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Abstract—Segmentation of very high resolution remote-
sensing images cannot rely only on spectral information, quite
limited here for technological reasons, but must take into
account also the rich textural information available. To this
end, we proposed recently the Texture Fragmentation and
Reconstruction (TFR) algorithm, based on a split-and-merge
paradigm, which provides a sequence of nested segmentation
maps, at various scales of observation.

Early experiments on several high-resolution test images
confirm the potential of TFR, but there is room for further
improvements under various points of view. In this paper we
describe the TFR algorithm and, starting from the analysis of
some critical results propose two new version that address and
solve some of its weak points.

I. INTRODUCTION

High resolution remote sensing images exhibit a consider-
able amount of textural information at various scales, from
“micro” textures (roofs, road surfaces, basic land covers,
etc.) to more complex “macro” structures (e.g. urban areas),
which must be taken into account to address effectively
the problem of image segmentation. While a good deal of
work exists on micro-textures, e.g. [1], [2], less attention
has been devoted to large-scale textures, also because of
their more elusive properties which make them difficult to
characterize and single out. To overcome this limitation, we
have recently proposed the Hierarchical Multiple Markov
Chain (H-MMC) model [3], [4], which proved especially
effective in describing large-scale textures, and is the basis
for a fully unsupervised segmentation algorithm, called
Texture Fragmentation and Reconstruction (TFR), which has
been successfully used, among other applications, for the
segmentation of multiresolution Ikonos images [5].

The TFR follows the split-and-merge paradigm as shown
in Fig. 1(a). In a first fragmentation phase, clusters of
elementary regions that share the same spectral, geometrical,
and contextual properties are detected. Such clusters are then
regarded as states of a set of Markov chains, and charac-
terized in terms of their empirical transition probabilities.
Based on such probabilities, the elementary states are then
pairwise merged during the recostruction phase, giving rise
to a hierarchy of nested segmentation maps at different
scales of observation, S2, . . . , SN .

TFR has many desirable properties. To begin with, it has a
moderate computational burden, since all processing steps,
but for the first clustering, operate on regions rather than

pixels. Then, it provides a rich multiscale description of
the image, particularly useful in the presence of multiple
heterogeneous land cover types. More peculiar, it allows for
the identification of macrotextures that span large areas of
the images and cannot be easily characterized by synthetic
features. Indeed, at the higher scales of observations, when
just a few regions survive the merging process, TFR is
typically able to tell apart the major semantic areas of the
image based on their structural properties, with little or no
attention to the spectral signature of individual pixels. A
good example is provided by Fig.2 where the 2-class top
segmentation divides clearly the image in vegetation and
urban area, and the latter class correctly includes a large
number of vegetation spots embedded in residential blocks
despite their spectral features.

Besides such evident successes, however, there have also
been more puzzling results in the experiments, which shed
some light on the weak points of the algorithm and motivate
the ongoing research. A good “bad” example will be shown
in the experimental results where both the 3-class and 4-
class segmentations fail (in different ways) to tell apart
the major semantic areas of the image (but for the sea).
We will follow that example through the rest of the paper,
analyzing the problem genesis and proposing and testing two
developments of the original TFR algorithm that address
it. Next Section provides some basic concepts about TFR
and the underlying H-MMC image model. Section 3 focuses
on the problem of background regions, which leads to the
cited TFR failures. Then Section 4 describes an additional
step of the algorithm, based on geometrical properties, that
tackles this problem while Section 5 proposes in alternative
a recursive version of the TFR. Section 6 finally discusses
experimental results.

II. THE TFR ALGORITHM

In this Section we will provide a very high-level de-
scription of the texture fragmentation and reconstruction
algorithm in order to convey just the main ideas and help
understanding both its potential and limitations. The interest
reader is referred to [4] for more detail and experimental
results.

The algorithm, whose flow chart, is depicted in Fig.1(a),
comprises three steps: color-based classification (CBC),
spatial-based clustering (SBC), and texture merging.
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Figure 1. Flow charts: TFR (a), its binary restriction, B-TFR (c), the proposed geometric processing layer (b) and the proposed
recursive TFR, R-TFR (d).

(a) (b)

Figure 2. Binary segmentation through TFR: image of San
Diego (a), and the urban segment (b). Black areas on (b)
correspond to vegetation.

The first step carries out a segmentation of the image
pixels based on their “color”, that is, their spectral properties
or, more in general, some extended feature vectors associated
with them. All pixels with the same color form a class,
where, for highly textured images, the class is typically
spread over the whole image giving origin to a large number
of color-homogeneous connected fragments. In Fig.3(a), for
example, drawn from the Prague texture database [6], a “red”
class is clearly present, which gives origin to quite a few
isolated fragments, see Fig.3(b). Any reasonable pixel-based
segmentation technique can be used to carry out this first
step, from plain K-means to more sophisticated bayesian
algorithms.

Looking at our example image, we would like to tell
apart six spatial regions, each characterized by a different
texture. Color properties cannot help much, as the same
colors appear again and again in several textures, so we
must definitely resort to spatial properties. Indeed, from
Fig.3(b) it is clear that all red fragments of a given texture
share similar features in terms of size, shape, and contextual

(a) (b) (c) (d)

Figure 3. TFR evolution: A texture mosaic (a), a color state
singled out by CBC (b), a texture state (c) provided by SBC
applied to color state (b), and the final 6-class segmentation
map (d) drawn from the final hierarchical segmentation.

properties, that is, relations with neighboring fragments of
different colors. Therefore, if we are able to associate a
suitable feature vector with each fragment we should find
out that vectors related to fragments of the same texture
form a well-defined cluster in the feature space. This is
exactly what is done in step two of the TFR algorithm.
Each fragment is characterized by a set of probabilities
pj(ω′|ω) giving the likelihood of finding a pixel of color
ω′ when leaving a pixel of the fragment (of color ω) along
the direction j. The red fragments of the upper-left texture
of Fig.3(a), for example, will be characterized by a large
probability of finding a blue pixel when moving right and a
black pixel when moving left. Based on such feature vectors,
the spatial based clustering step is able to collect together
quite reliably fragments belonging to the same texture, as
shown in Fig.3(c).

The final step has the goal of recovering complete textures
by merging together groups of fragments (also called regions
or “states” in TFR) that have a tight spatial relationship,
like the red, blue and black patches of the upper-left texture
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mentioned before. To this end, each state is characterized
by a “texture score”, related to its size, compactness, and
distribution of neighbors, which indicate whether it is a
complete texture (high score), with no need of further
refinements, or else just a texture component (low score),
in which case it is merged with the dominant neighboring
state in order to form a more complete texture. During
this merging process, a hierarchy of segmentation maps,
SN , . . . , S2, is formed, starting from elementary texture
states (fragments collections) to end up, in the final stages,
with well recognizable textures. In this process the coarsest
segmentation is the binary partition S2. An example is
shown in Fig.3(d), where the six regions are quite reliably
segmented.

III. THE PROBLEM OF BACKGROUND REGIONS

Going back to the problem of segmenting the test image
of Fig.4(a), and identify its major semantic areas, a desirable
output would be a 3-4 class map which separates sea, hills,
and man-made area, the latter possibly further divided in
residential area and harbor.

To reach this goal, all atomic fragments must be first
identified in the preliminary color-based classification. Al-
though conceptually less interesting than other steps, the
initial fragmentation phase is crucial for obtaining the de-
sired results. A good example is provided by the 4-class
color-based classification of Fig.4(b) where a “background”
region1 appears. In fact, while the gray class, for example,
gives rise to a large number of small connected fragments,
the light green class originates some small fragments but
also a very large one, which spans the whole image and goes
across different semantic areas. Subsequent TFR phases treat
this fragment as an atomic (literally, unsplittable) element,
and are therefore incapable of telling apart distinct semantic
areas that comprise parts of such a fragment, which explains
the genesis of the wrong 3-class and 4-class segmentation
maps shown before.

The large background region acts as a collector for
smaller fragments, and therefore the residential area is either
included in a single class together with the hills, in the 3-
class map, or recognized as distinct, in the 4-class map, but
without all the green patches (gardens, trees, etc.) associated
with the hills, both clear failures of the algorithm.

To solve this problem, one can use more classes in the
initial fragmentation step, but this might also lead to an
excessive fragmentation of the image, unreliable estimated
features, and finally an even worse segmentation. In Section
5 we will actually follow this path, but with a suitable
modification of the processing flow that guarantees a stable
functioning.

1The term “background” is used here for continuous regions of large
extension. This is motivated by the fact that very often these regions actually
correspond to backgrounds.

In any case, a finer fragmentation does not really solve the
background region problem, but reduces only its frequency.
Therefore, a further fragmentation step, based on geometri-
cal properties, is required to solve it at its root.

IV. A GEOMETRIC LEVEL FOR TFR

We improve upon the original TFR algorithm by intro-
ducing a new module in the fragmentation phase which
relies mainly on the geometrical properties of the fragments
provided by CBC. In particular, the CBC block provides
both the color class map M and the corresponding fragment
label map F . The aim is to decompose each background
region f ∈ F based on its local structural properties,
which change when going from one textured environment
to another, thus obtaining a refined fragment map F ′. The
main tasks performed by the new geometric level processing
block are identified in Fig. 1(b) and detailed in the following.

A. Background region detection and decomposition

Candidate background regions are first selected based on
their size w.r.t. to the whole image, making sure to discard
only very small fragments.

For each candidate fragment f ∈ F the following steps
are then carried out:

1) a distance image Df is built, where each pixel has
a value proportional to the distance from the closest
contour; Fig.4(c) shows the distance image for our
example critical fragment;

2) the image Df is segmented based on a Watershed
transform [7], obtaining a number of nearly convex
sub-fragments; Fig.4(d) shows such decomposition
again for our example;

3) if a sufficiently large number of sub-fragments is
generated f is considered critical and marked as
background for further processing, otherwise, its de-
composition is ignored.

Even a quick analysis of Fig.4(d) makes clear that the
sub-fragments can be clustered in regions of similar charac-
teristics, on the basis of their spatial location, size, density,
connectivity, etc. However, many of such features are not
easily quantified in the spatial domain, which is why we
resort to a graph-based description in next step.

B. Building a region adjacency graph

In this phase a Region Adjacency Graph (RAG) [8]
is associated with the decomposition of each background
region, where each sub-fragments is represented by a vertex,
and neighboring sub-fragments are connected by a link. Each
RAG is subject to two refinement steps:

1) the denoising step aims at simplifying the RAG
structure by removing single-link nodes corresponding
to very small marginal sub-fragments due to small
contour variations;
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2) a further simplification of the RAG is obtained by
recovering linear structures which are sometimes de-
composed in many small sub-fragments in the Wa-
tershed transform because of noisy contours; indeed,
such structures are easily recognized in the RAG since
they correspond to long chains of nodes having only
two neighbours but for the first and last ones.

This refinements is extremely useful both because it allows
to recover linear image elements and because it drastically
reduces the RAG cardinality improving the subsequent RAG
characterization and navigation, with a positive impact on
the final accuracy and complexity.

Fig.4(e) shows the final RAG for our running example.
A few subgraphs corresponding to geometrically coherent
areas have been highlighted, such as the shoreline (green),
the terraced vegetation in the upper-right corner (orange) and
a part of the forest in the lower part of the image (brown).

C. RAG-based featuring and clustering

The final task is to cluster the sub-fragments of a
background region on the basis of their features so as to
finally segment the original region in a small number of
geometrically-coherent single-texture parts.

A set of features is associated with each node of the RAG,
and then a conventional clustering technique, the Mean-Shift
algorithm [9] in our current implementation, is used in such a
feature space so as to obtain the desired RAG decomposition
which corresponds to a background region partition.

Let S be a sub-fragment of the background region f ∈ F ,
N the corresponding RAG node, and RN the local RAG
(L-RAG) centered on N , that is, the subgraph of the whole
RAG formed by all nodes which can be reached from N in
no more than L steps (two, in our experiments). For each
node N , we compute the following features:
• node position: barycentre of S, this helps obtaining a

spatially compact partition;
• node weight: size of S;
• node moment: pixel-wise inertial moment of S;
• local node density: number of nodes within a given

distance from N ;
• local link density: number of links in RN ;
• L-RAG moment: discrete-mass inertial moment of

RN , with node weights as defined above;
• L-RAG orientation: discrete-mass average orientation

of RN , with reference to central node N .
The automatic clustering of the RAG nodes using the

above features is shown in Fig.4(f) for our running ex-
ample, obviously coherent with the homogeneous regions
highlighted in Fig.4(e).

V. RECURSIVE TFR

The problem of background regions can sometimes be
solved simply by increasing the number of color classes

in the initial fragmentation. This way, in fact, large quasi-
homogeneous regions can be split from the beginning in
smaller fragments based on minor variations in their local
spectral characteristics. More in general, in order not to
miss any relevant detail, it is necessary to carry out a
very fine initial segmentation in the color-based step, that
is, with quite a large number of colors. Likewise, in the
spatial-based clustering, for the same reasons as above, each
color class must be segmented using a large number of
clusters in the feature space. Needless to say, increasing
the number of clusters in each of these phases leads very
easily to estimation problems, due to lack of sufficient
data for statistical characterization, and inconsistencies. Such
problems lead to the formation of many states that do not
correspond to semantically homogeneous areas, and hence
to inaccurate segmentation maps at the finer scales.

Our experiments, though, showed quite clearly that, de-
spite such problems, the high-level textures recovered to-
wards the end of the merging process do catch important
semantic areas of the image. Therefore, we decided to
improve upon the original TFR by developing a recursive
version.

The modification is straightforward. TFR is run on the
whole image, carrying out the merging process until only
two textures remain. By keeping just the binary segmenta-
tion S2 and discarding the rest of the segmentation stack
S3, . . . , SN , we have the binary TFR (B-TFR) as shown in
Fig.1(c). Each of these two textures is then regarded as a new
image (defined on an irregular domain) and possibly subject
again to a binary TFR segmentation, and this process goes
on, as shown in Fig.1(d), until a suitable stopping criterion
is met, which in our initial implementation is again related
to the texture score.

Recursive TFR offers two obvious advantages. First, be-
cause we are interested only in binary high-level segmen-
tation, there is no need to know in advance how many
colors and textures are present in the image, and the number
of clusters in each phase can be significantly reduced,
thus avoiding all the problems cited above, and potentially
reducing computational complexity. Second, if the binary
segmentation succeeds in isolating areas of very different
characteristics, subsequent steps might well build upon this,
by adapting the algorithm parameters to the local statistics
or, more interesting, by resorting to “ad hoc” techniques,
that take into account explicitly the nature of the texture
under analysis. For example, if the first step isolates rural
and urban areas, then quite different techniques can be used
for such different areas, possibly using prior models, e.g.
[10], tailored to each of these general classes to guide the
process.

VI. EXPERIMENTAL RESULTS

We have followed the processing of our test image,
acquired by an airborne sensor portraying the bay of Maiori,
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Italy, with a spatial resolution of around 1 m and overall
size of 750×500 pixels, through all intermediate processing
steps.

The introduction of the geometry-based new fragmenta-
tion step has led to the partition of the critical background re-
gion in a small number of geometrically homogeneous sub-
regions which can be easily absorbed in local, semantically
relevant, textures. The final segmentation maps, shown in
Fig.4(h)/(k), speak clearly in favor of the new step. In the
3-class map, sea, hills and man-made areas are very well
identified, and adding a new class allows one to tell apart
the harbor from the residential area.

Quite interestingly, also the recursive version of TFR
provides much improved results. as shown by the final
maps, shown in Fig.4(i)/(l). Dry land and sea are easily
separated in the first split, then the algorithm focuses on the
first region and tells apart quite accurately urban area and
hills. The third split concerns again the urban area, however
the two newly generated classes have a less compelling
interpretation than the two urban classes of Fig.4(k), one
of them being associated more with the road network (and
shadows), and the other more with individual buildings.
Beyond any considerations on accuracy, it is interesting to
observe how the two versions of the algorithm, after the
obvious initial splits, led to two readings of the scene quite
different but equally meaningful.

The encouraging results obtained with both the proposed
changes suggest us to merge them together in the near future
in order to take benefits from both solutions. This way we
expect to be able to relax further the role of the color-
based classication layer, as to speed up the overall processing
without loss of accuracy.
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[6] M. Haindl and S. Mikeš, “Prague texture segmentation data
generator and benchmark,” ERCIM News, vol. 64, pp. 67–68,
2006,
http://mosaic.utia.cas.cz.

[7] L. Vincent and P. Soille, “Watersheds in digital spaces: an
efficient algorithm based on immersion simulation,” IEEE
Transaction on Pattern Analysis and Machine Intelligence,
vol. 13, no. 6, pp. 583–599, June 1991.

[8] B. Fischer, C. J. Thies, M. O. Guld, and T. M. Lehmann,
“Content-based image retrieval by matching hierarchical at-
tributed region adjacency graphs,” in In Proceedings of SPIE,
San Diego, CA (USA), 2004, vol. 5370, p. 598606.

[9] D. Comaniciu and P. Meer, “Mean Shift: a robust approach
toward feature space analysis,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603–
619, May 2002.

[10] P. Gamba, F. Dell’Acqua, G. Lisini, and G. Trianni, “Im-
proved VHR urban area mapping exploiting object bound-
aries,” IEEE Transaction on Geoscience and Remote Sensing,
vol. 45, no. 8, pp. 2676–2682, August 2007.

582



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Segmentation results: test image (a); 4-class color-based segmentation (b); distance image Df for a selected
background region f (c); watershed decomposition of region f (d); RAG over f after simplification (e); final intra-
textural components (f); 3-/4-class segmentations by TFR (g)/(j), TFR with geometric level (h)/(k), and recursive TFR
(i)/(l), respectively.
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