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Abstract— Bayesian Networks represent one of the most 
successful tools for medical diagnosis and therapies follow-up. 
We present an algorithm for Bayesian network structure 
learning, that is a variation of the standard search-and-score 
approach. The proposed approach overcomes the creation of 
redundant network structures that may include non significant 
connections between variables. In particular, the algorithm 
finds which relationships between the variables must be 
prevented, by exploiting the binarization of a square matrix 
containing the mutual information (MI) among all pairs of 
variables. Four different binarization methods are 
implemented. The MI binary matrix is exploited as a pre-
conditioning step for the subsequent greedy search procedure 
that optimizes the network score, reducing the number of 
possible search paths in the greedy search. Our approach has 
been tested on two different medical datasets and compared 
against the standard search-and-score algorithm as 
implemented in the DEAL package. 
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I.  INTRODUCTION 
Bayesian Networks are used to represent knowledge 

about an uncertain domain [1] and they have emerged as one 
of the most successful tools for medical diagnosis, selection 
of optimal treatment alternatives and prediction of treatment 
outcome [2].   

A Bayesian network (BN) is a graphical model that 
represents a joint probability distribution over a set of 
random variables [3] and it is defined by a pair B={G, P}. 
The network structure G is a directed acyclic graph (DAG) 
whose nodes represent random variables and whose edges 
represent direct dependencies among the variables and are 
drawn by arrows between nodes. The second component P is 
a set of numerical parameters, which represent conditional 
probability distributions. 

In many practical settings the BN is unknown and its 
characteristics should be learned from the data. The learning 
task in a BN can be separated into two subtasks: structural 
learning, that is to identify the topology of the network, and 
parameter learning, that finds the numerical parameters for a 
given network topology. Our work focuses upon structural 
learning. 

Structural learning of Bayesian Networks can be 
performed by using the score-and-search approach, that has 
been first implemented in R in the package DEAL [4]. 
However, this method often converges to a redundant 

network that may include arcs associated with variable 
couples not linked by a significant relationship [5]. 

In this paper we present a new method, based on the 
inclusion of the mutual information metric in the search and 
score strategy, able to prevent the inference of too many arcs. 
The developed method has been tested on two validated 
medical databases. 

II.  STRUCTURAL  LEARNING  
The score-and-search-based approach attempts to find a 

graph that maximizes the selected score or metric, which 
evaluates how well a given network matches the data. The 
BDe (Bayesian with Dirichlet prior and Equivalence) metric 
[6] has been used in this study. The network score is its 
posterior probability given the database. It can be efficiently 
calculated in closed form under the following five 
assumptions: multinomial sample, parameter independence, 
parameter modularity, complete data, and likelihood 
equivalence. Likelihood equivalence when combined with 
parameter independence implies Dirichlet assumption: all 
network parameters have a Dirichlet distribution. 

The greedy search with random restarts [6] is used as the 
strategy for searching for DAGs with higher score. Greedy 
search starts at a specific point (a structure without any arcs). 
After, the algorithm considers all neighbors of the current 
point, and moves to the neighbor that has the highest score. 
The neighbors are the structures that can be generated from 
the current structures by adding, deleting or reversing a 
single arc, subject to the acyclicity constraint. If no 
neighbors have higher score than the current point, the 
algorithm stops. The application of random restarts allows to 
solve the problem of the premature convergence to local 
maxima [7]. The search is run until an optimum is reached. 
Then a new initial state is randomly chosen and the 
algorithm is run again. After n iterations the best solution is 
sought. 

III. LEARNING PRE-CONDITIONING BY MUTUAL 
INFORMATION  

A well recognized limit of the previously described 
method is that it has a tendency to find too many arcs among 
the variables. In fact, the greedy search will add arcs to the 
network structure even if the contribute of the arc to the 
global value of the metric is very low and does not represent 
a real relationship established among variables. A new 
approach has been developed in order to overcome this 
drawback. First it requires the computation of the mutual 
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information (MI) among all pairs of variables. Mutual 
information measures the general dependence of random 
variables without making any assumptions about the nature 
of their underlying relationships [8]. The mutual information 
between the variables Xi and Xj is then defined as:  

 0),()()(),( ≥−+= jijiji XXHXHXHXXMI  (1) 

where H(Xi) represents the Shannon entropy of the 
empirical probability distribution [9]. Assume that the 
variable Xi has M possible states xi1,….,xiM, each with its 
corresponding probability p(xim), then the entropy can be 
calculated as: 
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The logarithm in the Equation (2) refers to the natural 
logarithm. The joint entropy H(Xi, Xj) of two discrete 
variables Xi and Xj  is defined analogously as: 
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Here p(xim, xjl) denotes the joint probability that Xi is in 
state xim and Xj is in state xjl,  calculated from a multivariate 
histogram. The number of possible states M and L may be 
different.  

A mutual information matrix (MIM) can be computed as 
a square matrix whose i,j element is the mutual information 
between Xi and Xj. 

MI is zero if Xi and Xj are statistically independent and 
increases the less statistically independent Xi and Xj are. In 
practice, since MI is always non-negative, its evaluation 
from random samples may give a positive value even for 
variables that are, in fact, mutually independent. Moreover, 
entropy estimation based on relative frequencies has several 
sources of error, such as finite number of observations [10]. 

Hence, our proposed approach, in its second step, finds 
out the significant relationships and returns as outcome a 
binarized MIM in which the ones represent those links.  Four 
different binarization methods are implemented. The first 
one uses a threshold and the others have been taken by the 
field of reverse engineering, because widely used to infer 
genetic networks to microarray data. 

Finally, the binarized MIM is used to establish which 
network structures are acceptable. If the element i,j in the 
matrix is equal to 0, an arc between the two correspondent 
variables Xi and Xj will be not allowed in the greedy search 
algorithm. Consequently, the DAG which contains any of 
these arcs will be disregarded in the search procedure.  

A. MI thresholding  
The elements of the MIM larger than the threshold I0 are 
transformed to state 1 and the elements smaller than I0 are 
transformed to state 0. Different threshold values were 
experimented based on the percentiles of the MI distribution.  

The MIM is symmetric and the upper triangle is 
extracted. A vector constituted by the selected elements is 
created and the percentiles (10th, 15th, 20th, 25th, 30th, 35th, 
40th, 45th, 50th, 55th, 60th) of its distribution are calculated. 

The percentiles are the 100-quantiles, namely the 
quantiles expressed as percentage. The quantiles are 
calculated using the algorithm type 8 discussed in Hyndman 
and Fan [11]. Using this algorithm, the resulting quantile 
estimates are approximately median-unbiased regardless of 
the distribution of data whose sample quantiles are wanted. 
Each calculated percentile has been tested as threshold. 

B. CLR method  
The CLR (Context Likelihood of Relatedness) algorithm 

[12] derives a score related to the empirical distribution of  
MI values. For each couple of variables Xi and Xj, it takes 
into account the score:  
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and μi and σi are, respectively, the mean and the standard 
deviation of the empirical distribution of the mutual 
information values MI(Xi, Xk), with k = 1, . . . , n. A square 
and symmetric matrix whose i,j element is sij, the score of 
the pair {Xi, Xj} is obtained and subsequently binarized by 
assigning 0 at all the null elements in the matrix and 1 at the 
remaining ones.  

C. ARACNE method   
ARACNE (algorithm for the reconstruction of accurate 

cellular networks) uses a well-known information theoretic 
property: the data processing inequality (DPI) [13]. The DPI 
[8] states that if two variables Xi and Xz interact only through 
a third variable, Xj, then: 

 )),(),,(min(),( zjjizi XXMIXXMIXXMI ≤    (6) 

A weight equal to their mutual information is assigned to 
each pair of nodes. Then, the algorithm examines each 
variables triplet and removes the edge with the smallest 
value, interpreted as an indirect interaction. A square and 
symmetric matrix, containing all MIs for pairs of variables 
considered directly interacting and 0 otherwise, is computed. 
The matrix is binarized by assigning 0 at all the null 
elements and 1 at the remaining ones.  

D. MRMR method  
The MRMR (Maximum relevance minimum redundance) 

method allows to select variables in a stepwise mode so that 
each new variable selected has the highest individual MI 
with the output (maximum relevance) and the lowest 
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possible average MI with the preselected variables 
(minimum redundancy) [14].  

In a supervised learning task, the output is denoted by Y 
and V represents the set of input variables. The greedy search 
starts by selecting the variable Xi that has the highest mutual 
information to the target Y. After it selects the variable Xj that 
has a high information MI(Xj, Y) to the target and at the same 
time a low information MI(Xj, Xi) to the previously selected 
variable. In the following steps, given a set S of selected 
variables, the method updates S by choosing the variable Xj 
that maximizes the score: 
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This selection procedure is repeated considering at every 
turn a different variable as target. 

For each pair {Xi, Xj}, MRMR returns, according to (5), 
two (not necessarily equal) scores si and sj. The score of the 
pair is computed by taking the maximum between si and sj. A 
square and symmetric matrix whose i,j element is the score 
of the pair {Xi, Xj} can be computed. The matrix is binarized 
by assigning 0 at all the null elements in the matrix and 1 at 
the remaining.  

IV. PERFORMANCE ANALYSIS 
The proposed metrics, hereafter called “S&S (search and 

score) + threshold”, “S&S + CLR”, “S&S + ARACNE” and  
“S&S + MRMR”, have been numerically investigated by 
means of two medical datasets, widely used in the literature: 
ASIA (Fig. 1) and CANCER (Fig. 2). The ASIA network, 
introduced by Lauritzen and Spiegelhalter [15] is a small 
network constituted by 8 discrete variables and 8 arcs. The 
CANCER network includes 5 discrete variables and 5 arcs 
[16]. Each network has been used to generate several 
databases by means of probabilistic logic sampling method 
[17]. The sample sizes considered for ASIA network are N = 
1000, 5000 and 10000. The sample sizes considered for 
CANCER network are N = 1000, 2500 and 5000.  

The results have been compared to those obtained by 
using the standard structural learning procedure described in 
subsection II. The algorithm has been built on the top of the 
package DEAL [4].  
 

 
Figure 1. The ASIA network 

 
Figure 2. The CANCER network 

Different criteria have been selected to gauge the quality 
of the reconstructed structure: the number of correct edges, 
the number of extra edges, the number of missing edges and 
the F-score. The F-score is a weighted harmonic average of 
precision (p) and recall (r), expressed as [18]: 

 
rp

rpFscore
+

=
**2  (8) 

The precision measures the fraction of real edges (present 
in the real network) among the ones inferred by the 
algorithm and the recall, also known as true positive rate, 
denotes the fraction of real edges that are correctly inferred.  

A. Calculation of the best threshold 
First, the dependence of the algorithm S&S + threshold 

(defined also as S&S + T) results on the threshold values has 
been investigated. For both networks, the algorithm has been 
repeated considering all possible threshold values for each 
sample size. Figure 3 and 4 show the F-scores obtained for 
ASIA and CANCER networks respectively.  

For both networks, regardless of the sample size, by 
increasing the threshold, the performances of the algorithm 
tend to improve or, sometimes, to hold steady. Moreover, by 
increasing the sample size, a best score can be obtained. The 
best threshold is the 50th percentile. As can been seen, by 
using the 50th percentile as threshold and a sample size of at 
least 2500, the true structure of the CANCER network can 
been inferred. 

 

 
Figure 3. F-scores of the method S&S + T by varying the MI thresholds for 

the ASIA network. For all sample size, the 5th, 10th, 15th and the 20th 
percentiles are the same. 
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Figure 4. F-scores of the method S&S + T by varying the MI thresholds for 

the CANCER network. For all sample size, the 5th, 10th and the 15th 
percentiles are the same. 

B. Comparison among the algorithms 
Results of the learned network using the standard score-

and-search algorithm implemented in DEAL and our 
variations are shown in Table 1 for ASIA network and in 
Table 2 for CANCER network. For the MI thresholding 
algorithm, only the outcomes obtained by using the best 
threshold evaluated in the previous paragraph are presented.  

The general trend for all the algorithms is that the learned 
networks by them are more and more accurate as the size of 
the datasets gradually enlarges.  For the CANCER network, 
our methods allows to find the true network if the sample 
size is major than 2500. 

Our implemented variations improve the overall 
performance of the metric implemented in DEAL.  

For the ASIA network, the application of the ARACNE 
method to binarize the MIM gives better results than the 
other approaches. For the CANCER network, there isn’t 
difference between the four binarization methods in term of 
capability to find a good network.  

TABLE I.  EXPERIMENTAL RESULTS OF THE ALGORITHMS ON ASIA 
NETWORK BY VARYING THE SAMPLE SIZE. 

            Algorithm 
Performance 

Sample size 
1000 5000 10000 

Correct 
arcs 

DEAL 
S&S+T  
S&S+CLR 
S&S+ARACNE 
S&S+MRMR 

4 
8 
8 
8 
8 

5 
8 
8 
8 
8 

7 
8 
8 
8 
8 

Incorrect 
added arcs 

DEAL 
S&S+ T 
S&S+CLR 
S&S+ARACNE 
S&S+MRMR 

18 
9 
1 
1 
4 

18 
9 
1 
0 
2 

15 
8 
1 
0 
1 

Missing 
arcs 

DEAL 
S&S+T 
S&S+CLR 
S&S+ARACNE 
S&S+MRMR 

4 
0 
0 
0 
0 

3 
0 
0 
0 
0 

1 
0 
0 
0 
0 

F-score 

DEAL 
S&S+T 
S&S+CLR 
S&S+ARACNE 
S&S+MRMR 

0,27 
0.64 
0.94 
0.94 
0.80 

0,32 
0.64 
0.94 

1 
0.89 

0,47 
0.67 

1 
0.94 
0.94 

 

TABLE II.  EXPERIMENTAL RESULTS OF THE ALGORITHMS ON 
CANCER NETWORK BY VARYING THE SAMPLE SIZE. 

            Algorithm 
Performance 

Sample size 
1000 2500 5000 

Correct 
arcs 

DEAL 
S&S+T 
S&S+CLR 
S&S+ARACNE 
S&S+MRMR 

4 
5 
5 
5 
5 

5 
5 
5 
5 
5 

5 
5 
5 
5 
5 

Incorrect 
added 
arcs 

DEAL 
S&S+T 
S&S+CLR 
S&S+ARACNE 
S&S+MRMR 

3 
1 
1 
1 
1 

1 
0 
0 
0 
0 

1 
0 
0 
0 
0 

Missing 
arcs 

DEAL 
S&S+T 
S&S+CLR 
S&S+ARACNE 
S&S+MRMR 

1 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

F-score 

DEAL 
S&S+T 
S&S+CLR 
S&S+ARACNE 
S&S+MRMR 

0.67 
0.91 
0.91 
0.91 
0.91 

0.91 
1 
1 
1 
1 

0.91 
1 
1 
1 
1 

 

V. CONCLUSIONS 
In this paper we have defined a new algorithm for 

Bayesian network structure learning, that is an evolution of 
the standard score-and-search-based approach. The 
algorithm first reconstructs a sort of skeleton of a Bayesian 
network, by finding the only arcs admitted, and then 
performs the Bayesian-scoring greedy search to infer the best 
network. This network doesn’t have arcs classified as 
impossible. Our metric has been tested on two different 
medical datasets and compared against the standard score-
and-search algorithm as implemented in the DEAL package. 
Our algorithm outperforms that metric and the successful 
numerical findings suggest that it could be very useful in 
medical domains 

A possible limit of this work is that we have used 2 
simple datasets, whereas in the domain of BioMedicine, BNs 
can be used for applications that involve large and complex 
network structures. Unfortunately, computational constraints 
forbid wide numerical testing in large networks using the R 
environment. In this first phase we are more interested in the 
methodology, but we will implement the code under other 
programming languages, in order to perform learning of 
larger networks. 
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