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Abstract 
 
 Spontaneous cerebral blood oxygenation level-
dependent (BOLD) fluctuations are gaining interest in 
the neurophysiology community. These oscillations are 
prominent in the low-frequency range with 
spatiotemporal correlations. From a healthy 
individual, a basal resting state BOLD fMRI 
acquisition has been performed by collecting 4 slices. 
Voxel signals from seven selected regions have been 
considered. We assumed a composite null-hypothesis 
of oscillations embedded in “red noise”. To extract 
oscillations from BOLD signals we applied the Monte 
Carlo Singular Spectrum Analysis (SSA). Phase-
synchronization of the oscillatory components, in the 
low-frequency range 0.085-0.13Hz, have been also 
achieved. As results, region-dependent distributions 
were apparent both for the noise parameters and for 
the number of connections between voxels. Although 
further studies on population samples should confirm 
the result consistency, the SSA technique combined 
with a phase-synchronization analysis seems a feasible 
method to extract low frequency BOLD spontaneous 
oscillations and to find functional connections among 
cerebral areas. 
 
 
1. Introduction 
 

In the last decade, functional magnetic resonance 
imaging (fMRI) was used to assess brain correlates of 
mind functions. The physical base of this method is 
related to the magnetic properties of deoxy- and 

oxyhemoglobin which give a different BOLD (blood 
oxygen level dependent) signal magnitude. Neural and 
vascular activities are in fact coupled together and thus 
it is possible to study neural activations through 
vascular activity. However several specific aspects of 
the BOLD signal are still unclear. Among these: 

Which are the neurophysiologic meanings of the 
spontaneous BOLD signal oscillations? 

Does BOLD signal have features that are specific 
for each individual or for each type of brain tissue (i.e. 
white matter, grey matter, etc)? 
Solving these questions will lead to a better 
understanding of brain functioning. For these reasons, 
recently resting brain networks have begun to be 
explored with several methodologies [1], [2].  
 For example Cordes and co-workers in 2001 [3] 
identified specific spectrum components of the BOLD 
signal related to heartbeat, respiration, neurovascular 
coupling and vasomotion. Particular interest attains the 
two latter phenomena and it can be suggested that slow 
oscillations in BOLD signals could be inherent to 
action of local feedbacks on the control of parameters 
such as blood flow or gasses concentration.  
 Our study aimed at identifying time-varying BOLD 
oscillatory components and at studying the coupling 
between voxels (within and between cerebral areas), 
namely we measured the temporal correlation between 
two neuropsychological events that are spatially distant 
(functional connectivity [4]). To these aim, a SSA 
(Singular Spectrum Analysis) based approach is 
proposed. 
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2. Methods 
 
2.1. fMRI data acquisition 

 
We used a 1.5 Tesla GE scanner (General Electric, 

Milwaukee, WI) to acquire basal resting state data for 
about 10 mins (1970 time points) from one healthy 
volunteer with a GR-EPI sequence (FOV 24; TR/TE= 
300/40 msec; FA=90°; resolution = 64×64 pixels; 
voxel size 3,75x3,75x5 mm, REPS=2000) to collect 4 
slices aligned to the commissural line. To test the 
feasibility of the sequence parameters to detect the 
BOLD signal we performed several ad-hoc scan 
sessions with a simple motor task (finger tapping) with 
different TR (2000, 500, 300 and 100 msec) and same 
FA, TE and resolution. We did not find any significant 
differenceses in signal change during the task across 
different TR conditions. In addition the maximum 
displacement of subject head during the scan session 
was below 0.7 mm, therefore, the movement correction 
has not been taken into account. 

SSA was performed on selected voxels from 
different regions of the brain (Figure 1). Starting from 
the regions we acquired with the EPI sequence, we 
drawn Regions of Interest (ROI) of grey matter 
according to available litterature suggesting a role in 
different resting state functional networks [5]. We 
choose middle prefrontal cortex (MPFC) and insula 
(default mode network), dorsolateral prefrontal cortex 
(DLPFC) (dorsal attentional network), superior 
temporal sulcus (STS), cuneus (ventral attentional 
network), white matter (anterior part of the semioval 
center), lateral ventricles on a high-resolution T1-
weighted spoiled gradient recall images (1.2-mmthick 
axial slices; TR = 12.1ms; TE = 5.22 ms; FA = 20◦; 
FOV= 24 cm; resolution = 256×256 pixels).  

 

 
 

Figure 1. fMRI ROI (overlapped slices) 
 

 
2.2 Singular Spectrum Analysis 

 
 The Singular Spectrum Analysis (SSA) is a novel 
technique for time series decomposition. It decomposes 
a time series d(t) to obtain a set of distinct uncorrelated 

components (R(t), trends and oscillatory components) 
and structureless noise ε(t) [6], [7] and [8]: 
 

( ) ( ) ( )k
k

d t R t tε= +∑ .  (1) 

 SSA is nonparametric and its decomposition is 
based on a data-adaptive basis set, instead of the usual 
sinusoidal one. SSA operates in these steps. 
 
Embedding step. 
 A trajectory matrix D is derived from d(t) (length 
N). The i-th column of D contains a portion of d(t) 
from d(i) to d(i+w−1).  
The window length w can be set from 2 to N/2. 
The number of the columns of D is: M=N−w+1. 
From the D, a w·w lag-covariance matrix CD=ηDTD 
where η=1/(N−w+1) accordingly to Broomhead and 
King method (suitable for non stationary signal [10]) is 
derived [9]. 
 
SVD step. 
CD is diagonalized as 
 

T
D D D DE C EΛ =    (2) 

 
 where ΛD is the eigenvalue ordered (decreasing 
order) diagonal matrix and ED is the matrix of 
eigenvectors or Empirical Orthogonal Functions 
(EOFs). Each EOFs has an associated dominant 
frequency (DF). 
 
Monte Carlo SSA step. 
 The signal/noise separation is performed under 
weaker conditions than the classical truncation 
procedure [11]. It can be assumed that d(t) is composed 
by oscillations with different frequencies embedded in 
the noise. 
 Also the noise model has to be specified: we 
considered a first order autoregressive (AR(1)) model 
of noise, also named “red” or “Brownian” noise. Red 
noise because its power spectrum is biased towards 
low frequencies, although it doesn’t present harmonic 
oscillatory modes.  
 More, the AR(1) model also inherits the case of 
uncorrelated (“white”) noise. The recursive equation 
that describe the red noise model is:  
 

( )0 1 0t t tu u u u zγ α−− = − + ,   (3) 
 
where u0 is the process mean, γ and α are process 
parameters and zt is a Gaussian, unit-variance white 
noise.  
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 In the case of γ = 0 the model downgrades to a 
white noise model.  
 The estimation of the red noise parameters γ and α 
from the d(t) is performed by a maximum-likelihood 
criterion [12], [13]. These estimators nearly unbiased 
also for short series d(t), the condition is N ~ 
−10·1/log(γ) or greater. 
 From the estimated noise model, it derives the 
analytic noise covariance matrix CN=c0W, where c0 is 
the noise variance and Wij= γ|i-)j.  
 The expected EOFs of the noise are obtained by 
diagonalizing CN as: 
 

T
N N N NE C EΛ = .   (4) 

 
 Under the assumptions of Gaussian noise 
distribution and sinusoidal EOFs, each diagonal 
element of ΛN (λN) has a chi-squared distribution with 
υ=3N/w degrees of freedom. These assumptions are 
valid for AR(1) processes [14] as 
 

2( ) ( ) /N Nλ ε λ χ ν ν≈ ,   (5) 
 
 
where ( )( ) T

N N N N kk
E C Eε λ =  and ε is the expectation 

operator.  
 From the 2.5th and 97.5th percentiles of these 
distributions, for each λN a confidence interval can be 
derived. Then, the data covariance matrix CD is 
projected onto noise EOFs: 
 

T
D N D NE C E′Λ = .   (6) 

 
 In the null-hypothesis of pure red noise model 
generating d(t), all diagonal elements of Λ’D (λ’D) 
should lie within the noise confidence interval of the λN 
with the same DF. 
 Otherwise, EOFs associated with λ’D lying outside 
the corresponding confidence interval are considered 
not compatible with the noise model, and thus they 
indicate presence of oscillators embedded in the noise 
at that frequency.  
 It’s worth noting that eigenvalues can be outside 
confidence intervals both in the upper and in the lower 
side. Experimenters, on the basis of phenomena 
knowledge, should choose between the selection of 
EOFs with greater or smaller λ’D compared to noise 
eigenvalue spectrum. 
 Figure 2 shows an example of application of Monte 
Carlo SSA procedure considering a cuneus voxel. The 
resulting projection λ’D of data covariance matrix CD 

onto the expected EOFs of the noise EN is computed 
and error-bars are drawn from confidence intervals of 
each λN.  
 EN dominant frequency are regularly spaced, 
separated by ~1/(w·Tc) where Tc =0,3 sec.  
 We consider significant all λ’D lying above the 
97.5th percentile of their corresponding error-bars. 

 
 

Figure 2. Monte Carlo SSA on a cuneus voxel 
 

 We name S
NE  the matrix extracted from EN 

composed by EOFs associated with selected λ’D. In 
order to identify significant data EOFs, for each EOF 
in S

NE , the cross-correlations with ED is computed and 
the maximally correlated EOF from ED is extracted.  
 We name S

DE  the matrix composed by the  selected 
data EOFs. 
 
Reconstruction step. 
 The projection of d(t) onto each k-th significant 
data EOFs yields the corresponding significant 
principal components Ak [15] 

 

1

( ) ( 1) ( )
w

S
k k

j

A t d t j E j
=

= + −∑  (7) 

where ( )S
kE j  identifies the j-th element in the k-th 

column of S
DE .  

 For each EOF in S
DE , the corresponding 

reconstructed component Rk(t) is obtained by the 
convolution: 
 

1( ) ( 1) ( )
i

t

U
S

k k k
j Lt

R t A t j E j
M =

= − +∑   (8) 

 
where Mt, Lt and Ut are time-index t dependent factors, 
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necessary to manage border effects [16].  
 Actually, in the case of oscillatory modes 
embedded in the noise, SSA identifies, for each of 
them, a pair of EOFs, and thus of Rk(t). Namely, for 
each mode two nearly equal eigenvalues, associated to 
EOFs with the same DF and π/4 out of phase with each 
other are expected.  
 At variance, the two reconstructed components 
Rk(t), by means of the convolution precedure, do not 
show the π/4 phase delay. Finally, each oscillatory 
mode is obtained summing up the paired Rk(t).  
 
2.3. Dominant frequency estimation 
 

Extracted EOFs and components are nearly 
“monochromatic”, thus a low order all-pole model can 
be used for the DF estimation.  

A forth-order AR model has been estimated by the 
Burg method [17].  
 Two cases occurred: 1) components showed a pair 
of poles at 0 Hz; 2) a pair of poles with associated 
more than 95% of the variance explained by the model. 
 In the first case, the DF is the frequency of the 
remaining pair of poles, in the latter case the DF is the 
frequency of the dominant pair of poles. 
 
2.4. Phase synchronization 
 
 Entrainment between voxels has been evaluated. 
   For each pair of voxels, all pairs of components 
composed by a component of one voxel with a 
component of the other voxel have been collected.   
 For each voxel, phase synchronization between 
each component pair has been estimated. Pairs of 
voxels with, at least, one component pair significantly 
synchronized has been considered coupled. Concerning 
the phase synchronization, instantaneous phases of 
each component was derived by Hilbert transform [18]. 
 Given the phase series Φi and Φj, the phase 
synchronization index, PSI(tn) between the components 
i and j was estimated as follows [19], [20]: 
 

2 2( ) ( ) ( )n ij n ij nPSI t C t S t= +  (9) 
 

/ 2

/ 2

1( ) sin ( ) ( )
m w t

ij n i n j n
m w t

S t t m t t m t
w t

φ φ
= Δ

=− Δ

= + Δ − + Δ⎡ ⎤⎣ ⎦Δ ∑  

 (10) 
/ 2

/ 2

1( ) cos ( ) ( )
m w t

ij n i n j n
m w t

C t t m t t m t
w t

φ φ
= Δ

=− Δ

= + Δ − + Δ⎡ ⎤⎣ ⎦Δ ∑  

 (11) 
 
where w (here set to 5/DF) is the time window used to 

calculate PSI and tn is the time center of the window 
(here we moved the window with a 1/(2·DF) step).  
 The PSI ranges from 0 to 1 and high values indicate 
a phase coupling between signals. In order to fix 
significance threshold on PSI values related to real 
entrainment, a surrogate-based method [21] was used. 
 Effectively, for each pair of components, the PSI 
was estimated matching the phase of signal i in the 
time window centered at t1 with the phase of signal j in 
the time window centered at a different time t2, 
randomly drawn. Repeating this procedure one 
hundred times for 
each  t1, a huge distribution of the by chance-PSI 
values was estimated. The 95-th percentile of this 
distribution was used as threshold. 
 PSI values exceeding this threshold were 
considered indicating a real phase entrainment. 
 
3. Analysis of BOLD signals 

 
The present work shows an application of the SSA 

 on cerebral signals, in details: 
• fMRI BOLD signals were analyzed by the 

SSA technique. We model BOLD signals as 
oscillatory components embedded in “red 
noise”. For each time series, it has been 
extracted: 

o an estimation of the lag-1 autocorrelation of 
the red noise, γ 

o a set of reconstructed components Rk(t) 
related to embedded oscillatory modes. 

• Extracted oscillatory components have 
beenclassified with a DF-based criterion. They 
were clustered by a k-means approach. Using the 
Krzanowski-Lai sum-of-squares criterion, the 
optimal number of groups has been set [22]. 

• Trends, respiratory- and cardiac-related 
components have been discarded. 

• Synchronization between retained oscillatory 
components of different voxels has been 
studied. Synchronization was evaluated for 
each pair of voxels. A pair of voxels was 
considered linked if, at least, one pair of 
components (one component from the first 
voxel with one component from the second 
voxel) was significantly phase coupled. 

  
 Concerning the SSA application, in order to obtain 
the maximal spectral resolution of the reconstructed 
components and to detect slow periodic oscillations on 
BOLD signals, we choose w = 985 time points (equal 
to half of the time series length, N=1970). 
 
4. Results 
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 The application of SSA on BOLD signals 
identified, on average, 12±4 oscillatory modes from the 
signal of each voxel. From the red noise model 
estimation, the lag-1 autocorrelation (γ) was estimated 
for each voxel.  
 Figure 3 shows the map of γ rendered onto 
highresolution anatomical scans. Areas with, on 
average, high γ compared to the general mean can be 
identified. Both the cuneus and the superior temporal 
sulcus regions, bilaterally in this subject had significant 
higher mean γ. 
 

 
 

Figure 3. Map of γ rendered onto anatomical scans 
 
 Extracted components were clustered in 4 groups 
by the k-means approach. Clustering identifies well-
separated groups of frequencies: a cardiac one (0.8-1.2 
Hz), a respiratory one (0.15-0.4 Hz) a low frequency 
one (LF, 0.085-0.13 Hz) and a nearly trend one (0-
0.085 Hz).  
 The analysis of synchronization was focused on the 
oscillatory modes in the LF group, since superimposed 
on the vasomotion frequency band. As first results, we 
counted the number of links in which each voxel was 
involved.  
 We separate the counting considering 4 cases: 
1) Links to voxels in the same region (and 
hemisphere). 
2) Links to voxels in the contralateral region. 
3) Links to voxels in different regions but in the same 
hemisphere. 
4) Links to voxels in different regions (excluded the 
contralateral region) of the contralater hemisphere. 
 For each case, the amount of links per voxel was 
normalized to the maximal number of possible links in 
that case. Interestingly, some region-dependent 
distributions of connections were apparent: this holds 
in particular for cases (1) and (3).  
 Figure 4 shows the map of connections in the case 
(1) rendered onto high-resolution anatomical scans. 
The most wired regions, the cuneus regions bilaterally 
exhibit the higher values of intra-region connections. 
 Figure 5 shows the map of connections in the case 
(3) rendered onto high-resolution anatomical scans. 
Regions in left hemisphere (the dominant one) 
exhibited higher number of connections. 
 

 
 

Figure 4. Map of intra-region connections in the 
vasomotion frequency band (case 1) 

 

 
 

Figure 5. Map of intra-hemisphere connections in 
the vasomotion frequency band (case 3) 

 
5. Conclusions 
 
 The SSA along with a phase synchronization 
analysis resulted a feasible method to analyze low-
frequency BOLD spontaneous oscillations.  
 In fact, its applicability to non-stationary processes 
and phase- and amplitude-modulated oscillations 
makes it suitable for the BOLD signals analysis and 
may lead to the detection of hidden non-constant 
BOLD fluctuations.  
 In addition, the Monte Carlo SSA algorithm based 
on the composite null hypothesis of signal plus AR(1) 
noise makes unnecessary any pre-processing of the 
data (removing of trend or artifactual periodic 
components such as cardiac or respiratory oscillations).  
 The red noise was chosen to describe the biological 
noise in the fMRI based signals: this choice introduced 
a more stringent null-hypothesis to test for oscillations 
at low frequencies compared to white noise modeling. 
 As main descriptive results of this preliminary 
study we showed some region-dependences of the red-
noise parameters and of the synchronization in the LF 
band.  
 Further studies conducted on population samples 
would clarify the consistency and the possible 
neurophysiologic correlates of these differential 
distributions. 
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