh. Near-optimal reinforcement learn-
ing in polynomial time. Machine Learning, 49(2):209–232,
2002.

[6] A. Moore and C. Atkeson. Prioritized sweeping: Reinforce-
ment learning with less data and less real time. Machine
Learning, 13:103–130, 1993.

[7] M. L. Puterman and M. C. Shin. Modified policy iteration
algorithms for discounted Markov decision problems. Man-
agement Science, 24:1127–1137, 1978.

[8] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári.
Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learn-
ing, 38(3):287–308, 2000.

[9] A. Strehl and M. Littman. A theoretical analysis of model-
based interval estimation. In Proceedings of the Twenty-
Second International Conference on Machine Learning,
pages 856–863, 2005.

[10] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L.
Littman. PAC model-free reinforcement learning. In In:
ICML-06: Proceedings of the 23rd international conference
on Machine learning, pages 881–888, 2006.

[11] R. S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9–44, 1988.

[12] R. S. Sutton. Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic pro-
gramming. In Proceedings of the Seventh International Con-
ference on Machine Learning, pages 216–224, 1990.

[13] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[14] C. Watkins and P. Dayan. Q-learning. Machine Learning,
8(3-4):9–44, 1992.

672

