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Abstract— In this paper, an approach for intelligent integra-
tion of indoor visual tracking system for event detection and
movement is proposed. This surveillance system is composed
of a stationary camera and a pan tilt zoom (PTZ) camera,
where the two cameras have been intrinsically and extrinsically
calibrated. The stationary camera detects events such as fall
and wandering using motion-based visual tracking. In this
initial study, the PTZ camera tracks and follows the person
who triggered the event using intelligent color-based particle
filtering which is defined based on the expected dynamics of
the scene. The purpose of tracking in view of the PTZ camera
is to continuously keep the person in the full view of the
camera which can further be processed for identifying details
of the person. Preliminary experimental results for camera
calibration, event detection, and human tracking are presented
to demonstrate the performance of the proposed cooperative
hybrid visual tracking system.

I. INTRODUCTION

Configurations of camera systems for people surveillance

on how the cameras are deployed to track targets have been

topics of various research and development which involve

expanding the capacity of cameras and increasing the number

of cameras. For example, some initial studies stationary cam-

eras were mounted on mobile platforms in order to enhance

the coverage and the flexibility of robot vision [1] [2]. Later

on, stationary cameras were substituted by active cameras

of PTZ capabilities in order to facilitate the collection of

scenes. Lalonde et al. [3] has proposed a surveillance system

to automatically track humans and vehicles using a PTZ

camera. The flexible perspective and resolution of live video

recorded by a single PTZ camera reduces the number of

stationary cameras that would otherwise be used to build up

an equivalent surveillance system.

Collins et al. [4] and Costello et al. [5] have built up

visual systems of multiple PTZ cameras in order for multiple

targets can be tracked simultaneously. In [5], a distributed

scheduling algorithm was proposed for identifying each

person in the scene by a network of PTZ cameras. However,

tracking algorithms run for every PTZ camera, which can

result in high computational cost. Such a system is for highly

secured and specialized environments; for example, in safe-

deposit rooms or consulates, which may not be applicable

for general settings in public areas. Typically, identifying

people are of no interest until they trigger events. As a result,

using multiple PTZ cameras may lead to redundancy. In [6],

Zhou proposed a configuration of a camera system featured

as “master-slave”. The system was used to detect a moving
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human at a distance, with the master camera taking wide

images of the person and the slave camera zooming in to

obtain close images of the person. However, the slave camera

was kept active, and it was not event triggered. This set-up

may result in system redundancy for the same reason as that

for visual systems composed of multiple PTZ cameras.

In this paper, an intelligent cooperative hybrid visual

tracking system composed of a stationary camera and a

pan tilt zoom (PTZ) camera is proposed. The stationary

camera has a wide field of view, and it is attentive about the

scene for event detection. The PTZ camera is activated if an

event has been detected in view of the stationary camera.

Unlike the method of [11], the method of this paper uses the

calibrated camera setting and it then pans and tilts to center

the target in its view, and zooms in to obtain identifying

details of the target that may not be clear in view of the

stationary camera. Such a system can be used for attentive

surveillance in various locations. Compared with the single

PTZ camera system proposed in [3], our hybrid camera

system can still observe the overall pictures of the scene

when close images of a person are being obtained. Compared

with the configurations of multiple cameras proposed in

[4], [5], and [6], our camera system is more efficient in

surveillance because algorithms of visual tracking and event

detection only run for the stationary camera if no event is

detected.

II. EVENT DETECTION IN VIEW OF THE STATIONARY

CAMERA

The stationary camera is responsible for detecting events

that are triggered by people in the camera view. In this

paper, two events, fall and wandering, are used as examples

to demonstrate the functionality of the cooperative tracking

system. In the camera view, motion of people is detected by

comparing the difference between the current video frame

and a reference video frame. In this paper, motion history

image (MHI) [8] is utilized used to motion detection and

representation. A MHI successively layers N frame differ-

ences over the last N time steps.

By using the MHI, for example, moving people are

represented by bounding boxes, and their positions and sizes

are determined. Fig. 1 shows examples of integration of MHI.

For example, for detecting sudden change in the vertical

motion patterns of a person and in the view of a stationary

camera a fall happens when the height of a bound box in

the camera view at time t, ht, significantly decreases, and

the vertical location of the bounding box, vt, simultaneously

decreases. Or when h′
t = ht−ht−1

ht−1
< Δh, v′t = vt−vt−1

ht−1
<
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(a) F182 (b) F226 (c) F256

Fig. 1. Three snapshots of the tracking results together with their MHI
(N = 5) when motion of two people is being tracked in view of the
stationary camera. The position and the size of each bounding box displayed
at the upper-left of the video indicate the position and the size of the moving
person(s), and the clock of each bounding box indicates the direction of
motion of the person(s).

Δv. Here, h′
t and v′

t are the instantaneous changes of the

height and the vertical position of the bounding box with

respect to its height at the previous time t − 1. Δh and Δv

are the thresholds used to define the occurrence of a fall. The

value of Δh should be negative, and the value of Δv should

also be negative if the origin of the image is defined at the

bottom-left of the image.

Another example can be the case of crowd monitoring

and the case of wandering person. The event of wandering

is defined when a person is separated from a crowd. In this

case, the total number of bounding boxes increases by one,

and the distance between the separated bounding box that

represents the wanderer and the bounding box that represents

the crowd is between a pre-defined thresholds L and L′.

Or, we can write: L ≤ lt =
√

(uct−uwt )2+(vct−vwt )2

hct
≤ L′,

where hct
is the height of the crowd at time t, and (uct

, vct
)

and (uwt , vwt) are the centers of the crowd and the wanderer

at time t, respectively. The threshold L is set to judge the

separation, and the threshold L′ is set to judge whether the

small bounding box is separated from the big one.

III. CENTERING INITIALIZATION AND FITTING IN VIEW

OF THE PTZ CAMERA

For our intelligent cooperative tracking system, two cam-

eras should be geometrically related so that the PTZ camera

“knows” where to pan and tilt in order to center and fit in

its view the person who triggered an event. The calibration

matrices of the two cameras, K1 and K2, and the rotation

and translation matrices between two camera frames, RC and

tC , are known.

Given the center and the height of the person in view

of the stationary camera, x1 = (u1, v1, 1) and h1, and the

camera parameters the center of the person in view of the

PTZ camera, x2 = (u2, v2, 1) can be obtained.

Given x1 = (u1, v1, 1) and based on the pinhole camera

model [7], XC1 = (xc1 , yc1 , zc1 , 1)T is recovered from

x1 = K1I[I|0]XC1 , (1)

which is written explicitly as

zc1

⎡
⎣ u1

v1

1

⎤
⎦ =

⎡
⎣ fu1 s1 uo1 0

0 fv1 vo1 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

xc1

yc1

zc1

1

⎤
⎥⎥⎦ . (2)

From equation (2), we have two sub-equations:xc1 =
u1zc1−s1yc1−uo1zc1

fu1
, and yc1 = v1zc1−vo1zc1

fv1
. In these equa-

tions , zc1 is the depth of the person in view of the stationary

camera;

zc1

f1
=

Hm

hm
1

⇒ zc1mv1

fv1

=
Hmmv1

h1
⇒ zc1 =

Hmfv1

h1
, (3)

where f1 is the focal length of the stationary camera, hm
1

is the height of the person in meters on the image plane of

the camera, and Hm is the actual height of the person in

meters. Therefore, the center of the person in the frame of

the stationary camera XC1 = (xc1 , yc1 , zc1 , 1)T is obtained.

Given XC1 , RC , and tC , the center of the person in the

frame of the PTZ camera, XC2 = (xc2 , yc2 , zc2 , 1)T , is

computed from

XC2 =
[

RC tC
0 1

]
XC1 . (4)

The center of the person in view of the PTZ camera, x2 =
(u2, v2, 1)T , is obtained by projecting XC2 onto the image

plane of the PTZ camera:

zc2

⎡
⎣ u2

v2

1

⎤
⎦ =

⎡
⎣ fu2 s2 uo2 0

0 fv2 vo2 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

xc2

yc2

zc2

1

⎤
⎥⎥⎦ . (5)

From equation (5), the expressions for u2 and v2 are: u2 =
fu2xc2+s2yc2+uo2zc2

zc2
, and v2 = fv2yc2+vo2zc2

zc2
. Therefore,

x2 = (u2, v2, 1)T is obtained.

Given x2 and the camera parameters, the angles of pan

and tilt and the zoom-in amount, which are used for person

centering and fitting in the PTZ camera view, are computed

here. The desirable center of the person in view of the

PTZ camera after person centering, x′
2, is the image center,

(uo2 , vo2 , 1)T . From above relationships equations, the 3D

coordinates of x′
2, XC′

2
= (xc′2 , yc′2 , zc′2 , 1)T , satisfies xc′2 =

yc′2 = 0. The original PTZ camera frame, (XC2 -YC2 -ZC2 ),

should be rotated, so that the original coordinates of XC2

turns to be XC′
2
, which satisfies the conditions xc′2 = yc′2 = 0

in the rotated camera frame, (XC′
2
-YC′

2
-ZC′

2
). Here, α defines

rotating the camera frame by α about the YC2 axis. Tilting

the camera by an angle β means rotating the camera frame

by β about the XC′
2

axis. Therefore, the relationship between

XC2 and XC′
2

is

⎡
⎣ 1 0 0

0 cβ −sβ
0 sβ cβ

⎤
⎦

⎡
⎣ cα 0 sα

0 1 0
−sα 0 cα

⎤
⎦

⎡
⎣ xc2

yc2

zc2

⎤
⎦ =

⎡
⎣ 0

0
zc′2

⎤
⎦ ,

(6)

where s(·) denotes sin(·) and c(·) denotes cos(·). From

equation (6), α, β, and zc′2 are: α = − arctan xc2
zc2

,,
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β = arctan yc2
zc2 cos α−xc2 sin α ,, zc′2 = −xc2 sin α cos β +

yc2 sin β + zc2 cos α cos β.
Once the person has been centered in view of the PTZ

camera after pan and tilt, the camera zooms in to obtain close

images of the person with the zoom-in amount δf = f ′
2−f2,

where f2 is the original focal length and f ′
2 is the focal length

after zoom-in. The value of f ′
2 is dependent on the desirable

height of the person in view of the PTZ camera after zoom-

in, h′
2; h′

2 = arH , where H is the height of the image and

ar (ar ≤ 1) is the ratio of the desirable height of the person

to H . Therefore,

f ′
2 =

f ′
v2

mv2

=
zc′2h

′
2

Hmmv2

=
zc′2arH

Hmmv2

. (7)

In equations (3) and (7), Hm is the height of the person

in meters in the world.

IV. TRACKING IN VIEW OF THE PTZ CAMERA

Once the person is centered and fitted in view of the PTZ

camera the color-based particle filtering (CPF) is applied to

track the person. One of the main challanges of integrating

the CPF is a suitable selection of the color histogram of the

person in relationships the background and also development

of predictive dynamical model of tracking. This paper, a

color histogram for the person is then used as a reference

to weigh samples propagate by our novel implementation of

particle filter. In parallel, based on the current state of the

person from the CPF, the camera zooms in to obtain clear

images of the person, and keeps the person in the camera

view by panning and tilting.

A color histogram for a person is used as a reference to

weigh samples in the CPF, and the histogram is established

based on the color distribution within the rectangular area of

the person. In this paper, a 2D hue and saturation histogram

of the person with mh and ms bins, respectively, is used.

Such a histogram is created by counting the number of

pixels for each bin that has the respective values of hue and

saturation. Divided by the total number of pixels occupied

by the person, the color histogram is normalized, and hence

represents the probability of each hue and saturation value

that the person has.

Particle Filtering (PF) [14] implements a recursive

Bayesian filter using Monte Carlo simulations. The key idea

of the PF is to represent the required posterior probability

density function (PDF) of the system by a set of random

samples, S = {(s(i)t , π
(i)
t )|i = 1, · · · , N}, with associated

weights π
(i)
t . The estimate of the current state Mt, E(Mt),

is computed based on these samples and weights. As the

number of samples grows, PF can recover the true posterior

PDF. The PF is good at dealing with visual tracking in

cluttered environments because it can recover bimodal, multi-

modal, and heavily skewed PDFs. The system dynamic

model is defined as

Mt = Ft(Mt−1, nt−1), (8)

where Mt is the current state, Ft is a possibly non-linear

function of the previous state Mt−1, and nt−1 is the sequence

of process. The set of samples is propagated according to the

system dynamic model:

s(i)t = Ft(s
(i)
t−1, nt−1). (9)

Each sample in the set is weighted by the normalized

probability:

π
(i)
t = p(zt|Mt = s(i)t ), (

N∑
i=1

π
(i)
t = 1), (10)

where zt is the observation at time t. Therefore, the estimated

state vector at time t is

E(Mt) =
N∑

i=1

π
(i)
t s(i)t . (11)

A person in the camera view is represented by a bounding

box, whose state vector, Mt, is an 8-tuple vector

Mt = {ut, vt, u
′
t, v

′
t, wt, ht, w

′
t, h

′
t}. (12)

In the above definition, (ut, vt) is the center of the bounding

box at time t, and u′
t and v′

t are the velocities of the box

moving in the directions of the axes u and v, respectively,

at time t. wt and ht are the width and height of the box at

time t, and w′
t and h′

t are the instantaneous changes of the

width and height at time t. The system dynamic model is a

first-order, auto-regressive dynamic model:

Mt = AMt−1 + nt−1, (13)

whose Ft(Mt−1, nt−1) in equation (8) is Ft = AMt−1 +
nt−1 here. In equation (13), A is the deterministic component

of the state model, and nt−1 is the stochastic component

of the model. nt−1 is an 8-tuple vector whose ith element

satisfies the distribution nt−1(i, 1) ∼ τiN(μi, σ
2
i ) (1 ≤ i ≤

8), which is normally distributed with mean μi, variance σ2
i ,

and amplifier τi. Both A and nt−1 can be determined based

on the knowledge of the scene and the target being tracked.

The set of samples is propagated based on the model in

equation (13):

s(i)t = As(i)t−1 + nt−1. (14)

For the CPF, each sample s(i)t is weighted by the Bhat-

tacharyya distance [15] between the color histogram for the

sample, hist
(i)
t , and the color histogram for the target, histr.

The Bhattacharyya distance, dB , measures the similarity

of two discrete probability distributions. Given two color

histograms, hist
(i)
t and histr, dB is computed as

dB =

√√√√1 −
m∑

j=1

√
hist

(i)
t (j)histr(j), (15)

where m is the total number of bins. For a 2D color

histogram, m = mh×ms, where mh and ms are the numbers

of bins of hue and saturation, respectively. The closer two

color histograms (distributions) are, the smaller the value of

dB is. The exponential of the squared dB [13] is chosen to

be the weight function

π
(i)
t = p(zt|Mt = s(i)t ) = e−λd2

B , (16)
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Fig. 2. Flowchart for the CPF used to track people in the view of the PTZ
camera after an event was detected in view of the stationary camera.

where λ is a scale determined by experiments. The weight,

π
(i)
t , is normalized to satisfy

∑N
i=1 π

(i)
t = 1. Fig. 2 shows

the flowchart for the CPF used to track people in view of

the PTZ camera after an event was detected in view of the

stationary camera.

In order to initialize the CPF for visual tracking, the state

of the bounding box at t = 0, M0, should be set. The values

set for the center, the height, and the width of the box at

t = 0 are associated with the initial centering and fitting of

the person in the PTZ camera view. The center of the box,

(u0, v0), is set as the center of the camera view because the

PTZ camera initially pans, tilts, and zooms in to center the

person in its view. The height of the box, h0, is set as arH
(H is the height of the image) and the width of the box, w0,

is set as brh0, where ar and br (0 < ar, br < 1) are scalars.

In order to initialize the CPF for visual tracking, the state of

the bounding box at t = 0, M0, should be set. Based on the

center of the box, (u0, v0), is set as the center of the camera

view because the PTZ camera initially pans, tilts, and zooms

in to center the person in its view. The height of the box, h0,

is set as arH , and the width of the box, w0, is set as brh0,

where ar and br (0 < ar, br < 1) are scalars. The values for

u′
0, v′

0, w′
0, and h′

0 are determined based on specific event.

V. EXPERIMENTAL RESULTS

Once the PTZ camera is activated, based on camera

parameters and the geometric relationship between the two

cameras, the PTZ camera initially centers and fits the person

who triggered an event. A board was used as an example

to demonstrate target centering and fitting in view of the

PTZ camera. The purpose of the experiment is to obtain

clear images of the board in view of the PTZ camera by

pan, tilt, and zoom, given the center and the height of the

board in view of the stationary camera. Fig. 3-(a) shows that

the board, whose height is 0.6m in the world, was placed

in view of the stationary camera in four different locations

(L1, · · · , L4). The centers and the heights of the board, x1

and h1, are indicated by crosses and double-arrowed lines in

Fig. 3-(a), and are listed in the second and the third columns

of table I. The mapping between the two camera frames is

RC =

⎡
⎣ 0.98 0 −0.17

−0.08 0.90 −0.43
0.16 0.43 0.89

⎤
⎦ , tC =

⎡
⎣ 0.73

1.67
0.96

⎤
⎦ . (17)

The computed XC1 , XC2 , and x2 of the centers of the board

are listed in table I, II and x2 for each board are indicated

by crosses in Fig. 3-(b). For comparison, the ground truth

(GT) of x2 for each location is listed in the last column of

the table.

TABLE I

PARAMETERS FOR THE BOARD SHOWN IN FIG. 3-(A) AND FIG. 3-(B).

Stationary Camera

xT
1 h1 XT

C1

L1 (119, 143) 70 (1.72, 0.83, 4.65)

L2 (115, 360) 130 (0.95,−0.55, 2.51)

L3 (353, 244) 82 (−0.24,−0.03, 3.97)

L4 (418, 191) 86 (−0.68, 0.34, 3.79)

TABLE II

PARAMETERS FOR THE BOARD SHOWN IN FIG. 3-(B).

PTZ Camera

XT
C2

xT
2 xT

2 (GT)

L1 (1.74,−0.21, 5.52) (149, 260) (167, 210)

L2 (1.29,−0.19, 2.88) (76, 276) (78, 305)

L3 (−0.10,−0.42, 4.24) (333, 294) (323, 290)

L4 (−0.51, 0.02, 4.23) (385, 237) (375, 239)

Using the values for XC2 and x2 listed in table I and II,

the pan and tilt angles, α and β, and the zoom-in amount,

δf , were computed.

For the case of detecting an abnormal behavior pattern of

a person such as a class of fall, both values of h′
t and v′t are

negatively large. Based on the experimental study, the values

for Δh and Δv were set as Δh = −0.40 and Δv = −0.20
in order to detect a fall and leave the normal activities, such

as sitting down, undetected.

Fig. 4 shows screen shots of the tracking results for fall

detection in view of the stationary camera. The height and
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L1

L2

L3

L4

(a) (b) (c)

Fig. 3. (a) The board was placed in view of the stationary camera in four
different locations (L1, · · · , L4), with their centers and heights indicated by
crosses and double-arrowed lines; (b) Centers of the board in view of the
PTZ camera indicated by crosses; (c) Close images of the board obtained
by pan, tilt, and zoom of the PTZ camera.

the vertical location of the falling person decrease quickly

and simultaneously from video frame F262 to F271. Based

on the criteria h′
t ≤ −0.4 and v′

t ≤ −0.2, a fall was detected

at F271. The center of the person at time t = 271, x271, is

(254, 259), and the width w271 and the height h271 of the

person at the time t = 271 are 90 and 132, respectively.

(a) F262 (b) F267 (c) F271

Fig. 4. Snapshots of the tracking results for fall detection in the view of
the stationary camera. A fall was detected at video frame F271.

Fig. 5-(b) shows the zoomed-in image of the person with

her position and size indicated by the bounding box. Fig. 5-

(c) is the 2D hue and saturation histogram for the fallen

person, which is used as a reference to weigh samples

propagated by the PF.

(a) (b)

Fig. 5. (a) Computed center of the fallen person in view of the PTZ
camera, which is indicated by a cross; (b) A close image of the fallen
person obtained by initial pan, tilt, and zoom of the PTZ camera.

The state vector of the fallen person, Mt, is an 8-tuple

vector defined in equation (12). The set of samples was

propagated based on the first-order, auto-regressive dynamic

model expressed in equation (13). For the experiment of

tracking a fallen person, the deterministic component of the

state model in equation (13), A, is an 8 × 8 matrix:

A =
[

A1 A2

A2 A1

]
, (18)

where

A1 =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (19)

and A2 is a 4× 4 zero matrix. The stochastic component of

the model, nt−1, is an 8-tuple vector. Each element in the

vector, nt−1(i, 1), is normally distributed as nt−1(i, 1) ∼
τiN(0, 1) (1 ≤ i ≤ 8). For the experimental studies of

tracking a fallen person we have selected, τ1 = τ2 = 5,

τ3 = τ4 = 2, τ5 = τ6 = 5, and τ7 = τ8 = 2.
To initialize the CPF, the center of the bounding box at

t = 0, (u0, v0), was set as the center of the camera view,

(320, 240). The height of the box at t = 0, h0, was set as

ar = 4/5 of the image height, and the width of the box

at t = 0, w0, was set as br = 4/5 of h0. The velocities

of the box moving in the directions of the axes u and v at

t = 0, u′
0 and v′

0, were set as zero because a fallen person

usually remains on the floor for a while after he/she falls.

For the same reason, the rates of change for the width and

the height of the bounding box at t = 0, w′
0 and h′

0, were

set as zero. The scale in the weight function (16), λ, was

set as λ = 1. Fig. 6 shows the results for tracking the fallen

person using the CPF, when the number of samples N was

set as N = 100. From Fig. 6, the PTZ camera was able to

obtain clear identifying details of the fallen person, which

was not clear in view of the stationary camera as shown in

Fig. 4-(c).

F173 F175 F177

Fig. 6. Results of tracking a fallen person using the CPF; first row: samples
propagated (N = 100); second row: weighted sum of the samples.

For demonstration of the second example, we have two

people walked in a group initially, and one of them wandered

away from the other at the end. Similar to determining

the thresholds in fall detection, the values for L and L′,
which are the thresholds in wandering detection, should

be determined experimentally. the camera view. Wandering

occurs when the separation of the
Fig. 7 shows screen shots of the tracking results for

wandering detection in view of the stationary camera. Based
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(a) F152 (b) F156 (c) F160

Fig. 7. Snapshots of the tracking results for wandering detection in view
of the stationary camera. Wandering was detected at video frame F160.

on the criteria 0.55 ≤ lt ≤ 0.70, wandering was detected

at video frame F160. The center of the wanderer at time

t = 160, x160, is (310, 274), and the width w160 and the

height h160 of the person at time t = 160 are 157 and 410,

respectively.

Fig. 8-(b) shows the zoomed-in image of the person with

her position and size indicated by the bounding box. Fig.

8-(c) is the 2D hue and saturation histogram for the person.

(a) (b) (c)

Fig. 8. (a) Computed center of the wanderer in view of the PTZ camera,
which is indicated by a cross; (b) A close image of the wanderer obtained by
initial pan, tilt, and zoom of the PTZ camera; (c) The 2D hue and saturation
histogram for the wanderer.

A. Discussions

When tracking the fallen person and the wanderer, the

first-order, auto-regressive dynamic model was used to prop-

agate samples in the CPF because, at time t + 1, the person

usually appeared near the area where she appeared at time

t. Therefore, the deterministic component of the model, A,

was the same for the two tracking. However, the difference

between the two tracking is that the fallen person sit on the

floor after a fall was detected while the wanderer was still

walking after wandering was detected. Therefore, different

stochastic components of the system dynamic model and

different initial states were set for the CPF to track the fallen

person and the wanderer. In the stochastic component, setting

τi as zero means that the target is totally static. The larger the

value of τi is, the more mobile the target is. When tracking

the fallen person, the amplifiers (τ1, · · · , τ8) were set small

compared with those set for tracking the wanderer. The value

for specific τi was determined based on the characteristic of

the parameter it associates with (u with τ1, v with τ2, u′

with τ3, v′ with τ4, w with τ5, h with τ6, w′ with τ7, and

h′ with τ8). For example, in fallen person tracking, τ1 and

τ2 for the magnitudes of noises presented in ut and vt were

both set as 5 because the person was sitting on the floor.

However, in wanderer tracking, τ1 and τ2 were set as 20
and 10, respectively, because the variance of the position of

wanderer in horizontal direction was generally larger than the

variance of the position of the wanderer in vertical direction.

VI. CONCLUSIONS

The intelligent cooperative hybrid tracking system pro-

posed in this paper is composed of two cameras. The

stationary camera has a fixed location and focal length, and

it is used to monitor a wide area to detect events. The

PTZ camera can be controlled to change perspective and

levels of zoom, so that different levels of detail of the target

who has triggered an event can be obtained. Two cameras

were geometrically related by camera calibration, so that

the PTZ camera “knows” how to pan, tilt, and zoom in

order to fit the target in its view. For the stationary camera,

motion-based visual tracking is used to monitor moving

people and detect events. Two events, fall and wandering,

are used as examples to demonstrate the functionality of the

cooperative tracking system. Motion of people is represented

by the motion history image, and people are represented by

bounding boxes. An event is detected by analyzing the states

of bounding boxes based on predefined criteria. For the PTZ

camera, the CPF is used to track the person who has triggered

an event. The color histogram for the person is used as a

reference to weigh samples propagate by the particle filter.

In the meanwhile, the camera zooms in to obtain clear images

of the person, and keeps the person in the camera view by

panning and tilting. The camera is assigned to the person

until, for example, enough identifying details of the person

have been collected, or another person triggers a new event.
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