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Abstract— The aim of this paper is constituted by the 
feasibility study and development of a system based on Field 
Programmable Gate Array for the most significant cardiac 
arrhythmias recognition by means of Kohonen Self-Organizing 
Map. The feasibility study on an implementation on the 
XILINX Virtex®-4 FX12 FPGA is proposed, in which the QRS 
complexes are extracted and classified in real time between 
normal or pathologic classes. The whole digital implementation 
is validated to be integrated in wearable cardiac monitoring 
systems. 
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I.  INTRODUCTION 
The QRS complex is the spiked shape part of the ECG 

trace which maximally corresponds to the depolarization of 
ventricles. As well know it corresponds to the higher 
information content of ECG. In particular duration, 
morphology and amplitude of the QRS complex in an ECG 
signal provide significant contributions to physicians 
diagnosing various arrhythmias. Usually the analysis of this 
kind of data is off-line [1]. However the development of a 
portable system that analyzes ECG in real-time is an 
important goal in order to monitor high-risk cardiac patients. 
Such a device requires a very accurate QRS recognition, 
which is difficult, mainly for the physiological variability of 
the QRS complexes, but also for various typologies of noise 
overlapped on the ECG signal [2]. 

In the last twenty years many new approaches to QRS 
detection have been proposed.  

A real time algorithm to extract the QRS complex 
extraction in the time domain is the well known algorithm of 
Tompkins and Hamilton[2][3]. This algorithm is suitable for 
implementing the QRS detection in hardware like FPGA 
devices[4].  

Beyond QRS detection, many works have been published 
in related fields; e.g. ECG signal enhancement or pattern 
classification. At intention an adaptive wavelet algorithm 
was proposed by Lin [1] in order to recognize normal beat 
and six cardiac arrhythmias. The recognition system consists 
of two sub-networks cascade connected. In the first sub-
network, the activation functions take the Morlet wavelets 
and were responsible for extracting features from each ECG 
signal. The second sub-network, a probabilistic neural 
network (PNN) [5], is used to classify cardiac arrhythmias.  

The morphologic features of QRS complex could be also 
performed  in the frequency domain in order to find changes 
in QRS complex power spectra between normal and 
arrhythmic waveforms [6]. In this case Fourier transform 
shows the changes in QRS complex due to rhythm 
origination and conduction path in order to discriminate by a 
neural network three kinds of rhythms.  

A more deep analysis of ECG Fourier Transform for 
QRS features extraction and classification was proposed [7].  

In this work a more effective real-time ECG signal 
analysis is reported, and normal beat and five different 
cardiac arrhythmias are classified, by means of a QRS 
extraction algorithm and Kohonen Self-Organizing Map 
(KSOM) both implemented into Xilinx Virtex®-4 FX12 
device. 

II.  METHODS 
The early stage of the system used in this work allows the 

input signal digitalization through an incremental ADC with 
sampling rate of 360 Hz according with MIT-BIH 
Arrhythmias Database [8] records sampling rate, and with 12 
bit resolution. Following stages implemented the arrhythmia 
detection algorithm and were comprised of three modules 
(Fig. 1):  

1) QRS complex extraction,  
2) Discrete Fourier Transform calculation,  
3) Arrhythmia classification by using Artificial Neural 

Network (ANN).  
 

 
Figure 1.  Arrhythmia detection system humane  

In the Figure 2 the classified arrhythmia morphologies 
are shown. 

 

A. QRS extracted 
According to Hamilton and Tompkins [3] and to Shulka 

[4], the detection of  QRS wave is preceded by a data 
filtering in order to detect the QRS complex frequency. We 
first processed the ECG signal through a low-pass IIR filter, 
and then through a high-pass IIR filter we suppressed the 
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high frequency noise and attenuated P and T waves in the 
signal, all the filters used were flat in the frequency band of 
interest.  

 
Figure 2.  Typical arrhythmias in time domain humane (from [1]) 

We recorded two seconds of ECG in a internal buffer in 
order to preserve the original shape of the signal. Therefore, 
in a copy of this buffer, a QRS detection method were 
applied as [2][3] that include a derivative filter to emphasizes 
the QRS complex, a squaring stage that makes all data points 
positive and accentuates the QRS slope and a moving 
window integrator that points out waveform feature 
information.  

Thus, for features extraction, we have considered only 
the samples of original ECG into the buffer corresponding at 
non zero values of the buffer copy. We can realized this 
method thanks to the use of Virtex® 4FX12 FPGA on demo 
board  ML403 that provides large memory space in order to 
allocate a large amount of signal samples and a PowerPC in 
order to implement a hybrid hardware/software solution.   

B. Discrete Fourier Transform  
To reduce the number of samples and thus to minimize 

the number of input layer neurons, a Fast Fourier Transform 
(FFT) is applied with a frequency resolution of 3.6Hz as 
suggested in [7]. 

The Fast Fourier Transform is an efficient algorithm to 
compute the Discrete Fourier Transform (DFT) and its 
inverse that reduces the number of calculations to be done. 
The DFT is a numerical approximation of an analytically-
defined Fourier Transform in a digital domain. The DFT 
X(k), k=0..N-1, of a sequence x(n), n=0..N-1 is defined as 
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[11]. To evaluate the spectrum of a continuous signal x(t) a 
sampling is performed every T seconds. The signal evaluated 
with t=nT is represented by a finite length sequence x(n). 
The length of the temporal window and the sampling-
interval T, introduces numerical errors and approximations. 

 

C. Neural Networks: Kohonen Self-Organizing Map 
 
In order to classify the arrhythmia we used ANN which 

can adapt according to several algorithms that can be 
classified in two major families: Unsupervised learning, 
Supervised learning. In unsupervised learning the neural 
network learns some properties of the input pattern 
distribution without any feedback from the environment or 
from the user. The limited resources of the FPGA 
architecture were considered. Thus the ANN block 
implements a minimal KSOM (2x2 neurons for two input 
classes) for each cardiac arrhythmia. Self-organizing maps 
(SOM) are different than ANN in the sense that they use a 
neighborhood function to preserve the topological properties 
of the input space. A SOM consists of components called 
nodes or neurons. Associated with each node is a weight 
vector of the same dimension as the input data vectors and a 
position in the map space [9]. The choice of this kind of 
neural network is justified because KSOM requires only the 
storage of weight and the output is performed with a simple 
sum of products. According to the Kohonen map topology, 
all the elements of the input vector are connected to all the 
artificial neurons of the KSOM [9]. A KSOM maps the 
original space into a two-dimensional net of neurons in such 
a way that close neurons respond to similar signals, in order 
to solve classification tasks and to find structures in data. In 
Figure 3 is reported the 2x2 KSOM structure. 

The winner-takes-it-all training strategy was adopted 
using a distance-based learning method: the neurons compete 
with each other to be the one to fire [9]. The neuron that fires 
is called the winner and this neuron has the weight vector 
most similar to the current input vector. Training phase was 
performed in offline mode with DFT data provided by 
hardware block. After training process the content of the 
synaptic weight vectors were placed on corresponding 
memory block of the neurons.  

 
Figure 3.  2x2 Kohonen map architecture  

(1) 

(2) 
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Figure 4.  Design of Arrhythmia recognition block 

First 10 point of DFT of the detected QRS were 
processed, and one of following six classes returned as 
output: normal beat, premature ventricular contraction, right 
bundle branch block beat, left bundle branch block beat, 
paced beat, and fusion of paced and normal beat.  

Training set was achieved from 70% of MIT-BIH 
database [8] records and the last 30% were used to test the 
hardware prototype. 

III. DESIGN ON FPGA 
ML403 board with Virtex®-4FX12 FPGA was used. The 

board includes dedicated DSP slices, high-speed clock 
management circuitry, RS-232 serial port, 16-character x 2-
line LCD display, PS/2 mouse and keyboard connectors, 
JTAG configuration port for use with Parallel Cable IV cable 
[10].  

The proposed model is constituted by an arrhythmia 
recognition block which is composed by three major blocks 
as reported in Fig.4: an FFT block, a control unit and a 
processing neural block (neural network, maximum output 
calculus block) . The clock signals and corresponding clock 
enable signals do not appear in the Simulink® block 
diagrams using Xilinx System Generator® libraries, but are 
automatically generated when an FPGA design is compiled. 

The FFT block was a standard block provided by Xilinx 
library. The FFT core provides three architecture options to 
offer a trade-off between core-size and transform time [11], 
Pipelined is used, Streaming I/O solution which pipelines 
several radix-2 butterfly processing engines in order to offer 

continuous data processing. The FFT block returns real and 
imaginary part used to calculate the module. 

The control unit managed the control signal of the 
processing neural block in order to initialize and command 
the components of the processing neural block. 

The processing block is designed to calculate the neural 
output and the winning neuron according to maximum 
output of the neurons. The current design used 68% 
resources. However, it results the better choice in terms of 
cost between data accuracy and area occupied for these kinds 
of arrhythmia. 

A. Processing block 
The processing block is the main block of the recognition 

design. It incorporated both the Kohonen neural networks 
and the logic for the winning neuron. 

The kind of the neuron was linear. The structure of the 
neuron, reported in Fig. 5, consisted of one memory block 
for weights, one multiplier and one accumulator. 

B. Test of the algorithm in hardware  
In order to develop a fast prototype of ECG processing 

system a proprietary design tools Xilinx System Generator® 
for DSP was used, which is a tool for creating DSP designs 
using graphical methods. The design was tested on data 
records obtained from the MIT-BIH database as  previous 
described. In detail, the data were sent to the ML403 board 
with Virtex®-4FX12 FPGA through JTAG cable [12] and a 
co-simulation has been generated in order to establish the 
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accuracy and the logical operation of the digital 
implementation. 

 

 
Figure 5.  Design of the linear neuron   

IV. RESULTS 
 
As above mentioned, results were performed by applying 

the system to the MIT-BIH arrhythmia database records. In 
particular only the cases showed in Table 1 have been 
processed.  

According to [13] essentially two parameters should be 
used to evaluate the algorithms; they are the sensitivity:  

 
Se=TP/(TP+FN) (3) 

 
and the positive predictivity: 
 

+P=TP/(TP+FP) (4) 
 

TABLE I.  MIT-BIT ARHYTHMIA DATABASE RECORDS INCLUDED IN 
OUR STUDY 

Heartbeat N.QRS Record Record Patient 

Normal 

1543 
1743 
2621 
923 
244 
2031 
314 
2230 

MIT-119 
MIT-200 
MIT-209 
MIT-212 
MIT-217 
MIT-221 
MIT-231 
MIT-233 

Female,age51 
Male, age 64 
Male, age 62 
Female,age32 
Male, age 65 
Male, age 83 
Female,age72 
Male, age 57 

Paced  
 

2078 
1542 

MIT-107 
MIT-217 

Male, age 63 
Male, age 65 

Left Bundle 
Branch block 

2492 
2123 
2003 

MIT-109 
MIT-111 
MIT-214 

Female,age64 
Female,age47 
Male, age 53 

Right Bundle 
Branch block 

2166 
1531 
1825 
1254 
397 

MIT-118 
MIT-124 
MIT-212 
MIT-231 
MIT-232 

Male, age 69 
Male, age 77 
Female,age32 
Female,age72 
Female,age76 

Fusion of 
Paced and 
Normal 

260 MIT-217 Male, age 65 

Premature 
Ventricular 
Contraction 

444 
826 
256 
396 
831 

MIT-119 
MIT-200 
MIT-214 
MIT-221 
MIT-233 

Female,age51 
Male, age 64 
Male, age 53 
Male, age 83 
Male, age 57 

where TP denotes the number of true positive detections, FN 
the number of false negatives, and FP the number of false 
positives. 

Results showed both accurate discriminations (see Table 
2) and faster processing time during pathological QRS 
classification, when used FFT and KSOM. The results 
showed good specificity, but in some cases lower sensitivity 
(Fusion of Paced and Normal, Right Bundle Branch block).  
Moreover the positive predictivity of Fusion of Paced and 
Normal was low because a low number of pathologic QRS to 
training the neural networks.  

V. DISCUSSION AND CONCLUSIONS 
The algorithm chosen in this work allows recognizing 

normal beat and five cardiac arrhythmias by a suitable 
implementation into FPGA. The algorithm of Hamilton and 
Tompkins isolated the QRS complex while the FFT 
algorithm extracted the features sent to the KSOM. 
Hardware architecture of QRS recognition and artificial 
neuron were presented. In order to design and to implement 
the system, a proprietary design tools Xilinx System 
Generator® for functional specification and to co-simulate 
the hardware was used. 

The method is proved to be advantageous and feasible on 
FPGA device. Moreover, the board used for the design still 
has about 10% resources available, which can be used timely 
for implementing additional functionality like on-chip 
learning.  

Future works will be addressed to implement the digital 
design on FPGA in order to develop wearable systems and to 
realize on-chip learning so to speed up the training task. 

TABLE II.   EXPERIMENTAL RESULTS 

Heartbeat Specificity Sensitivity +P 
Paced 97.36% 99.69% 92.17% 

Left Bundle 
Branch block 

97.11% 96.05% 94.74% 

Fusion of 
Paced and 

Normal 

93.13% 91.53% 22.71% 

Right Bundle 
Branch block 

97.10% 92.45% 95.16% 

Premature 
Ventricular 
Contraction 

98.70% 94.10% 95.43% 
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