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Abstract—Change-detection represents a powerful tool for
monitoring the evolution of the Earth’s surface by multitem-
poral remote-sensing imagery. Here, a multiscale approach is
proposed, in which observations at coarser and finer scales
are jointly exploited, and a multiscale contextual unsuper-
vised change-detection method is developed for optical images.
Discrete wavelet transforms are applied to extract multiscale
features that discriminate changed and unchanged areas and
Markovian data fusion is used to integrate both these fea-
tures and the spatial contextual information in the change-
detection process. Unsupervised statistical learning methods
(expectation-maximization and Besag’s algorithms) are used
to estimate the model parameters. Experiments on burnt-
forest area detection in multitemporal Landsat TM images are
presented.

Keywords-Multiscale change detection, unsupervised change
detection, discrete wavelet transforms, Markov random fields,
expectation-maximization, Besag’s algorithm.

I. INTRODUCTION

Multitemporal remote sensing represents a powerful
source of information in applications such as environmental
monitoring or environmental disaster management. A key
problem in such applications is the identification of the
changes that occurred in a given area between two obser-
vation dates [1]. When adopting an unsupervised approach,
i.e., when assuming no training data to be available at any
acquisition date, image differencing and image ratioing are
usually applied to address this task with optical and synthetic
aperture radar (SAR) images, respectively [1]. Manual [1]
or automatic (e.g., Bayesian) [2]–[4] thresholding algorithms
can then be used to distinguish changed and unchanged areas
in the difference and ratio images. In order to improve the
accuracy of the change maps, a multiscale approach can be
adopted, in which transformed images at different scales are
exploited [5], [6]. Data at finer scales are likely to highlight
many geometrical details, but also to be more affected by
noise; coarser-scale transforms exhibit less precise details,
but a stronger immunity to noise. A multiscale approach,
exploiting coarser scales to globally identify changed areas
and finer scales to improve the detection of details, may
represent an effective strategy. Multiscale change-detection
methods for remote-sensing images have been proposed

in [7], [6], and [5] by using stationary wavelet transforms,
information-theoretic change measures, and object-oriented
analysis, respectively.

In the present paper, a multiscale contextual unsupervised
change-detection method is proposed for optical images,
based on discrete wavelet transforms (DWTs) [8] and
Markov random fields (MRFs) [9]. DWTs are applied to the
difference image to extract multiscale features. They provide
two-dimensional multiresolution signal decompositions that
allow the input (difference) image to be expanded as the
superposition of several components, each highlighting the
image content at a given scale [8]. MRFs jointly permit spa-
tial context to be introduced into pixel labeling problems and
different information sources to be fused by suitably defining
“energy functions” [10]. Here, an MRF-based approach is
proposed by modifying the method introduced in [11] for
multiresolution image classification and by combining it
with DWTs and image-differencing. The related MRF model
is characterized by several internal parameters that are esti-
mated by an unsupervised statistical learning strategy based
on the expectation-maximization (EM) [12] and Besag’s [9]
algorithms. Experimental results and comparisons with a
previous single-scale method are presented on Landsat TM
images.

II. METHODOLOGY

A. Overview of the proposed method

Let us denote by I0 and I1 two single-channel accurately
coregistered optical images, composed of N pixels each and
acquired over the same area at times t0 and t1, respectively
(t1 > t0; the reformulation in the multichannel case is
straightforward). The change-detection problem is expressed
as a binary hypothesis testing problem [13], by marking
the “change” and “no-change” hypotheses as H1 and H0,
respectively. The image-differencing approach, which gen-
erates a difference image D by subtracting pixel-by-pixel the
pixel intensities in I0 by those in I1, is used [1]. The key
idea of the proposed method lies in generating a finite set
{W1,W2, . . . ,WS} of multiscale features by applying DWT
to D, and to fuse this multiscale information by an MRF
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approach. MRFs also allow the spatial contextual informa-
tion to be exploited, thus gaining robustness against noise.
The MRF classifier proposed in [11] for images acquired at
different spatial resolutions is generalized here to multiscale
change detection. It adopts the “iterated conditional mode”
(ICM) approach to MRF-based classification, which usually
represents a good tradeoff between classification accuracy
and computational burden [10]. The proposed method is
iterative and is initialized by using the change map generated
by applying to D the single-scale change-detection technique
proposed in [2] and based on the Kittler and Illingworth
(K&I) unsupervised Bayesian thresholding algorithm [14].

B. Multiscale feature extraction

Let S be a predefined number of scales; an S-scale
multiresolution decomposition of D is obtained by apply-
ing a dyadic DWT to decompose D in terms of a low-
pass transformed image and of three high-pass transformed
images conveying information about fine-scale details along
the horizontal image axis, the vertical axis, or both axes.
The procedure is recursively applied S times to the resulting
low-pass components. Then, in order to generate the set
{W1,W2, . . . ,WS}, the inverse transform is applied S times
by neglecting all high-pass components and keeping only the
low-pass terms [8]. Thus, as s increases in [1, S], coarser-
scale approximations Ws of D are obtained, while the
finest scale is represented by D itself (which will also be
denoted by W0 in the following). More precisely, Ws allows
appreciating spatial details that are (2s)-times coarser than
D (s = 1, 2, . . . , S).

C. Unsupervised MRF-based learning

For each k-th pixel, let �k ∈ {H0, H1} be the related
hypothesis label, usk be the corresponding pixel intensity
in Ws, and xk be the multiscale vector of all usk variables
(s = 0, 1, . . . , S; k = 1, 2, . . . , N ). Similar to the multireso-
lution approach in [11], the statistical relationships between
images at different scales are modeled in terms of “linear
mixtures.” In [11] a set of coregistered multispectral images
with different resolutions are used to generate a classification
map at the finest resolution. For each coarser-resolution
image, a set of “virtual” pixel intensities is assumed to exist
at the finest resolution such that the pixel intensities at the
coarser resolution are modeled by mosaic averaging these
virtual intensities [11]. Here, this approach is generalized to
multiscale analysis by postulating that, for the image Ws at
each s-th scale, a set {ũsk}N

k=1 of virtual pixel intensities
exist at the 0-th scale, such that:

usk =
1
4s

∑
r∈Q(s,k)

ũsr, (1)

where Q(s, k) is a 2s×2s window centered on the k-th pixel
(k = 1, 2, . . . , N ; s = 0, 1, . . . , S). If s = 0, the identity
ũ0k = u0k holds. Since Ws is obtained from W0 through

a cascade of linear filters, the pixel values in Ws could be
deterministically expressed as suitable linear combinations
of the pixel values in W0, provided a specific DWT operator
is chosen. In this perspective, introducing the random vari-
ables ũsk may not be needed. Indeed we propose to adopt the
formalization based on such virtual intensities, first, because
this allows extending the Markovian formulation and the
learning procedures developed in [11] for the multiresolution
case. Then, this choice prevents the need to predefine a
specific DWT operator at each scale and plug the analytical
expressions of the impulse responses of the related filters in
the parameter-estimation process, thus allowing any DWT
operator to be used in the proposed MRF framework and
ensuring a higher flexibility.

Given the label configuration {�k}N
k=1, the variables ũsk

(k = 1, 2, . . . , N ) are assumed to be conditionally inde-
pendent and identically distributed, i.e., the joint probability
density function (PDF) of all ũsk random variables, con-
ditioned to all label variables �k (k = 1, 2, . . . , N ) can be
factorized as follows:

p(ũs1, ũs2, . . . , ũsN |�1, �2, . . . , �N) =
N∏

k=1

p(ũsk|�k), (2)

and the pixelwise conditional PDF p(ũsk|�k = Hi) of ũsk,
given �k = Hi (i = 0, 1) is independent of the pixel position
k ∈ {1, 2, . . . , N}. This pixelwise PDF is specifically
modeled as a Gaussian with mean μsi and variance σ2

si

(s = 0, 1, . . . , S; i = 0, 1). Let the vector θ collect all μsi

and σsi parameters. Thanks to the linearity of DWT and of
the model in Eq. (1), also the PDF of usk, given �k = Hi

and the labels �r of all other pixels r such that r ∈ Q(s, k),
is easily proved to be Gaussian (which is a usually accepted
model for the statistics of D in the case of input optical
images [2]), with mean and variance parameterized by θ
and given by [11]:

μsik(θ) = E{usk|�k = Hi; �r, r ∈ Qsk} =
= 4−s[nsikμsi + (4s − nsik)μs,1−i] (3)

and

σ2
sik(θ) = Var{usk|�k = Hi; �r, r ∈ Qsk} =

= 16−s[nsikσ2
si + (4s − nsik)σ2

s,1−i], (4)

where nsik is the number of pixels r such that r ∈ Qsk and
�r = Hi (k = 1, 2, . . . , N ; s = 0, 1, . . . , S; i = 0, 1).

The label configuration {�k}N
k=1 is assumed to be an

MRF [9]. Specifically, an isotropic 2nd-order Potts MRF
model is adopted. Therefore, the distribution of �k, given
xk and all the other image labels is expressed by [11]:

P{�k = Hi|xk, �r, r �= k} =
exp[−Uk(Hi|λ, θ)]∑1

j=0 exp[−Uk(Hj |λ, θ)]
,

(5)
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where:

Uk(Hi|λ, θ) =
S∑

s=0

{
[usk − μsik(θ)]2

σ2
sik(θ)

+ lnσ2
sik(θ)

}
−λmik

(6)
is the “energy function” of the MRF model, mik is the
number of labels equal to Hi in the 2nd-order neighborhood
of the k-th pixel (k = 1, 2, . . . , N ; i = 0, 1), and λ is a
positive parameter. The energy function is a linear combi-
nation of (S+2) contributions: the last term is related to the
spatial contextual information, represented by mik according
to the Potts model, and the other terms are related to the
information conveyed by the Hi-conditional distributions of
the pixel intensities at all scales. The parameter λ tunes the
relative importance between the spatial energy term and the
multiscale contributions.

Coherently with the Markovianity property, the distribu-
tion in Eq. (5) does not depend on all image labels �r

with r �= k, but only on the labels of the neighbors of
the k-th pixel (through mik) and on the labels �r such that
r ∈ Q(s, k) for some s = 1, 2, . . . , S (through μsik(θ) and
σsik(θ)). The Potts model has been proved to be an effective
contextual MRF model for medium-resolution images [11];
accordingly, the proposed method is expected to be well-
tailored to change-detection with this kind of remote-sensing
data. The extension of the model in Eqs. (5) and (6) to very
high resolution (VHR) images could be accomplished by
replacing this simple contextual model by more sophisticated
MRFs, incorporating geometrical information related, for
instance, to edge [15], [16] or object/regions [17] in the
image.

We recall that the MRF-based method in [11] assumes the
single-resolution images to be independent of one another,
when conditioned to the label configuration. In fact, single-
scale energy contributions are combined additively in Eq.
(6) without modeling the correlations among transforms at
different scales. Since Ws+1 is obtained by filtering Ws (s =
0, 1, . . . , S − 1), the conditional independence assumption
cannot be rigorously fulfilled in the present case. We will
accept it as a simplifying analytical tractability assumption.

As in [11], the EM and the Besag’s methods are it-
eratively used to learn optimal values for the parameters
(λ, θ) from the collections {Ws}S

s=0 of multiscale images.
EM addresses estimation problems characterized by data
incompleteness and converges, under mild assumptions, to a
local maximum of the log-likelihood function (even though
convergence to a global maximum is not ensured, usually
a good solution is obtained) [12]. The Besag’s method
estimates the spatial regularization parameters of an MRF
(here, λ) by maximizing a pseudolikelihood function [9].
The proposed method is iterative and is initialized with
the label map generated by the single-scale K&I algorithm.
At the t-th iteration, denoting by the superscript “t” the
current parameter estimates and pixel labels, the following

operations are performed (t = 0, 1, 2, . . .):
1) compute the updated estimate λt, given the current

labels {�t
k}N

k=1, by maximizing the following pseudo-
likelihood function (Besag’s method) [9]:

Φt(λ) =
1∏

i=0

∏
k:�t

k=Hi

exp(λmt
ik)

exp(λmt
0k) + exp(λmt

1k)
; (7)

2) compute the updated parameter estimate θt by running
EM until convergence (see below);

3) update the label of each k-th pixel according to the
MRF minimum-energy rule [10], by setting �t+1

k as
the label Hi that corresponds to the lowest value of
U t

k(Hi|λt, θt) (k = 1, 2, . . . , N ; i = 0, 1).
At each t-th iteration of the method (t = 0, 1, . . .), the
numerical maximization in step 1 is solved by Newton-
Raphson’s algorithm. Given the resulting estimate λt of λ
and the current label configuration {�t

k}N
k=1, EM computes

in step 2 a sequence {θ̄qt}q=0,1,... of estimates of θ. Thanks
to the convergence properties of EM, θ̄qt converges for
q → +∞ to a limit θt which is the updated estimate
of θ resulting from step 2. Operatively, EM is iterated
until the distance between θ̄q+1,t and θ̄qt goes below a
predefined threshold (here, equal to 0.001) and is initialized
by setting θ̄0t = θt−1 (t = 1, 2, . . .). Thanks to the close
similarity between the proposed multiscale linear-mixture
model of Eq. (1) and the multiresolution one used in [11],
one can prove through the same analytical calculations as
in [11] that the components of θ̄qt are updated as follows
(i = 0, 1; s = 0, 1, . . . , S):

μ̄q+1,t
si =

1
N t

i

∑
k:�t

k=Hi

ηqt
sk

σ̄q+1,t
si =

√√√√ 1
N t

i

∑
k:�t

k=Hi

[ξqt
sk + (ηqt

sk − μ̄q+1,t
si )2], (8)

where ηqt
0k = u0k and ξqt

0k = 0 for s = 0,

ηqt
sk = μ̄qt

sj + 4−s[σ−1
sjk(θ̄qt)σ̄qt

sj ]
2[usk − μsjk(θ̄qt)]

ξqt
sk = (σ̄qt

sj)
2{1 − 16−s[σ−1

sjk(θ̄qt)σ̄qt
sj ]

2}, (9)

for s ≥ 1, j is the index of the hypothesis Hj such that
�t
k = Hj , and N t

i is the number of pixels assigned to Hi at
the current iteration. Analytical details can be found in [11].

III. EXPERIMENTAL RESULTS

A pair of coregistered 256× 256 multispectral Landsat-5
Thematic Mapper (TM) images of the western part of the
Island of Elba (Italy), acquired in August and September
1994, was used for experiments (Figs. 1(a)-1(b)). During
the period between the acquisition dates, a fire occurred in
a forested area in the image. TM bands 4 and 7 were used
in the experiments, as they are known from the literature to
be effective for burnt forest-area detection [2], [18], [19].
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. Band TM-4: images acquired in August (a) and September 1994
(b) (after histogram stretching); test map (c); change maps obtained by the
technique in [2] (d) and by the proposed method applied with neighbor
averaging (e) and with the biorthogonal transform of order (2, 8) (with (f)
or without (g) the spatial energy term). Legend: black = “change,” white =
“no-change.”

Experiments were separately performed with each band in
order to focus on a more difficult classification problem,
as compared with the two-band case, and to consequently
highlight the possible advantages of multiscale processing
as compared to single-scale approaches.

The proposed method is based on the fusion of multiscale
and contextual information. Hence, its performances were
first evaluated as a function of the choice of the DWT
operator. Then experimental comparisons were conducted
with: (i) the technique proposed in [2] (which is based
on the application of K&I to the moving-average filtered
difference image) to assess the overall advantages of the
proposed method as compared to a single-scale classical
one; (ii) a variant of the proposed technique based on an
MRF model with no spatial energy contribution (i.e., λ = 0)
to focus on the relative role of multiscale and contextual
information; (iii) the behavior of the technique as a function
of the number of scales.

All results were quantitatively assessed by computing the
detection accuracy (i.e., the percentage of changed test pixels
that were correctly labeled as changed), the false-alarm rate
(i.e., the percentage of unchanged test pixels that were erro-
neously labeled as changed) and the overall error rate (i.e.,
the percentage of erroneously labeled pixels) with respect
to the exhaustive test map in Fig. 1(c). Each TM band was

transformed to generate up to four lower-scale images. As a
preliminary experiment, aimed at assessing the behavior of
the method with a very simple multiscale feature extraction,
a “neighbor averaging” pyramid decomposition was used
that generates Ws+1 by trivially mosaic averaging the pixel
intensities of neighboring pixels in Ws (s = 0, 1, 2, 3). Then,
several DWTs were considered, namely, Haar, Daubechies
of order ranging in [2, 30], symlet of order ranging in [2, 20],
biorhogonal and reverse biorthogonal with the two order
parameters ranging in [1, 6] and [1, 8], respectively, discrete
Meyer, and coiflet (details about these DWTs can be found
in [8]).

A high detection accuracy and a low error rate, equal
to 91.84% and 0.47%, respectively, were obtained by the
proposed method when applied with the neighbor-averaging
approach to band 4 (see Table I). A large 19.35% increase
in the detection accuracy and a 0.63% reduction in the
error rate were achieved as compared with the single-scale
approach in [2]. This improved effectiveness is interpreted
as a consequence of the use of multiscale and contextual
information. The same comments are suggested by a visual
comparison of the related change maps (Figs. 1(d)-1(e)).
However, Fig. 1(e) also points out the slight presence of
undesired blocky artifacts, due to neighbor-averaging. Lower
accuracies, even though better than the ones of the method
in [2], were obtained by the proposed technique when
applied to band 7 with neighbor-averaging.

The detection accuracies of the change maps obtained
by the proposed method, when applied to band 4 with all
above-mentioned DWTs, are summarized in Fig. 2 (the false-
alarm rates were below 0.5% in all cases; a similar plot was
obtained for band 7 and is not presented for brevity). The
performance was affected by the choice of the DWT op-
erator. However, for all considered DWTs, higher detection
accuracies and lower error rates were always obtained, as
compared with the method in [2]. The numerical results
suggested that the biorthogonal and reverse biorthogonal
families provided the highest detection accuracies. Table I
presents, for each band, the results of three out of the DWTs
yielding the most accurate change maps. A high 92.71%
detection accuracy and a 0.41% error rate were obtained on
band 4 by using an order-(2, 8) biorthogonal transform, thus
gaining a 20.22% detection accuracy as compared with the
method in [2]. A visual analysis of the resulting change
maps (see Fig. 1(f)) confirms the accurate identification
of the burnt area with a low number of false alarms, and
points out that the result is not affected by blocky artifacts.
Less accurate results were obtained on band 7, reaching an
82.23% detection accuracy and a 1.15% error rate with a
(3, 7)-order reverse biorthogonal transform. This confirms a
more limited effectiveness of band 7 than of band 4 in the
considered data set, with respect to the problem of burnt
forest area detection.

Considering, for each band, the DWT providing the
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Figure 2. Band 4 of the considered data set: detection accuracy of the proposed method as a function of the choice of the wavelet transform. For wavelets
depending on order parameters, the parameter values are also reported.

highest detection accuracy, the proposed method was applied
with all five scales, while removing the Potts spatial energy
term (i.e., while setting λ = 0). As compared with the
case with the spatial energy, increases in the detection
accuracy and especially in the false-alarm rate are remarked
(Table I). This yields a much worse overall error rate than
in the case with the spatial energy. A visual analysis of
the related change map (Fig. 1(g)) confirms the presence
of many false alarms when no spatial energy term is used
and also points out that spatially more regular maps are
obtained when including this term, especially at the borders
between changed and unchanged areas. These results can
be explained by noting that the proposed method assumes a
Gaussian monomodal PDF for each hypothesis, whereas the
difference image statistics is actually the mixture of three
populations related to sea, non-burnt vegetation, and burnt
vegetation areas, respectively. EM converges to a solution
that correctly detects the burnt vegetation as “change” and
the sea as “no-change” but erroneously splits the non-burnt
vegetation mode, thus generating many sparse false alarms.
On the other hand, the spatial regularization yielded by the
Potts energy term penalizes the generation of such false
alarms. This further confirms the importance of the adopted
MRF approach as a contextual data-fusion tool.

Finally, focusing again on the DWT giving the highest
detection accuracy, the number of scales was varied in the
range [1, 5] (see Fig. 3). When just one scale is used,
the method degenerates to a fairly standard ICM-based
unsupervised classification of the difference image. Higher
detection accuracies were obtained, as expected, when using
all five scales than in this degenerate case. The differences
between the detection accuracies obtained in the two cases
were 1.37% and 9.49% with bands 4 and 7, respectively
(in both cases the false-alarm rates did not exceed 0.8%
and 1.5% for bands 4 and 7, respectively). Even slighlty
higher accuracies were obtained with two scales on this data
set. This confirms the importance of multiscale information
(with, at least, two scales) in the proposed change-detection
method and also suggests quite a limited sensitivity to the
number of scales.

Table I
CHANGE-DETECTION PERFORMANCES OF THE PROPOSED METHOD
APPLIED WITH SEVERAL DWTS (THE VALUES OF POSSIBLE ORDER

PARAMETERS ARE IN PARENTHESES), OF THE VARIANT WITH NO

SPATIAL ENERGY (λ = 0), AND OF THE METHOD IN [2].

TM Method False-alarm Detection Overall
band rate accuracy error rate

4 method in [2] 0.08% 72.49% 1.09%
neighbor averaging 0.17% 91.84% 0.47%

biorth. (2, 8) 0.15% 92.71% 0.41%
rev. biorth. (6, 8) 0.15% 92.29% 0.43%

symlet (5) 0.19% 91.30% 0.50%
biorth. (2, 8), λ = 0 1.79% 95.53% 1.89%

7 method in [2] 0.92% 71.29% 1.94%
neighbor averaging 0.66% 77.92% 1.45%
rev. biorth. (3, 7) 0.51% 82.23% 1.15%

symlet (4) 0.54% 78.75% 1.31%
Daubechies (12) 0.54% 78.62% 1.30%

rev. biorth. (3, 7), λ = 0 1.59% 81.11% 2.23%

IV. CONCLUSIONS

The problem of change detection with optical multitempo-
ral images has been addressed in this paper by proposing an
unsupervised multiscale contextual method based on wavelet
multiscale feature extraction and Markovian data fusion and
learning. The approach proposed in [11] for multiresolution
classification has been extended to multiscale change de-
tection. Experiments on real optical images acquired before
and after a forest fire suggested a good effectiveness of the
proposed technique, which generated accurate change maps,
outperforming a previously proposed single-scale approach
based on the application of unsupervised thresholding to the
noise-filtered difference image [2]. This improvement was
obtained even when using a trivial neighbor-averaging to ex-
tract the multiscale features; however, blocky artifacts were
generated in this case. On the contrary, no artifacts were
remarked when using smoother wavelets, which also allowed
a further significant change-detection accuracy increase to
be obtained as compared with neighbor-averaging. These
results suggest the usefulness of multiscale information for
change-detection purposes, in order to jointly exploit the
higher robustness to noise at coarser scales and the presence
of more precise geometrical details at finer-scales.

More accurate change maps were obtained with all consid-

576



Figure 3. Behavior of the detection accuracy as a function of the number
of considered scales (grey: band 4; black: band 7).

ered wavelet transforms, as compared with the single-scale
approach in [2]. However, the performances were sensitive to
the choice of the DWT and of its possible order parameters
(symlets, biorthogonal, and reverse biorthogonal wavelets of
suitable order provided the most accurate change maps on
the considered data set). In this perspective, an interesting
future extension of this work is the automatic optimization
of the number of scales and of the choice of the multiscale
transform. A further extension will consist in validating the
method with other data sets related to different typologies of
land-cover change and different applications (e.g., flooded-
area mapping or urban-development monitoring).

The method has been tested on single-channel images.
The generalization of the method to multispectral images
is analytically straightforward [11]. Operatively, if several
multiscale features are extracted from each band in a mul-
tispectral image, the resulting overall number of features
may be quite large, which could involve dimensionality
issues [13]. Application-specific band combinations [19] or
more general feature-reduction methods [13] can be used to
address these issues. This would be an interesting aspect
worth being investigated. A further development of this
work could regard its generalization to change detection with
VHR optical images by suitably extending the related MRF
model, for instance, through line processes [15], [16] and/or
object-based analysis [20]. Extension to VHR SAR (e.g.,
COSMO/SkyMed or TerraSAR-X) could also be pursued by
incorporating parametric PDF estimation methods developed
for SAR change detection [4] into the proposed multiscale
MRF framework.
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