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Abstract

This paper presents two versions of a general type-2

fuzzy classifier. The focus is on interpretability since the

rules are meaningful and the rule base is comprised of few

rules, which is a direct consequence of the hierarchical re-

classification process being proposed. The approaches are

evaluated on a land cover classification problem by using

data from a remote sensing platform. The classifiers’ per-

formance are compared with the reference ones’ (maximum

likelihood classifier and ordinary fuzzy classifier). The re-

sults show that the general type-2 fuzzy modeling is able

to produce accurate classifiers while maintaining the model

interpretability.

1. Introduction

Fuzzy rule-based models may be considered a linguis-

tic representation of the mental model of a certain system

by means of experience [1]. When the knowledge required

is not easily available to design fuzzy systems the devel-

opment of computer techniques to extract and represent

knowledge in a fuzzy rule-based system may be necessary.

Data-driven fuzzy modeling, or fuzzy modeling (FM) for

short, has attracted interest of many researches where model

interpretability plays a central role [1, 4]. When the focus

is on interpretability, linguistic fuzzy modeling must gen-

erate systems for which the language is easily interpretable

by human beings and compact fuzzy rule bases with short

individual rules are essential conditions.

The multisource classification model relies on input-

by-input classification techniques that combine different

sources of information (e.g., multisensor data, multiband

data, symbolic data such as model-based knowledge rep-

resented by if-then rules, etc.).
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Recently, several applications on type-2 fuzzy inference

systems appeared. Such systems are interesting because

they can handle both sorts of uncertainty: the one presented

when measuring a signal (i.e., noise) and the other at the

semantic level (linguistic terms can vary from one expert to

another) [20]. Type-2 fuzzy inference systems have great

potential to be employed in digital classification [14] (spe-

cially in multisource classification) but most applications

use interval type-2 sets [12, 13, 17, 18] which are how-

ever simplifications of general type-2 ones having the lower

computational cost as an advantage.

In this paper, two versions of a general type-2 fuzzy clas-

sifiers are presented: specific and general rule-based sys-

tems, where the last one enables don’t care conditions in

the rule antecedent. Both classifiers are based on previ-

ous work where we established a type-2 inference mech-

anism referred to as “General Type-2 Fuzzy Scaled Infer-

ence” [8] and on type-2 fuzzy classifiers [9, 10]. The aim

here is on interpretability aspects. Because of the hierarchi-

cal reclassification process being proposed, this data-driven

fuzzy type-2 modeling is able to keep small rule bases (the

total of fuzzy rules is equal to the total of classes), each rule

being comprehensible, while maintaining the system accu-

racy. The classifiers’ performance will be compared against

the maximum likelihood classifier and the ordinary fuzzy

classifier (type-1 fuzzy classifier).

2 Type-2 Fuzzy Sets

Type-2 fuzzy sets were first presented by Zadeh as an

evolution for his theory of ordinary fuzzy sets [19] but,

later on, they were studied deeply and their theory basis

was appropriately established by Mendel [6]. Nowadays,

the most accepted definition stays that type-2 fuzzy sets are

those ones whose membership grades are themselves ordi-

nary (type-1) fuzzy sets. Type-2 sets which strictly follow

the given definition are called general type-2 fuzzy sets and

those that employ constant membership functions (unitary

ones) are known as interval type-2 fuzzy sets.
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Thus a general type-2 fuzzy set Ã can be defined at the

universe X as

Ã =

∫

x∈X

∫

u∈Jx

µÃ(x, u)/(x, u), (1)

where Jx ⊆ [0, 1] is the set of primary membership grades

of x ∈ X , with u ∈ Jx, ∀x ∈ X , and µÃ(x, u) is the type-2
membership function [16].

According to [5], for a particular x′ ∈ X , Equation (1)

becomes

µÃ(x = x′, u) ≡ µÃ(x′) =

∫

u∈Jx′

fx′(u)/u (2)

where µÃ(x′) is called the vertical slice of µÃ(x, u) when
x = x′ [5], Jx′ ⊆ [0, 1] is the set of primary membership

grades of x′ and fx′(u), 0 ≤ fx′(u) ≤ 1, is a function

f of the primary membership grade u, that identifies the

secondary membership grades of x′ in Ã.

In General Type-2 Fuzzy Sets (GT2 FS), the primary

memberships whose secondary grades are equal to one are

called principal memberships. There is a particular, but im-

portant, case that, for each xi, there exists only one prin-

cipal membership, which is called Principal Membership

Function (PMF) [6, 14]. PMF is thus given by Equation (3).

µÃprinc
= µA =

{

u ∀x | fx(u) = 1
0 otherwise

(3)

For an example of a general type-2 fuzzy set consider

Figure 1 which was drawn with the aid of the General Foot-

print of Uncertainty (GEFOU), where the intensity of shad-

ing is proportional to secondary membership grades [8].

Figure 1(a) shows the GEFOU of a general type-2 fuzzy set

Ã, whose Gaussian PMF is represented by the thin white

line and Figure 1(b) shows a vertical slice of Ã at x = x′.

Figure 1. a) A General type-2 Fuzzy Set; b) Its

corresponding vertical slice at x = x′.

3 The Proposed Classifier

In this paper we consider a General Type-2 Fuzzy Clas-

sifier (GT2 FC) whose typical structure [7, 10] is illustrated

in Figure 2.

In this work, the GT2 FC has p input variables x1 ∈ X1,

x2 ∈ X2, · · · , xp ∈ Xp, and one output y ∈ Y .

Input

(e.g. pixel)
Fuzzifier

type-2

singleton

Inference

Rule Base

Inference Engine

Type-Reducer

vertical slices
type-1

singletons

(height≤1)

Decision Maker

Classes
(e.g. Soybeans,

Corn, Alfalfa)

Figure 2. Type-2 fuzzy classifier’s inference
mechanism.

Suppose that the classifier’s rule base is composed of L
rules, whose lth rule is given by Equation (4).

Rl : IF x1 is F̃ l
1 op · · · op xp is F̃ l

p, THEN y is G̃l; (4)

where the T2 FS F̃ l
1, F̃ l

2 · · · F̃ l
p are the rule’s antecedents

(type-2 fuzzy sets) and G̃l is the rule’s consequent (a type-2

singleton [10]). The term op means the antecedent’s aggre-

gation operator (e.g., AND, OR).

Each antecedent F̃ l
i can be built based on its Principal

Membership Function (PMF). Admit a F̃ l
i with a Gaussian

PMF given by PMF = e
−(x−aG)2

2·σ2
G , where aG is the global

average of input values x considering all training samples

of a given class taken together, as a big sample, and σG is

the global standard deviation of these data around aG.

Figure 3 shows the construction of a type-2 antecedent

from five training samples (five experts). In Figure 3(a), it

is shown the resulting PMF (all the inputs of all the samples

for a given class are taken together).

PMF

aG

u

x00

1

255
(a) PMF obtained from all the

samples of a class taken to-

gether, as a unique big sample.

u

x0 0

1

255

u1(x)

u2(x)
u3(x)
u4(x)
u5(x)

(b) Gaussian functions which

describe each sample (expert).

u

x00

1

255

PMF

(c) Comparison between PMF,

dashed line, and each sample,

full line.

~
F

u

x0 0

1

255

PMF

(d) Final type-2 fuzzy set.

Figure 3. Construction of a type-2 fuzzy set
from training samples.

To obtain the type-2’s secondary grades we suggest to

take into account possible differences between the sam-

ples of the same class (where each sample may represent
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a specific expert). Thus, trying to capture such differ-

ences, we propose that the training samples are taken in-

dividually and from each of them we can build a type-1

fuzzy set (a Gaussian type for example). So, the Gaussian

uj(x) = e

−(x−aj)2

2·σ2
j , j = 1 · · · J , may represent the jth sam-

ple of a given class , where J is the number of training sam-

ples, aj is the average and σj is the standard deviation of

sample j. Figure 3 (b) shows the Gaussian functions, one

for each sample.

Thereafter we build the vertical slices µF̃ (xk) at each

coordinate xk, taking into account the dispersion σ(xk),
which exists between the samples uj(x) at xk, i.e.,

µF̃ (xk) = e
−(u(xk)−P MF (xk))2

2·σ2(xk) , where PMF (xk) is the

value of the PMF in x = xk and u(xk) being the pri-

mary membership grades of the vertical slice µF̃ (xk) also
at x = xk. The total dispersion of the training data, σ(xk),
can be calculated by the standard deviation of the Gaussian

uj(xk) at coordinate xk.

In Figure 3 (c), we can see a comparison between the

PMF, in dashed line, against the Gaussians, in full lines,

and, in (d), the resulting type-2 set. We can see that, when

we approximate to the universe limits (x = 0 and x = 255)
secondary grades tend to be defined solely by the PMF. This

is because the dispersion among Gaussian functions uj(x)
is null in these points.

3.1 Matching

At the inference process performed by the proposed clas-

sifier, the first step comprises the matching between the ith

fact (F̃i representing the fuzzification applied over the ith

input) and the ith antecedent that appears at lth rule (F̃ l
i rep-

resenting the knowledge of the ith source of information at

lth rule). Amatching is a sort of similarity measure between

two fuzzy sets (type-2 sets in our case) and it is calculated

between an input and its corresponding antecedent.

According to [8] the matching M̃ l
i between the input

F̃i (the fact) and the antecedent F̃ l
i (the premise) can be

calculated by the generalized sup-t operation [7], M̃ l
i =

sup
[

F̃i ∩ F̃ l
i

]

, which by itself is comprised of two opera-

tions: the intersection between an input and its correspond-

ing antecedent (Ĩ l
i = F̃i ∩ F̃ l

i ) and the supremum of the

resulting type-2 fuzzy set
(

sup
[

Ĩ l
i

])

. Both operations are

explained in the following.

As described in [8], the intersection Ĩ l
i = F̃i ∩ F̃ l

i be-

tween the input F̃i and its corresponding antecedent F̃
l
i can

be obtained by Equation (5) as

F̃i ∩ F̃ l
i =

∫

x∈X

∫

u

∫

w

fx(u) ∧ gx(w)/u ∧ w/x (5)

where u, w ∈ Jx ⊆ [0, 1] are the primary membership

grades of F̃i and F̃ l
i , and fx(u) and gx(w) are the secondary

membership grades of F̃i and F̃ l
i , respectively, ∧ is a t-norm

and ∨ is a t-conorm. In this paper we adopted min as t-norm

and max as t-conorm.

According to [8] the supremum M̃ l
i of type-2 fuzzy set

Ĩ l
i , that is defined at x = x′, can be calculated by

M̃ l
i = sup

[

Ĩ l
i

]

=

[

⊔

x∈X

µĨl
i
(x)

]

/x′ =

= trs x=x′

[

µĨl
i
(x1)

]

⊔ · · · ⊔ trs x=x′

[

µĨl
i
(xN )

]

(6)

where µĨl
i
(x1) · · ·µĨl

i
(xN ) are the vertical slices of type-

2 fuzzy set Ĩ l
i , trs x=x′

[

µĨl
i
(xj)

]

is the translation of the

vertical slice µĨl
i
(xj), defined at x = xj , into the new posi-

tion x = x′ and ⊔ is the join operator [15].

Figure 4 shows an example of matching M̃ l
i (enlarged in

Figure 4c to improve visualization) from the intersection Ĩ
(depicted in Figure 4b) of a Gaussian fuzzy input F̃i and its

corresponding antecedent F̃ l
i (both depicted in Figure 4a).

a) b) c)

F̃ l
i

F̃i

Ĩ

M̃ l
i

Figure 4. An example of matching M̃ l
i (in c)

obtained from the intersection Ĩ (in b) calcu-
lated from input F̃i and antecedent F̃ l

i (in a).

3.2 Antecedent’s aggregation: AND,OR

After the matching, the next step is the antecedents ag-

gregation. It is possible to aggregate antecedents by the

AND and OR operators in Equation (4). When aggregat-

ing antecedents by AND, the process is very restrictive, and

in this case, if only one source of information disagrees (re-

sulting in a null matching) the rule becomes inactive.

Being less restrictive, it is possible to aggregate an-

tecedents by the OR operator, which does not produce a

zero rule’s output when a null matching appears in it. This

is because it requires only one not-null matching to produce

a non-zero rule (the OR operator implemented by max con-

siders the highest matching when inferring the rule’s out-

put). The disadvantage of OR operator is that it takes solely

one source of information into account (the one with the

highest matching) so OR rule-based systems are often less

accurate than the ones produced by AND operator (where

all sources of information are taken into account).
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To deal with restrictive versus permissive characteristics

of AND andOR operators, two different rule bases are being

proposed and will be detailed in the next section.

3.3 Specific versus General Rule Bases

Specific fuzzy rules assume all their antecedents to be

useful. Thus they take all their corresponding inputs into

account when performing the inference process. In data-

driven fuzzy modeling it is important to deal with feature

selection, so some fuzzy inference systems employ general

fuzzy rules [2].

In such systems, it is possible to include “don’t care”

conditions in the rule’s antecedents i.e., not all inputs are

relevant to the rule’s output inferring process.

In this paper, we are presenting two versions of general

type-2 fuzzy classifier: “Specific Rule Base fuzzy classifier

with AND, followed by OR, antecedent’s aggregation oper-

ator (SRB-AND/OR)” and “General Rule Base fuzzy clas-

sifier with AND rule aggregation operator (GRB-AND)”.

The first type of classifier (the one that uses the specific

rule base) always uses all the available sources of informa-

tion (antecedents), firstly by using the AND aggregation op-

erator and, if all the rules are inactive, the input is reclassi-

fied considering the OR operator in the antecedent aggre-

gation. The assumption here is that, in absence of input

outliers, the classification taking P sources of information

(SI) into account is more confident than the one taking P−k
SI, k = 1 · · ·P − 1: the more SI taking part in the decision,

the more accurate the classification is expected to be. The

proposed classifier performs at most two cycles of classifi-

cation for each input pattern:: the first one with AND and

the second one, if necessary (because the first one was not

successful), with OR.

The second version of the classifier (the one that uses

the general rule base) assumes that not all the conditions

must be considered to infer the output (a kind of feature

selection). Besides resulting in more compact rule bases

the exclusion of some linguistic terms can produce shorter

fuzzy rules, improving the model interpretability. GRB-

AND performs at most P cycles of classifications for each

input, where P is the number of sources of information. All

these classifications are performed by means of AND oper-

ator. The first one is tried with all antecedents but if no rule

is activated because of null matching, one antecedent from

each rule (the one that caused the null matching) is taken off

and the input is reclassified with P − 1 sources of informa-

tion. The process proceeds till the input can be classified,

even by only one source of information. If classification

cannot be done, after P trials, the label NC (non classified)

is assigned to the input.

The pseudocode summarizes the steps performed by

GRB-AND system

Hierarchical Reclassification (SRB-AND)

for input i to total_size

n.antecedents← total of SI

evaluate input i by type-2 inference

while (no activation and n.antecedents>1)

n.antecedents← n.antecedents-1

evaluate input i by type-2 inference

end while

if (no activation or conflicting classes)

error

else

input classified (correctly or not)

end if

end for

Pseudocode 1

Although both approaches (SBR-AND/OR and GRB-

AND) have been proposed to deal with null matching, they

can still appear resulting in non-classified inputs, as will be

discussed in the next section.

3.4 Measure of Model accuracy

There are two situations where classification is not possi-

ble (NC— non-classified input): 1) excess of null matching

(Ĩ = F̃i∩F̃ l
i = φ, l = 1, · · · , L); 2) confusion, where more

than one rule are activated with different class label and the

same output level i.e., the input resembles 2 or more classes

(“mixed input”). Null matchings are quite normal in a fuzzy

system but when they occur all over the rule base (no rule

is activated) after all the cycles of classification, they can be

considered an error of classification caused by gaps in the

input universes. Confusion may also occur, but in this paper

it will be considered as an error.

The measure of model accuracy considers these two

types of errors (caused by non-classified pixels) and is given

by the expression Prec =
∑N

k=1 CC(k)/N , where Prec
is the precision level, CC(k) is one if the kth input pattern

is correctly classified and zero otherwise, and N is the total

of testing patterns considered at each cycle of classification.

4 Case Study

For the case study we consider the problem of land cover

classification. In this particular subject, the sources of infor-

mation are spectral bands. Classes become thematic ones

and inputs are pixels (singleton fuzzification) or group of

pixels (fuzzy set fuzzification).

The problem of “mixed input” becomes a “mixed pixel”

one: depending on the remote sensing platform we are get-

ting information from (e.g., Landsat), one pixel could be

related to big areas at ground level (e.g., 30×30m) so it is

quite common that a pixel corresponds to mixed agricultural
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crops (more than one thematic class in one pixel). More-

over, crops at different geographical locations can be at dif-

ferent growth stages meaning that they can appear some-

what different when observed from the space.

The data set is comprised of twelve sources of informa-

tion (spectral bands) with resolution of 220×949 pixels and

was gathered by an airborne scanner which flew the south-

ern part of Tippecanoe County, Indiana, United States, in

June 1966 [11]. Each spectral sensor responds in a different

wavelength such that we possess data ranging from 400nm

to 1000nm organised in the following way: band 1 (B1)

works from 400nm to 440nm, B2 440 - 460 nm, B3 460 -

480 nm, B4 480 - 500 nm, B5 500 - 520 nm, B6 520 - 550

nm, B7 550 - 580 nm, B8 580 - 620 nm, B9 620 - 660 nm,

B10 660 - 720 nm, B11 720 - 800 nm and B12 800 - 1000

nm.

Figure 5 presents the ground truth for the considered re-

gion where we can see that white areas are those cultivated

with corn, in light gray we have soybeans, in dark gray

wheat and in black, we have the image background [11].

corn

soybeans wheatbackground

Figure 5. Ground truth for the data set.

We will employ all the sources of information to test the

two proposed classifiers (GRB-AND and SRB-AND/OR)

and the resulting accuracies will be compared against type-

1 and ML classifiers.

4.1 Evaluation criterion

We performed a cross validation similar to that suggested

by [3], employing all the available sources of information

(i.e., 12 spectral bands). In this way, seven squared evalu-

ating samples with 81 pixels (9×9) were randomly chosen

resulting in 567 (7×81) pixels. At each turn 6 samples (486

pixels) are used to train the classifier (i. e. to construct the

antecedents F̃ l
i ) and one sample (81 pixels) is used to test

the classifier.

In the proposed method, when building the rule base,

each antecedent F̃ l
i is obtained from band i, i = 1 · · ·P ,

in such a way that the number of antecedents (variables) is

equal to the number of considered sources of information

(12 in our case).

In the land cover classification context addressed here,

the design phase considers the sources of information and

selects 6 samples (out of the 7 randomly chosen) as training

ones to build the type-2 fuzzy set (T2 FS) that best repre-

sents each class at each spectral band.

Figure 6 shows the evaluating samples we will employ:

those labeled C0 · · ·C6 are for corn, S0 · · ·S6 for soybeans

and W0 · · ·W6 for wheat.

C0 C1 C2

C3 C4

C5C6

W0W1

W2

W3 W4W5 W6

S0

S1 S2

S3

S4

S5S6

Figure 6. Evaluation samples.

Because we work with 3 classes and 7 samples per class,

it would be necessary 7×7×7=343 times so that all eval-

uation samples, from all classes, have the opportunity to

become testing samples. The accuracy of all turns are av-

eraged. The same will be done for each of the 4 classifiers:

GRB-AND, SRB-AND/OR, ML and T1.

5 Results and Discussion

The experiment suggested at section 4.1 was performed

and the results (measured by means of a seven-fold cross-

validation) are presented at Table 1. It is possible to rank

the classifiers from the best to the worst: GRB-AND, SRB-

AND/OR, T1 and ML.

Table 1. Classifiers’ accuracies after the

cross-validation.

ML T1
SRB-

AND/OR
GRB-AND

Avg. acc. 0.8120 0.8398 0.8715 0.8747

Std Dev 0.1287 0.1247 0.1257 0.1264

Min 0.4400 0.5000 0.5226 0.5200

Max 0.9100 1.0000 1.0000 1.0000

It can be seen that, on average, the best classifier (the

type-2 GRB-AND) correctly classified 87,47% of the ap-

plied inputs and that the worst classifier (ML) correctly clas-

sified 81,20% of the inputs.

Kruskal/Wallis and Anova tests were performed over the

classifiers’ accuracies obtained at the 343 testing turns (sec-

tion 4.1) to evaluate if differences presented in Table 1 are

statistically significant. We employed all the sources of in-

formation. We could see that the type-2 fuzzy classifiers are

statistically better than the ordinary fuzzy classifier and the

ML one, but there is not statistical difference between spe-

cific (SRB-AND/OR) and general rule bases (GRB-AND).

In spite of building data-driven fuzzy classifiers, we were

successful on keeping the number of rules small (only 3

rules). Large rule bases contribute to producing incompre-

hensible fuzzy reasoning so we tried, as much as possible,
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to keep the number of rules small. The total number of rules

(L) that encompass the rule base is equal to the number of

classes i.e., there is one rule for each class, and this is inde-

pendent of the number of sources of information. This was

possible due to the hierarchical classification that tries to

resolve universe’s uncovered regions by reclassifying such

regions (inputs) as described in section 3.3. It should be

pointed out that in some particular situations (e.g. XOR

classification problem), it will be necessary more than one

rule per class.

It is not enough to have a small rule base if the rules

themselves are messy. So we work out rules that are both

simple and comprehensible. To achieve these goals we de-

signed the classifier in such a way that there were as many

antecedents as the number of available sources of informa-

tion and that there is only one consequent per rule i.e., a

type-2 singleton [10] representing the desired label. Also,

rules can be read in an intelligible straightforward manner.

An example of individual rule produced by the classifier

GRB-AND is: “If source of information 1 (SI1) says class 1

and source of information 4 (SI4) says class 1 then pixel will

be classified as class1”. As can be noticed, this short (the

remaining SI have been considered don’t care) and simple

rule could be easily interpretable by human beings.

6 Conclusions and future work

We could show that, for the employed data set, both ver-

sions of type-2 classifiers (GRB-AND and SRB-AND/OR)

were better than the type-1 counterpart and the ML statisti-

cal classifier.

In this paper we could also show that non-classified in-

puts could be reclassified hierarchically and that it was pos-

sible to build classifiers with few rules, producing a com-

prehensible system where the number of rules is small and

the rules themselves are simple and straightforward.

In the future we intend to compare our general type-2

classifiers against an interval type-2 one. We should inves-

tigate the hypothesis that the simplification of the type-2 set

(general → interval) gives rise to accuracy decrease.
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