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Abstract— This paper proposes a fully unsupervised anomaly 
detection strategy in hyperspectral imagery based on mixture 
learning. Anomaly detection is conducted by adopting a 
Gaussian Mixture Model (GMM) to describe the statistics of 
the background in hyperspectral data. One of the key tasks in 
the application of mixture models is the specification in 
advance of the number of GMM components, the 
determination of which is essential and strongly affects 
detection performance. In this work, GMM parameters 
estimation was performed through a variation of the well-
known Expectation Maximization (EM) algorithm that was 
developed within a Bayesian framework. Specifically, the 
adopted mixture learning technique incorporates a built-in 
mechanism for automatically assessing the number of 
components during the parameter estimation procedure. Then, 
Generalized Likelihood Ratio Test (GLRT) is considered for 
detecting anomalies. Real hyperspectral imagery acquired by 
an airborne sensor is used for experimental evaluation of the 
proposed anomaly detection strategy. 

Keywords- hyperspectral imagery; Gaussian mixture; model 
selection; Bayesian approach; anomaly detection 

I.  INTRODUCTION 
In recent years, hyperspectral remote sensing has found 

many applications in earth observation, such as, 
environmental monitoring, land use management, and wide-
area surveillance. Hyperspectral sensors collect data in 
several narrow and adjacent spectral bands, thus providing a 
very densely sampled spectrum for each pixel in the scene. 
Such a high spectral resolution preserves important aspects 
of the spectrum and makes it possible to reveal even very 
subtle spectral characteristics. In fact, hyperspectral sensing 
has proven valuable for discrimination of materials on the 
basis of their unique spectral signature, which is the spectral 
reflectance as to the Visible/Near InfraRed – Short Wave 
InfraRed (VNIR-SWIR) range [1]. 

In this work, we are interested in Anomaly Detection 
(AD), which aims at detecting targets that are “rare” in the 
image (i.e. characterized by a low probability of occurrence 
with respect to background objects), without knowledge of 
their spectral signature [1]. Therefore, AD algorithms search 
the image for pixels whose spectral content is significantly 
different from that of background. Hence, estimating 
background distribution is an essential step of most of AD 

algorithms. Recently, parametric models have been used to 
describe background statistics in hyperspectral imagery [1, 
2]. In [1, 3], AD algorithms have been developed that rely 
upon a parametric Gaussian Mixture Model (GMM) for 
background characterization. 

Mixture models have been successfully applied for 
modeling large heterogeneous populations [2, 4], and they 
have been adopted in many applications such as clustering 
and density estimation [2, 5-7]. Within this framework, the 
GMM is undoubtedly one of the most widely adopted 
models for approximating distributions [2, 5, 7]. GMM 
learning has been typically conducted through the well-
known Expectation Maximization (EM) approach [2, 8], 
which estimates the mixture parameters from the data once 
the number of GMM components has been specified a-priori. 
Therefore, a not correct choice of this parameter could 
strongly degrades the estimation accuracy of the data 
distribution. This is particularly significant when using 
mixture learning in AD applications [9-11], where a not 
reliable background characterization may seriously 
compromise the target detection outcome.  

In the literature, methods for GMM learning that adopt a 
Bayesian approach for automatically assessing the number of 
mixture components were developed [2, 4, 12-16]. However, 
their potential has been shown and exploited restricting to 
low-dimensional simulated data, artificial texture images, 
handwritten digits, and natural images. 

In this paper, the same Bayesian philosophy to GMM 
learning is adopted and embodied in an anomaly detection 
scheme to be applied to hyperspectral data. In this way, the 
number of background components is automatically 
determined during the background parameters estimation 
procedure. Real hyperspectral imagery from an airborne 
sensor is used to evaluate performance of the proposed 
strategy. Results obtained are compared to those of an AD 
approach based on the classical EM approach for mixture 
learning.  

The structure of the paper is organized as follows. In 
section II, the Bayesian methods for Gaussian mixture 
learning are described, whereas in section III we illustrate the 
proposed AD strategy. Section IV describes the 
hyperspectral data set used in the analysis and the design of 
experiments. Experimental results and conclusions are 
discussed in sections V and VI, respectively. 

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.220

596



II. VARIATIONAL BAYESIAN MODEL SELECTION FOR 
GAUSSIAN MIXTURE DISTRIBUTIONS 

Mixture models are flexible and valuable statistical tools 
for modeling a Probability Density Function (PDF). In 
particular, Gaussian mixture provides a computationally 
tractable representation for PDF shape that can be used to 
model heterogeneous data in high dimension.  

A Gaussian Mixture Model (GMM) [2, 4] is a parametric 
model that assumes the data originate from a weighted sum 
of several multivariate Gaussian sources. Formally, the finite 
GMM with J components can be expressed as:  
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where X is a multidimensional random vector, ( )1,; −
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is the multivariate normal PDF, characterized by mean 
vector jμ , precision (inverse covariance) matrix jT , and 
mixing proportion (weight) 0≥jπ , which is subject to the 
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sufficient number of Gaussian sources, and by adjusting their 
means and covariances as well as the weights in the linear 
combination of equation (1), any continuous PDF can be 
approximated with high accuracy [1, 2, 4]. The shape of the 
GMM PDF is hence governed by π={πj|j=1,…,J}, 
μ={μj|j=1,…,J} and T={Tj|j=1,…,J}. A possible way to set 
the values of these parameters is by using maximum 
likelihood criterion, i.e. by maximizing the likelihood 
function [17]. This can be obtained iteratively through the 
Expectation Maximization (EM) [2, 4, 8]. Let 
XN={xn|xn

dℜ∈ , n=1,…, N} be a set of N independent and 
identically distributed (iid) data. Modeling XN using fX(x) 
assumes that for each observation xn there exists a hidden 
variable zn denoting the component that generated xn. zn can 
be represented as a J-dimensional binary vector such that if 
the j-th component is responsible for xn then znj=1, otherwise 
znj=0. Let ZN={zn|n=1,…, N} denote the set of these hidden 
variables. Hereinafter, {XN, ZN} will be referred to as the 
complete data set, whereas we will refer to the actual 
observed data XN as incomplete. The EM algorithm provides 
an iterative computation of maximum likelihood estimation 
when the observed data are incomplete. However, several 
limitations of EM approach can be highlighted. First of all, 
convergence to a global maximum is not guaranteed. In fact, 
for likelihood functions with multiple maxima, EM may 
converge, depending on starting values, to a local maximum. 
Another drawback of this approach for GMM training is that 
it cannot be used for determining the number of components 
during the estimation process. Furthermore, collapse of the 
PDF of one or more components onto a specific data point is 
likely to happen. When this occur, the component mean 
vector equals one of the data points, and the corresponding 
variance along some principal axis tends to zero, thus 
making the covariance matrix singular. This is the reason 
why EM is not suitable for assessing the number of 

components, for example, by starting with a large number of 
components and deleting the ones whose weights approach 
zero. In fact, components with low weights are associated to 
clusters with a few elements, which are likely to lead to 
singular covariance matrices. Possible solutions to the 
aforementioned issues may be obtained by adopting a 
Bayesian framework for the modeling the mixture. 

Bayesian analysis treats parameters as random variables 
with a given prior probability distribution (hereinafter 
referred to as prior). Bayes’s rule provides the framework for 
combining the prior information with sample data to make 
inferences about the model. It is worth noting that whereas in 
classical statistics all inferences are based on the sample data 
without using prior information, in the Bayesian framework 
the parameters of the distribution to be fitted are random 
variables. Therefore, this approach differs from the 
aforementioned EM approach in that parameters no longer 
appear because they are now stochastic variables and they 
are absorbed into latent variables. Typically, due the 
assumption of GMM for the data, conjugate priors from the 
exponential family are used for their mathematically 
tractability. Conjugate priors choice lead to posterior 
distributions having the same functional form as the prior, 
and, therefore, lead to a greatly simplified Bayesian analysis. 
That is why Dirichlet prior is used for π, whereas an 
independent Gauss-Wishart prior is assumed for both μ and 
T [2, 4]. The Dirichlet prior for π is given by:  
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where, by symmetry, the same αj is chosen for each 
component, i.e. αj=α0 for j=1,…,J, and C(α1,…, αJ) is the 
normalization constant for the Dirichlet distribution. The 
Gauss-Wishart prior that governs the mean and the precision 
of each Gaussian component in equation (1) is given by:  
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which is the product of a Gaussian PDF and a Wishart PDF 
W(Tj|ν,V), where parameters ν and V denote the degrees of 
freedom and the scale matrix, respectively. α0, β, ν and V are 
called hyperparameters, and they have to be specified in 
advance. It is worth noting that Bayesian GMM allows for 
the optimal number of components to be determined: in fact, 
during the optimization procedure, as soon as one of the 
mixing coefficients converges to zero, the corresponding 
component is eliminated from the mixture. However, the 
Dirichlet prior does not allow the mixing weight of a 
component to become zero and, hence, the corresponding 
component to be eliminated from the mixture. Also, the final 
result depends on the hyperparameters of the priors. 

A method that simultaneously trains the mixture, adjusts 
the number of components, and reduces the sensitivity to V 
was proposed in [12, 13]. To address the aforementioned 
issues, the method follows an incremental structure. It starts 
with one component and, progressively, adds components to 

597



the model. The procedure for component addition is based 
on a splitting test applied to each of the existing mixture 
components. According to this test, a component is split into 
two sub-components (“free” components) and then 
variational Bayesian learning is applied to the specific pair of 
components, while the other components remain “fixed”. In 
order to apply this method, priors on π, μ and T have to be 
imposed. Specifically, this approach assumes Gaussian and 
Wishart priors for μ and T, respectively:  
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It also fixes an uniform prior over the “free” components and 
a Dirichlet prior over the “fixed” components. These choices 
allow weights of the “free” components to become zero 
whereas the “fixed” components weights have zero 
probability to become zero. This Bayesian method for 
Gaussian mixture learning (hereinafter it will be referred to 
as Bayesian GMM Split, BGMMS) is fully automatic and 
does not depend on the initialization. It also allows the 
number of components for modeling the density shape to be 
determined automatically and, hence, resolves adequately the 
model selection problem, i.e. PDF approximation together 
with an automatic selection of the number of components. 

III. ANOMALY DETECTION STRATEGY 
The task of hyperspectral anomaly detection is to decide 

whether a target of interest is present or not in a pixel under 
test without a priori information about the spectral signature 
of the target. If the target class and the background class are 
both characterized by statistical models, the AD problem is 
typically formulated as a binary hypothesis testing:  

 ( )
⎩
⎨
⎧

=
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1

0

x
x
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where x is a realization of the random vector X used for 
modeling the pixel under test, whereas H0 and H1 denote the 
target absent and target present hypothesis, respectively.  

The most widely adopted decision strategy derived from 
(6) is given by a Generalized Likelihood Ratio Test (GLRT) 
[17] depending on the PDFs conditioned on the two 
hypotheses. Specifically, the GLRT assumes that PDFs have 
a parametric form dependent on a set of unknown parameters 
{�i}i=0,1. It has been shown [1] that if �0 is estimated from 
a large sample of reference data, the GLRT is well 
approximated by the background likelihood [1, 18]:  

 ( ) ( ){ } ηϑ
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0 0| ;log
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where ( )0| ;
0

ϑxX Hf  is the PDF of x under the null hypothesis, 
i.e. the background PDF, and η is the detection threshold. 
Any specification for the background PDF leads to a 
different detector. 

In this work, the decision rule (7) is adopted for 
performing AD. Specifically, a GMM PDF with J 
components (as specified in equation (1)) is assumed for   
and its estimation is carried out within the Bayesian model 
selection framework described in section 2. 

IV. EXPERIMENTAL DESIGN 
In this section, the experiments carried out by applying 

the proposed AD strategy to a real hyperspectral data set are 
described. 

A. Data set description 
 
For testing and validating the proposed method on real 

hyperspectral data, an acquired at-sensor radiance image was 
utilized. The image was collected by the airborne 
hyperspectral sensor SIM-GA from a flight altitude of about 
850 m, resulting in an approximate Ground Instantaneous 
Field of View (GIFOV) of 0.7 m. The acquired data span the 
VNIR spectral range (0.4-1 μm), with 512 spectral samples 
and an average spectral sampling of about 2 nm. In the 
scene, several different types of land-cover classes were 
observed, including grass, trees and roads. During 
measurement campaign, target panels were placed in the 
scene and a ground truth targets map was constructed. In 
order to perform experiments, a sub-image of size 560 x 280 
pixels was extracted from the original image. A true-color 
representation of the resulting image can be seen in Fig. 1. A 
spectral binning, aimed at increasing Signal to Noise Ratio 
(SNR), was performed. Besides this, water-vapor absorption 
and noisy bands were discarded. Thus, a total of 89 spectral 
samples were used in this investigation. 

B. Design of the experiments 
Anomaly detection was conducted by adopting a GMM 

PDF, which was estimated through the BGMMS algorithm. 
Performance was compared to that obtained by employing 
the well-known EM approach. Actually, the EM approach 
was applied through a modified sequential version of the EM 
algorithm [7] (which will be referred to as sequential EM, S-
EM). Here, S-EM incorporates an initial run of K-means [19] 
on few observations, in order to start the on-line estimation  

 

Fig. 1: True-color representation of the hyperspectral data employed.
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with suitable initial parameters, and proceeds applying 
the on-line algorithm sequentially on the rest of observations. 
Using current parameters and new observations, parameters 
are updated recursively through the stochastic gradient 
algorithm.  

The experimental analysis performed can be summarized 
as follows: 

1. BGMMS and S-EM algorithms are implemented on 
a feature-reduced data set, in order to speed up 
computation. The procedure was performed on the 
first 10 components, extracted by the Principal 
Component Analysis (PCA) [10], which address 
99.95% of the energy of the image. Results of 
GMM training are then collected in “cluster maps”. 
In fact, fitting a mixture model to the distribution of 
the data can be interpreted as identifying clusters 
within the image. Cluster maps are constructed 
assigning each pixel to the GMM component with 
the maximum responsibility, i.e. the probability that 
one GMM component generated the n-th data 
vector. 

2. Mixture model statistics (π, μ and T) are then 
estimated over all the 89 spectral samples according 
to the cluster map obtained. 

3. Finally, according to equation (7), the detection 
statistic map is created to be thresholded for 
determining whether a given pixel is anomalous or 
not. 

V. EXPERIMENTAL RESULTS 
In this section we discuss results obtained from the 

experiments described in the previous section.  
In order to evaluate and compare the performance 

obtained, Receiver Operating Characteristic (ROC) curves 
[20] are employed, which plot the Fraction of Detected 
Target (FoDT), versus the False Alarm Rate (FAR), 
computed by varying the detection threshold. Only the pure 
target pixels are assumed to be actually the targets to be 
detected, i.e. in the calculation of the FAR the boundary 
target pixel mixed with the background were neglected. 

BGMMS, applied by making no assumptions regarding 
the number of GMM components, provided a cluster map 
with 3 clusters (hence, 3 GMM components), which is 
shown in Fig. 2 (a), and which was employed for the AD 
purpose.  

As regards S-EM, the number of components is a user-
specified parameter that should be set according to the 
spectral diversity of the scene. Therefore, several 
configurations for this parameter (from 2 up to 17 
components) were tested. All the resulting cluster maps were 
employed to perform AD, and the one yielding the best 
performance was selected for comparison with BGMMS-
based detection. This was achieved on the basis of the Area 
Under the ROC curve (AUC), which is generated by 
calculating the area underneath the ROC curve, so that the 
larger the area, the better the performance. The AUCs 
calculated for each configuration are displayed in Fig. 3(a). 
As is observable, the best S-EM-based detection 
performance was obtained when using the 2-components 
cluster map, illustrated in Fig. 2 (b). 

The detection maps resulting from the application of the 
AD strategy to the cluster maps obtained (i.e., the BGMMS 
map and the 2-components S-EM map) are shown in Fig. 2 
(c) and (d), respectively. By thresholding of these detection 
maps, the ROC curves plotted in Fig. 3(b) were then 
obtained. These curves show that the proposed AD strategy,  

 

(a) (b) 

(c) (d) 
Fig. 2: (a) Cluster map produced by the BGMMS aglorithm. (b) Cluster map produced by the S-EM algorithm. (c) Grey-scale detection map 
obtained by using the AD algorithm based on BGMMS for mixture learning. (d) Grey-scale detection statistical map obtained by using the AD 
algorithm based on S-EM for mixture learning. 
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(a) (b) 
Fig. 3: (a) AUC vs number of clusters/GMM components. (b) Anomaly detection performace comparison. ROC curves for BGMMS-based AD 
(in blue) and S-EM-based AD (in green). 

 
conducted by adopting BGMMS for learning the mixture 
model, performs significantly better than the approach based 
on classical EM learning. In fact, ROC curves exhibit high 
detection probabilities with low false alarm rates. 

VI. CONCLUSIONS 
In this paper, a new anomaly detection strategy for 

hyperspectral imagery based on a fully unsupervised 
Gaussian mixture learning has been presented. 

The architecture of the proposed strategy combines a 
GMM learning for the background PDF along with a GLRT 
decision rule. Specifically, the GMM training is based on a 
recently proposed Bayesian technique that allows the GMM 
components to be automatically estimated during the 
learning procedure. The resulting AD strategy is, therefore, 
fully automatic and capable to adequately solve the model 
selection problem within the AD scheme.  

During the experimental analysis, the BGMMS algorithm 
has managed to reliably estimate the background model that 
has been shown to be effective for detecting rare anomalous 
objects within the hyperspectral image employed. 
Furthermore, the algorithm has shown to reasonably estimate 
the correct number of GMM components, without producing 
significant over-segmentation. On this data, the proposed 
BGMMS-based anomaly detector has significantly 
outperformed the approach based on classical EM learning, 
even though this latter was tested with several configurations 
with respect to the number of GMM components. More 
importantly, the conducted analysis has highlighted how a 
discrete search over the number of components in a mixture 
distribution can be avoided by adopting a Bayesian 
philosophy within AD schemes. The results obtained 
confirm the benefits of the resulting AD strategy, whose 
potential deserves further investigation. A more detailed 
analysis, which includes also testing of different AD 
strategies, is still subject of ongoing work.  

Future research will allow the actual effectiveness of 
Bayesian learning-based AD strategies to be assessed as 
regards detecting anomalous objects in hyperspectral images. 
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