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Abstract 
 

Automated detection of disgust-arousal could have 

applications in diagnosing and treating obsessive-compulsive 

disorder and Huntington’s disease. For achieving this ability, 

experimental data was used first to examine the thermal 

response of “facial muscles of disgust” to other common 

negative and positive expressions of emotive states. An attempt 

was then made to detect disgust-arousal through classification 

of affect-educed thermal variations measured along the facial 

muscles. Initial results suggest (i) muscles of disgust 

experience different levels of thermal variations under the 

influence of various emotive state and (ii) emotion-educed 

facial thermal patterns can be modeled as stochastically 

independent clusters to be separated as linear spaces and 

making automated detection of disgust-arousal possible. 

 

1. Introduction 
 

Automated detection of disgust-arousal has potential 

applications in the realms of psychology and psychiatry [1,2]. 

For example, automated detection of disgust-arousal is 

believed to be useful in therapeutic treatment of obsessive-

compulsion disorder (OCD) and Huntington’s disease [1,2]. 

Several recent investigations have therefore focused on 

computer-assisted detection of disgust-arousal and physiology-

based measurement of disgust-sensitivity [1]. 

Disgust, an aversive emotive state, is considered a basic 

emotion [1]. The raised upper lips, wrinkled nose and raised 

lower eye-lids typically engage a set of facial muscles: 

corrugator, orbicularis oculi and levator labii superioris to 

(visually) characterize the expression of disgust [3,4]. The so 

called facial muscles of disgust are shown in Figure 1. 

Somatically, disgust is associated with nausea, heart rate 

decrease and low blood pressure [1]. Though disgust-arousal 

results in a distinct pattern of Psychophysiological response 

[1,2] its automated detection and recognition have so far been 

complex and tedious [5,6]. 

Previous works on disgust-arousal detection have utilized 

phenomena such as skin conductance, blood volume flow, 

pulse and electrical activity in brain [4]. These formats of 

human information are effective but bring with them several 

limitations. Firstly, they are often invasive. Secondly, it is 

often very difficult, on the basis of psychophysiological 

evidence alone, to make unambiguous interpretations of the 

meanings of detected changes. Furthermore, though the 

physiological signals can indicate the strength of a reaction to 

an event but identifying qualitative aspects, such as positive or 

negative emotional valence, is problematic. Both positive and 

negative emotions can cause similar changes in the levels of 

arousal, and researchers cite many instances of contradictory 

findings, such as observations of both increases and decreases 

in pulse rate as a result of increasing mental workload [7,8]. 

Finally, these techniques are considered expensive, laborious 

and time consuming [7]. 

Following the earlier work by Albert F. Ax [9], many 

researchers have reported influence of emotive states on the 

facial thermal features [10]. Studies have demonstrated that 

pixel grey-levels in thermal infrared images might provide a 

reliable measure of skin surface radiance and allow measuring 

the skin temperature distribution patterns [12,13]. 

Investigators were able to recognize the stress levels, deceit 

and facial expressions of positive and negative emotive states 

using the pixel grey-levels extracted from thermal images, 

though more frequently in a dichotomous discrimination 

manner [11,14-15]. Attempts were also made to classify the 

facial skin temperature measurements for non-invasive 

recognition of expressions of emotive states [11,14-15]. 

Some 140 years ago Darwin discovered that emotions have a 

universal facial expression [16]. Over a century later, Ekman 

and Friesen [3] investigated how the facial expression of 

emotion would engage the facial muscles. The facial muscles 

that typically engage in the expression of each emotive state 
 

 
Figure 1. The so called muscles of disgust on a human face. 
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Figure 2. The human core-body to ambient environment heat transfer model. 

 

 belonging to the group of six basic emotions were thus 

identified [3]. However, little is known about the physiological 

changes that take place on these muscles under the influence 

of each of the common emotive state. Though several 

investigators have studied electrical variations that take place 

on the facial muscles under the influence of basic emotions 

using electromyography (EMG) [17-19], the hæmodynamic 

and thermal characteristics of facial muscles under the 

influence of common emotive states have yet to be 

investigated and understood. 

This work, for the first time, examines how the muscles 

known to represent the expression of disgust: corrugator, 

orbicularis oculi, and levator labii superioris would respond 

to the other common negative (such as anger and sadness) and 

positive (such as happy) emotive states. The investigations 

focus on establishing if the non-invasive psychophysiological 

information processing would assist in distinguishing disgust 

from the expressions of other negative and positive emotive 

states. The scientific foundations of this work are summarized 

in the following section. The experiment design, employed 

feature extraction and selection method and initial results are 

then sequentially presented to analyze and discuss the results 

of this investigation. 

 

2. Emotion-Educed Facial Skin Temperature 

Variations 
 

The human skin temperature can be determined by 

measuring the amount of heat dissipated from the core body as 

a result of the blood volume flow, metabolic function, 

subcutaneous tissue structure and the sympathetic nervous 

activities [12,20]. Pennes’s one-dimensional bio-heat transfer 

model [21] is usually employed to predict and estimate the 

amount of heat dissipated from the core body to the skin 

surface. Equation 1 represents the Pennes’s model is as: 

extmetabbb qqTTcTk
dt

dT
c ++−+∇= )(2 ωρρ .   (1) 

The letters ρ, c and k represent the density, the specific heat 

and the thermal conductivity of blood respectively. T and Ta 

respectively denote the tissue and arterial blood temperatures, 

ωb denotes tissue blood perfusion rate and, qmet and qext 

respectively represent the metabolic and external heat 

generation. 

Assuming that the tissue properties are independent of tissue 

temperature and the human tissues are isotropic and 

homogenous, Pennes’s bio-heat transfer equation can be 

simplified and adapted to develop a core-body to skin surface 

heat transfer model for estimating the emotion-specific 

temperature variations on the facial skin. Figure 2 exhibits a 

typical body heat and temperature flow model and explicates 

the flow of heat from the core body through the human skin. 

The heat generated inside the human body (QBM) is supposed 

to set the core body temperature (Tbody). In a typical human 

body heat and temperature flow model, the body temperature 

(Tbody) and the core body temperature (Tcore) are assumed to be 

equal [12,20-22]. Three body heat-flux factors and three heat 

production factors determine the skin temperature. The three 

body heat-flux factors are: convection heat-flux (QCN), 

radiation heat-flux (QRD), and evaporation heat-flux (QEV). The 

body heat production depends on the heat conduction from the 

core body (QTC), body metabolism (QTM) and the amount of 

heat convection due to blood flow (QBC). Equation 2 exhibits 

how the thermal equilibrium is achieved on the skin surface 

under the neutral conditions [12,20-22]. 

(QCN) + (QRD) + (QEV) = (QTC) + (QTM) + (QBC)  (2) 

When thermal imaging is employed to detect emotion-

specific skin temperature variations, the time-sequential 

thermal images are analysed to determine the regional skin 

temperature variations and their associated transient changes 

in physiological functions [20]. Equation 2 allows comparing 

the amount of heat produced with the amount of dissipated 

heat in the time-sequential images. An imbalance between the 

two sides of Equation 2 suggests either heat loss or heat gain 

in the skin regions under investigation [20]. 

Studies suggest that a change in emotive state may cause 

some variation in the blood volume flow under the facial skin. 

It is argued that the facial expression of emotion results in 

musculo-thermal activities on the face. The emotion-educed 

blood volume flow variations and the musculo-thermal 

changes are believed to cause variations in the facial skin 

temperature [12,13]. Since, the facial expressions change 

rapidly, the effect of ambient temperature on the facial skin 

temperature may be ignored. Hence any imbalance observed 

between the two sides of Equation 2 may be attributed to the 

facial skin temperature gain or loss due to a change in the 

facial expression of emotion. 

Assuming Cskin is the heat capacity of the facial skin, the 

facial skin temperature change (∆Tskin) observed over a short 

time period (∆t) is expressed as: 

Cskin∆ Tskin=(QTC)+(QTM)+(QBC)–[(QCN)+ (QRD) (QEV)]  (3) 

Equation 3 allows calculating the skin temperature changes 

over a short time period due to a change in the expression of 

emotive states. Two thermograms, each recorded with a 

different facial expression may therefore be subtracted to 

determine the facial skin temperature changes within the 

regions of interest in the thermograms [12,20]. This image 

temperature subtraction method was employed in this work to 

compare facial thermal variations in thermograms with 

different facial expressions of affective states. 
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3. Experiment Design 
 

For developing a set of 80 visible-spectrum and thermal 

images, a high-resolution video camera and an uncooled-

microbolometer FPA detector mounted 320 × 240 pixels 

thermal infrared camera were used. The infrared camera had a 

high thermal sensitivity, 0.08 ºC at 30 ºC, with an accuracy of 

± 2 ºC in the wavelength range of 7.50-14.00 µm. The internal 

room temperature was maintained between 19-22 ºC during 

the image acquisition. Each participant was given at least 20 

minutes to acclimatize with the environment. A low emissivity 

(ε = 0.54) concrete wall background was used to ensure better 

separation of the background from the desired regions of the 

thermal images [13,22]. Participants included male and female 

Arab, Iranian and Indian students. 

Emotions of happiness, sadness, disgust and anger were 

evoked using a set of selected still images and video clips. 

Extremely violent and disturbing images and images with 

unethical contents were avoided. The employed images and 

video clips had both high and low emotion evoking contents. 

 

4. Feature Extraction and Selection 
 

An attempt was made to remove any undesired noise from 

within the thermal infrared images (TIRIs). Many convolution 

methods are available to minimize the influence of noise 

factors [23]. The “median smoothing filter” recognized as a 

good best order-statistic filter, was invoked on the thermal 

images for noise reduction. The filter applies a non-liner 

solution approach for recovering the original image signals 

and results in excellent noise reduction with a minimal 

blurring [23]. Instead of averaging the pixels, the filter 

replaces value of a pixel by the median of the grey levels in 

the neighborhood of the pixel. The median value is therefore 

taken from one of the pixels within the neighborhood using the 

relationship, 

pqUvu
medianqpf

∈
=

),(
),(ˆ .    (4) 

In equation 4, ),(ˆ qpf  is the median filter that replaces the value 

of a pixel (u, v) by the median of the grey levels within a 

defined neighborhood.  

In a following image enhancement step, the Sobel operator-

based edge detection algorithm was invoked for extracting the 

contours within the infrared images. For the selected 3x3 

neighborhood, the gradient operators were calculated 

according as [23]: 

)]1,1(),1(2)1,1([

)]1,1()],1(2)1,1([

+++++−+

−+−+−+−−=

jifjifjif

jifjifjifGu
  (5) 

and 

)]1,1()1,(2)1,1([

)]1,1()]1,(2)1,1([

++++++−

−−++−+−−=

jifjifjif

jifjifjifGv
.  (6) 

The gradient magnitude could then be easily computed 

according as 

22)],([ GvGuvufG += .     (7) 

 

4.1 Discovery of Thermally Significant Facial Points 
 

The time-sequential TIRIs were analyzed through comparing 

the temperature measurements at the points of registration 

within a series of images to discover the transient and 

temporal changes in the temperature distributions. The 

temperature measurements taken at different sets of 

registration points within the TIRIs were analyzed to discover 

any temporal changes in the temperature distributions. The 

thermal intensity values (TIVs) were repeatedly measured at 

different sets of points to ensure a “minimum correlation 

among the data” and a “maximum between-facial expression” 

variance. The algorithmic process elaborated in [6,14-15,24] 

and shown in Figure 3 resulted in the discovery of significant 

thermal variations at 75 physical sites located all over the face 

along the major facial muscles within the TIRIs. 
 

1 Symmetrically divide thermal image into N squares 
2 Set CorrelationST = 0 
3 Set VarianceST = 0 
4 Set the list of FTFPs = Empty 
5 For squares 1 to N, 
6 Find the highest level of grey in the square 
7 Measure the corresponding temperature of the 

discovered highest grey level 
8 Add the discovered highest temperature point to the 

list of FTFPs 
9 Calculate the correlation between the FTFPs 
10 Set the FTFP Correlation = Cornew 
11 Calculate the Variance between the FTFPs 
12 Set the FTFP Variance = Varnew 
13 If {(Cornew > CorrelationST ) and (Varnew > 

VarianceST)} 
14 Then ((CorrelationST = Cornew )And (Varnew = 

VarianceST)) 
15 And Keep the newly discovered FTFP in the list of 

FTFPs 
16 Else, Remove the newly discovered FTFP in the list 

of FTFPs 
17  End If 

18 End For 

Figure 3. Significant Facial Thermal Feature Point Selection Procedure 

 

 

Figure 4. Left to right: Geometric profile of FTFPs, FTFPs on a facial muscle 
map and FTFPs on a human face 
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Figure 4 shows these 75 facial thermal feature points 

(FTFPs) on a human face, a muscular map of a human face, 

and the geometric profile of the facial thermal feature points. 

More than 50 % of these FTFPs were located on the five major 

facial muscles: Frontalis (16 FTFPs), Orbicularis Oculi Pars 

Orbital (12 FTFPs), Levator Labii Superioris (6 FTFPs) and 

Risorious (6 FTFPs) seem to hold 53.33% of the FTFPs on a 

human face. Table I shows the physical location of the FTFPs 

on the face. The TIV data recorded at the 75 FTFP sites were 

used to represent each thermal image as a 75-dimensional 

thermal feature vector for the subsequent investigation and 

analyses. 

In a follow up analysis, the most effective of these FTFPs 

were discovered using Principal Component Analysis (PCA) a 

computationally inexpensive and robust feature extraction 

method [25]. 

 

5. Thermal Response of Muscles of Disgust to 

Common Emotive States 
 

Figure 5 suggests that the two so called muscles of disgust: 

lavatory labii superioris and orbicularis oculi experience 

much higher thermal variation when disgust is being expressed 

than they would when any other emotive state is expressed. 

However, our experimental data shows that one ‘important’ 

muscle of disgust, corrugator, would experience much higher 

thermal variation under the influence of anger as compare to 

the expression of disgust. Nonetheless, the thermal variations 

observed on corrugator under the influence of disgust were 

much higher then those observed under the influence of 

sadness and happiness. 

TABLE I.  PHYSICAL LOCATION OF FTFPS ON THE FACE 

Part of the face FTFPs 

Forehead 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Around the eyes 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 

22, 23, 24, 25, 26, 27, 28, 29, 30, 31 

Cheeks 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 
43, 47, 48, 49, 50, 62, 63 

Around mouth 44, 45, 46, 51, 52, 53, 54, 55, 56, 57, 58, 

59, 60, 61, 64, 65, 66 
 

 
Figure 5. Thermal variations observed on the “muscles of disgust” under the 

influence of negative and positive expressions of emotive states 

6. Initial Analysis of Facial Thermal Data 
 

The thermal data were transformed into a set of uncorrelated 

principal components using the transformation techniques 

suggested in [25]. 

Figure 6 exhibits the discovered possible separation between 

the neutral and invoked facial expressions of happiness in a 2-

principal component eigenspace. 
 

 

Figure 6.Separation of the neutral faces and evoked expression of happiness in 

a 2-PC eigenspace 

 

 

Figure 7. Separation of neutral faces and evoked expression of sadness in a 2-

PC eigenspace 
 

 
Figure 8. Separation of neutral faces and faces with evoked expression of 

disgust in a 2-PC eigenspace 
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Figure 7 exhibits how the neutral and the sad faces were 

separated in a 2-component eigenspace. 

Figure 8 shows how the neutral faces and the faces with the 

evoked expression of disgust were separated in a 2-principal 

component eigenspace. 

Figure 9 exhibits the separation between the neutral faces 

and faces with the evoked facial expression of anger in the 2-

principal component eigenspace. Figures 6 to 9 provide some 

convincing information about the differences in the thermal 

profiles of the neutral faces and the faces with evoked facial 

expressions. It is obvious in the four figures that a face 

expressing disgust-arousal has a unique and different thermal 

pattern than a neutral face or a face that expresses any other 

positive or negative effective state. 
 

 

Figure 9. Separation of the neutral faces and evoked expression of anger in a 

2-PC eigenspace 

 

 
Figure 10. The employed pattern analysis schema  

TABLE II.  **SUCCESS MATRIX FOR THE CROSS-VALIDATION OF FACIAL 
EXPRESSION CLASSIFICATION RESULTS 

Predicted Group Membership Facial 

Exp. 

Group 

N
eu
tr
a
l 

H
a
p
p
y 

S
a
d
 

D
is
g
u
st
 

A
n
g
ry
 

T
o
ta
l 

Neutral 70.0 0 0 (10.0) (20.0) 100 

Happy 0 70.0 (20.0) (10.0) 0 100 

Sad 0 (10.0) 90.0 0 0 100 

Disgust (10.0) (10.0) 0 70.0 (10.0) 100 

Anger (20.0) 0 0 (20.0) 60.0 100 
** Confusion patterns are reported in parenthesis 

 

Figure 11. The neutral faces and the faces with four evoked facial expressions 

at their respective group centroids 

 

7. Classifier Design 
 

A pattern analysis schema, reported earlier in [17,14,15,24] 

and exhibited in Figure 10, was employed for classifying the 

facial thermal feature patterns. 

The uncorrelated principle components were examined for 

their contribution in the overall variance in the thermal data. 

The ratio of within and between group variance (|SB|/ |SW|)was 

used as a criterion for keeping the most discriminating facial 

thermal components termed “optimal features” in the classifier 

training feature set.  

For pattern classification, linear discriminant analysis (LDA) 

was invoked on the optimal features. LDA has been 

successfully used in several related investigations. It works at 

three levels for optimally dividing a Gaussian like feature 

space into linear regions of interest. At the first level, it 

identifies the variables that best separate each cluster in a 

training sample from the rest of the sample. On the second 

level, LDA uses the identified variables to define and compute 

new functions of input data. It does so by parsimoniously 

projecting the between-cluster differences. At the third level, 

LDA uses the discriminant functions to classify any future 

observations [26]. In essence, LDA seeks a linear space to 

maximize the between-group separation. Since there were K 

optimal features in the optimal learning set, the between-

cluster separation measure JK  would allow quantifying the 

discrimination power of the training features [26-28]. 

 

8. Results 
 

Figure 11 exhibits how the neutral faces, the faces 

expressing disgust, and the faces with expressing the two other 

(two negative and a positive) facial expressions set as clusters 

in an optimized eigenspace. 

Interestingly, the negative facial expressions of anger and 

disgust were closer even in a compact thermal eigenspace. 

This observed “pattern of proximity” of these two (negative) 

emotive states has been reported in several studies that used 

either visual observations or brain signals for separating the 
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clusters of various emotive states in an eigenspace to detect 

disgust-arousal. 

Table II, earlier reported as part of a larger study in [15], 

exhibits the classification success rates and the confusion 

patterns observed when the optimal features were employed to 

train the classifier and distinguish between the facial 

expressions of positive and negative emotive states. Please 

note that Table II reports only the conservative leave-one out 

classification results. Given a small sample size, the overall 

classification success rate (72.0%) observed during the 

conservative leave-one-out cross validation tests seems highly 

encouraging. The observed confusion patterns evident in 

parenthesis in Table II were also similar to those observed 

earlier in studies that employed facial physiognomy for 

automated facial expression classifier. 

9. Conclusion 
 

This work demonstrates that the so called “facial muscles of 

disgust” undergo some significant thermal changes in order to 

express the common emotive states. Distinguishing the 

common expressions of affective states from a neutral face 

using facial thermal features seems to be a lot easier than 

distinguishing between the emotive states. However, the 

thermal data analyses and classification results suggest that the 

facial thermal features measured along the major facial 

muscles might help in automated detection of disgust-arousal. 

However, the thermal data collected from the known and so-

called “facial muscles of disgust” alone would not help in 

automated realization and recognition of disgust-arousal 

[6,14,24]. 

The observed classification results were consistent with the 

previous studies carried out to investigate the relationship 

between the emotions and the facial musculo-physiological 

activities. However, more work is needed to investigate the 

influence of age, gender and ethnicity related differences on 

the employed automated disgust detection approach. Also, an 

extended database of thermal and visual images would be 

required to validate the observed classification results. 

 

10. References 
 
[1] D. Vaitl, A. Scienle, and R. Stark, “Neurobiology of fear and disgust,” 

Int. Journal  of Psychophysiology, vol. 57, pp. 1-4, 2005. 
[2] J. Gary, Neurophysiology of anxiety. New York: Oxford University 

Press, 1985. 

[3] P. Ekman and W.V. Friesen, Facial Action Coding System: A technique 
for the measurement of facial movement, Pal Alto: Consulting 

Psychology Press, 1978. 
[4] K. Wolf, R. Mass, T. Ingenbleek, F. Kiefer, D. Naber, D. and K. 

Wiedemann, “The facial pattern of disgust, appetence, excited joy and 

relaxed joy: An improved facial EMG study”, Scandinavian Journal of 

Psychology, vol. 46, pp.403-409, October2005. 
[5] P. Wright, G. Shapira He, W.K., Goodman, and Y. Liu, “Disgust and the 

insula: fMRI responses to pictures of mutilation and contamination,” 

NeuroReport, vol. 15, pp. 2347–2351, 2004. 

[6] M.M. Khan, “Cluster-analytic classification of facial expressions using 
infrared measurements of facial thermal features,” Ph.D. Thesis, School 

of Computing & Engineering, University of Huddersfield, UK, 2008. 

[7] R.W. Picard, E. Vyzas, and J. Healey, “Toward machine emotional 
intelligence: Analysis of affective physiological state,” IEEE 

Transactions on Pattern Analysis, Machine Intelligence, vol. 23, no. 10, 

pp. 1175-1191, 2001. 
[8] R.D. Ward, and P.H. Marsden, “Affective computing: problems, 

reactions and intentions”, Interacting with Computers, vol. 16, no. 4, pp. 

707-713, 2004. 
[9] A.F. Ax, “The physiological differentiation between fear and anger in 

humans,” Psychosomatic Medicine, vol. 15, No. 5, pp. 433-442, 1953. 

[10] J.T. Cacioppo, D.J. Klein, G.G. Bernston, and E. Hatfield, “The 
psychophysiology of emotion,” in Handbook of Emotions, M. Lewis and 

J.M. Haviland, Eds., New York: Guildford Press, 1993, pp. 119-142. 

[11] I. Pavlidis and J. Levine. “Thermal image analysis for polygraph 
testing,” IEEE Engineering in Medicine and Biology, vol. 21, no.6, pp. 

56-64, 2002. 

[12] M. Bales, “High-resolution infrared technology for soft –tissue injury 
detection,” IEEE Engineering in Medicine and Biology,” vol. 17, 1998, 

pp. 56-59. 

[13] K. Otsuka, S. Okada, M. Hassan, T. Togawa, “Imaging of skin thermal 
properties with estimation of ambient radiation,” IEEE Engineering in 

Medicine and Biology, vol. 21, no. 6, pp. 49-55, 2002. 

[14] M.M. Khan, M. Ingleby and R.D. Ward, “Automated facial expression 
classification and affect interpretation using infrared measurement of 

facial skin temperature variation,” ACM Transactions on Autonomous 

and Adaptive Systems, vol. 1, no. 1, pp. 91-113, 2006. 
[15] M.M. Khan, R.D. and Ward M. Ingleby, “Classifying pretended and 

evoked facial expression of positive and negative affective states using 

infrared measurement of facial skin temperature,” ACM Transactions on 
Applied Perception, vol. 6, no. 1, pp. 6:1-22, 2009. 

[16] C. Darwin, The expression of emotion in man and animals. London: 

Murray, 1872. 
[17] P. Ekman, R.W. Levenson and W.V. Friesen, “Autonomic nervous 

system activity distinguishes among emotions,” Science, vol. 221, pp. 

1208-1210, 1983. 
[18] U. Dimberg, “Facial electromyography and emotional reactions,” 

Psychophysiology, vol. 27, no. 5, pp. 481-494, 1990. 
[19] B. Wild, M. Erb and M. Bartels, “Are emotions contagious? Evoked 

emotions while viewing emotionally expressive faces: quality, quantity, 

time course and gender differences,” Psychiatry Research, vol. 102, pp. 
109-124, 2001. 

[20] I. Fujimasa, “Pathophysiological expression and analysis of infrared 

thermal images,” IEEE Engineering in Medicine and Biology, vol. 17, 
no. 4, pp. 34-42, 1998. 

[21] H.H. Pennes, “Analysis of tissue and arterial blood temperature in 

resting human forearm”, Journal of Applied Physiology, vol.1, pp. 93-
102, 1948. 

[22] B.F. Jones and P. Plassmann, “Digital infrared thermal imaging of 

human skin,” IEEE Engineering in medicine and biology, vol. 21, no.6, 
pp. 41-48, 2002. 

[23] R.C. Gonzalez and R.E. Woods, Digital Image Processing. New York: 

Addison-Wesley, 2002. 
[24] M.M Khan, R.D. Ward, and M. Ingleby, “Infrared thermal sensing of 

positive and negative facial expressions,” in the proc of the IEEE 2006 

Conference on Robotics, Automation and Mechatronics, Bangkok, 
Thailand, June 2006, pp. 406-411. 

[25] I.T. Jolliffe, Principal Component Analysis, New York: Springer-Verlag, 

2002. 
[26] B.S. Everitt and G. Dunn, Applied Multivariate Data Analysis, London: 

John Wiley and Sons, 1991. 

[27] I.T. Jolliffe, Principal Component Analysis, New York: Springer-Verlag. 
2002. 

[28] J.G. McLachlan, Discriminant Analysis and Statistical Pattern 

Recognition, New Jersey: Wiley & Sons, 2004. 
 

 

646



Filename: Disgust-paper-ISDA-V06-Final_submit-4.doc 

Directory: D:\2009-Conference-papers-to-go\2009-ISDA-Italy\Disgut-detect 

Template: D:\Documents and Settings\239808C\Application 

Data\Microsoft\Templates\Normal.dot 

Title: Paper Title (use style: paper title) 

Subject:  

Author: IEEE 

Keywords:  

Comments:  

Creation Date: 10/09/2009 11:32:00 AM 

Change Number: 5 

Last Saved On: 10/09/2009 11:33:00 AM 

Last Saved By: Faculty of Engineering and Computing 

Total Editing Time: 1 Minute 

Last Printed On: 10/09/2009 12:00:00 PM 

As of Last Complete Printing 

 Number of Pages: 6 

 Number of Words: 3,970 (approx.) 

 Number of Characters: 22,633 (approx.) 

 

647


