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Semi-supervised kernel target detection in hyperspectral images
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Abstract—A semi-supervised graph-based approach to target
detection is presented. The proposed method improves the
Kernel Orthogonal Subspace Projection (KOSP) by deforming
the kernel through the approximation of the marginal distri-
bution using the unlabeled samples. The good performance of
the proposed method is illustrated in a hyperspectral image
target detection application for thermal hot spot detection. An
improvement is observed with respect to the linear and the non-
linear kernel-based OSP, demonstrating good generalization
capabilities when low number of labeled samples are available,
which is usually the case in target detection problems.
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I. INTRODUCTION

Target detection from hyperspectral data is of great inter-
est in many applications. The goal of target detection, which
generally assumes that the target spectral signature is known
(or available from spectral libraries), is to detect pixels
that match the target. Detecting targets in remote sensing
images is typically described as a two-steps methodology, in
which first an anomaly detector identifies spectral anomalies,
and second a classifier is aimed at identifying whether or
not the anomaly is a target or natural clutter. This step
is only possible if the target spectral signature is known,
which can be obtained from a spectral library or by using a
spectral subspace matched filter learnt from the data. Several
techniques have been proposed in the literature, such as the
Reed-Xiaoli anomaly detector [1], the orthogonal subspace
projection (OSP) [2], the Gaussian mixture model [3], the
cluster-based detector [3], or the signal subspace processor
[4].

All these techniques assume a parametric (linear or Gaus-
sian mixture) model. Even though linearity is a convenient
assumption, it is far from being realistic. Nonlinearity ap-
pears in different forms in remote sensing data [5], [6]: 1) the
nonlinear scatter described in the bidirectional reflectance
distribution function (BRDF); 2) the variable presence of
water in pixels as a function of position in the landscape;
3) multiscattering and heterogeneities at subpixel level; and
4) atmospheric and geometric corrections that need to be
done to deliver useful image products. These facts need to be
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encoded in the method either by allowing flexible non-linear
mappings or by accurate description of the data manifold
coordinates. In fact, the nonlinear relationships between
different spectral bands within the target or clutter spectral
signature need to be exploited in order to better distinguish
between target and background. However, most of the target
detection algorithms are based on linear matched (subspace)
filters where the spectral characteristics of a target or a target
subspace representing target information is assumed to be
known.

Practical experience has shown that the design of a good
classifier requires a sufficient amount of training data for
each background class and that, usually, in operational
remote sensing applications, a small number of labeled
samples is typically available. Besides, in target detection
applications, the main objective is to search a specific
material (farget), usually within very small number of pixels.

Conceptually, target detection can be viewed as a binary
hypothesis testing problem, where each pixel is assigned
a target or non-target label. In this way, target detection
problems can be casted as ill-posed classification problems,
thus being in the middle between canonical classification
and target detection framework. For multiple targets, de-
tection can be approached as a multiclass pattern recog-
nition problems in which each class appears as a target
‘lying’ in the background. In the last years, many de-
tection algorithms based on spectral matched (subspace)
filters have been reformulated under the kernel methods
framework: matched subspace detector (MSD), orthogonal
subspace detector (OSD), spectral matched filter (SMF), and
adaptive subspace detectors (ASD) [7]. Certainly, the use of
kernel methods offers many advantages: they combat the
high dimensionality problem in hyperspectral images, make
the method robust to noise, and allow for flexible non-
linear mappings with controlled (regularized) complexity
[8]. Kernel methods in general, and kernel detectors in
particular, rely on the proper definition of a kernel (or
similarity) matrix among samples. So far, however, standard
‘ad hoc’ RBF or polynomial kernels have been used, and
no attention has been payed to model the data marginal
distribution that would be potentially helpful to design the
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kernel structural form. In addition, kernel detectors have
only considered labeled information, and unlabeled samples
from guard windows are merely used as contrast density in
hypothesis testing.

In this paper, we present a semi-supervised technique
that collectively incorporates labeled and unlabeled data in
the target detection framework. In semi-supervised learn-
ing (SSL) [9], [10], the algorithm is provided with some
available labeled information in addition to the unlabeled
information, thus allowing to encode some knowledge about
the geometry and the shape of the dataset. This idea of
exploring the shape of the marginal distribution in the dataset
can be applied in kernel target detection in order to deform
the ‘measure’ of distance in the kernel space according
to the geometry of the neighboring pixels. We propose
a Semi-Supervised Kernel Orthogonal Subspace Projection
(S2KOSP), which introduces an additional regularization
term on the geometry of both labeled and unlabeled samples
by using the graph Laplacian [9].

II. KERNEL ORTHOGONAL SUBSPACE PROJECTION
ALGORITHM

This section reviews the orthogonal subspace projection
(OSP) method and the non-linear kernel-based version pro-
posed in [7].

In the standard formulation of the OSP algorithm [2], a
linear mixing is assumed to model each B-bands pixel r as
follows:

r=Ma +n, (D

where M is the matrix of size (B X p) containing the p
endmembers contributing to the mixed pixel r, v is a (px 1)
column vector of the coefficients that account for the spectral
abundance of each endmember, and n stands for an additive
zero mean Gaussian noise vector.

In order to identify one particular signature in the im-
ages, and given its spectral signature d with corresponding
abundance measurements o, the above expression can be
organized by rewriting the M matrix in two submatrices
M = (U : d), so that

r =da, + Uy +n. 2)

The columns of U represent the undesired spectral signa-
tures (background), while the -~y represents the abundance
for the undesired spectral signatures.

The effect of the OSP algorithm on the data set can be
summarized in two steps. First, an annihilating operator
rejects the background signatures for each pixel, so that
only the desired signature should remain in the spectral
component of the data. This operator is given by the (B x B)
matrix P = I — UU#, where U# is the right Moore-
Penrose pseudoinverse of U. The second step of the OSP
algorithm is represented by the filter w that maximizes the

567

SNR of the filter output, that is the matched filter w = kd
where k is a constant [11], [12].

The OSP operator is given by q/,sp = d" P, and the
output of the OSP classifier is:

Dosp = qgspr = dTPﬁr. 3)
By using the singular value decomposition (SVD) of U =
BX AT, the annihilating operator becomes Py =I-BBT,
where the columns of B are obtained from the eigenvectors
of the covariance matrix of the background spectral samples.
If a given algorithm can be expressed in the form of dot
products in the input space, its kernel version only needs
the dot products among mapped samples.

Kernel methods compute the similarity between train-
ing samples S = {x;}!, using pair-wise inner products
between mapped samples, and thus the so-called kernel
matrix K;; = K(x;,%x;) = (®(x;), P(x;)) contains all
the necessary information to perform many classical linear
algorithms in the feature space.

The kernelized version of the output of the OSP classifier
is given by [12]

= K(de, d)TTTTK(de, I‘)
_K(Xba d)TBBTK(XfJa I‘),

Dxosp

“)

where K(Xy, r) and K(Xj,d), referred to as the empirical
kernel maps in the machine learning literature, are col-
umn vectors whose entries are K (x;,r) and K(x;,d) for
x; € X, (x5 € RP), i 1,...,1, being [ the number of
labeled samples; B is the matrix containing the eigenvec-
tors ,Bj described above; and T is the matrix containing
the eigenvectors vJ, similar to ﬁj , but obtained from the
centered kernel matrix K (Xpq, Xpq), where X;q = X3, Ud.

III. PROPOSED SEMI-SUPERVISED KOSP

In this section, we pay attention to the appropriate defini-
tion of the kernel under semi-supervised criteria. Essentially,
we propose to deform the kernel using the graph Lapla-
cian. This idea, which was originally presented in [13] for
inductive SVM, has been recently presented for one-class
classification [14] and support vector regression [15]. Here,
it is extended to the kernel OSP.

Among SSL algorithms, we focus on Graph-based meth-
ods, in which each sample spreads its label information to
its neighbors until a stable state is achieved on the whole
dataset [16], [17]. In this paper, we propose a graph-based
method with a kernel adapted to the geometry of the data
marginal distribution. Essentially, we aim at exploiting the
relation between labeled and unlabeled samples through the
construction of a graph representation, where the vertices are
the (labeled and unlabeled) samples, and the edges represent
the similarity among samples in the dataset.



Figure 1. Graph classification on a toy graph.

A. Deforming the Kernel with the Graph Laplacian

In order to include the geometry of the data distribution
as a similarity measure in the model, let us first define a
linear space V' with a positive semi-definite inner product,
and let

S:H—-V

be a bounded linear operator. We can now define H to
be the space of functions from H with the modified in-
ner product (f,g)5; = (f,9)» + (Sf,Sg)y. Semi-norm
|S(F)||2 = £ Nf is given by a symmetric semi-definite
matrix IN and the decision function f is given by

f= sgn(DKogp — 9),

where 6 is the decision threshold. If = is the number
of unlabeled samples available, the explicit form of the
corresponding reproducing kernel function K (x4,%;) can be
explicitly defined over labeled samples as [13]:

K(xi,xj) = K(xi,x;) — K, I+ NK) 'NKy,, (5

where 7,7 € {1,..,0 + u}; K is the (complete)
kernel matrix; I is the identity matrix; and Ky,
[K(x1,%;), -y K (X110, %)) T

In Fig.1(a), the two shaded circles are the initially labeled
vertices (£1), while the white nodes represent unlabeled
samples. The thickness of the edges represent the similarity
among samples, easily computable with a proper distance
measure. In Fig.1(b), undirected graph methods classify
the unlabeled samples according to the weighted distance,
not just to the shortest path lengths, the latter leading to
incorrectly classified samples. The two clusters (shaded)
are intuitively correct, even being connected by (thin weak)
edges.

In this formulation the geometry of the data is included
through N, usually defined proportional to the graph Lapla-
cian [9], that is N = ~L, where v € [0,00) is a free
parameter that controls the ‘deformation’ of the kernel. To
define L, let’s first define a graph G(V, E) with a set of
n nodes, V, connected by a set of edges, E. The edge
connecting nodes ¢ and j has an associated weight, W;;
[9]. In this framework, the nodes are the samples, and the
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edges represent the similarity among samples in the dataset
(see Fig. 1). A proper definition of the graph is the key to
accurately introduce data structure in the machine.

Two mathematical tools have to be introduced to understand
how matrix L is constructed [11], [16], [17]:

e D is the degree matrix of size n x n. Basically, D
is a diagonal matrix D = [dy,...,d,] containing the
number of connections to a node (degree);

A is the adjacency matrix of size n x n, where the
nondiagonal entry is the number of connection from
node ¢ to node j, and the diagonal entry is either twice
the number of loops at vertex 7 or just the number of
loops. In our case, it is a matrix containing only (0, 1).

Finally, the Laplacian matrix L is defined as L = D —
W, where W is obtained from A, the adjacency matrix, by
assigning weights to each connection. Also, a normalized
version of L can be obtained as

1 ifi=jandd; #0
_ 1 . . . .
Lij = \/m if < and j are adjacent
0 otherwise.

where subscripts ¢ and j stand for the row and column
indexes as well as the edges as defined before.

Intuitively, L measures the variation of the decision function
f along the graph built upon all (labeled and unlabeled)
samples [9]. Note that, by fixing v = 0, the original (un-
deformed) kernel is obtained. Therefore, a proper selection
of this free parameter theoretically leads to better results
than the pure supervised approach (the KOSP method in our
case). By plugging (5) into (4), the semi-supervised KOSP,
called S2KOSP, can be written as

#osp = Drosp — Ky, (I+NK) 'NKy Ja, (6)

where the subscript d indicates the operation of extracting
information relative to the desired target signature d.

IV. EXPERIMENTS ON THERMAL HOT SPOT DETECTION

The experiment deals with the hot spot detection using
an hyperspectral image. The used dataset comes from the
AVIRIS instrument that acquired data over the World Trade
Center (WTC), New York, few days later the well-known
collapse of the towers of September 11th, 2001. The data
was acquired from an altitude of ~ 2 km and has a
spatial resolution of about 2 m. The accompanying maps
available are false color images acquired over the same site
on September 16th and 21st, which show the core affected
area around the WTC (Fig. 2). Visual analysis of these
data revealed a number of thermal hot spots on September
16th in the region where the buildings collapsed 5 days
earlier. Analysis of the data indicates temperatures higher
than 400°C. Different hot spots appear in the core zone,
and those will be considered in the following as being the
target for the detection.



There is no ground truth available (from in sifu data
collection) for the World Trade Center dataset, so we carried
out a pixel selection through visual photointerpretation of
many false RGB compositions (Figure 2). The WTC dataset
is a urban area showing vegetated areas, roofs, streets and
shadows but, however, it also shows presence of dust from
different materials and debris due to the towers collapse. In
order to keep the problem of detection as real as possible,
the a priori information about the pixel components of the
scene are not used, since it is supposed to be known only
after performing a ‘in loco’ analysis. Therefore, in order
to define a subspace as simple as possible —as an end-
user without prior knowledge would do— we selected only
a few pixels from roofs, trees, shadows, water and fire. As
already explained, ‘fire’ is considered the target class in this
experiment (see Fig. 2). The pixel closest to the center of
mass of each class was selected as the prototype of that
class. Results for KOSP and S?KOSP are shown by means
of gray level images containing the outputs of the algorithms,
and coloured images containing the thresholded outputs. It
is worth noting that the selection of background prototypes
(from a small number of non-fire pixels) is required by the
OSP algorithm in (2) to define a proper background subspace
U, and, as a consequence, by the KOSP algorithm (4).

There are several parameters to be tuned for the model.
Unfortunately, the reduced number of labeled samples avail-
able cannot be used to properly maximize a performance
score, such as the area under the ROC curve. Instead, the
parameters are tuned according to a ‘visual® interpretation of
the detection, as it will be better explained in the following
subsection.

In the case of KOSP, the algorithm is performed by using
windows of size K. X K., and the prototypes extracted
from few manually-selected pixels, as explained before. This
approach is motivated by the fact that a few spatial coverage

Figure 2.

Color composite of WTC Aviris data.
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of the target class is expected. Therefore, it makes sense to
define a maximum window where the target pixels may lie.
This procedure not only reduces the computational cost of
the algorithm but also improves the detection relying on the
smooth spatial variation of the spectral signature.

In the semi-supervised version of the algorithm instead,
the deformed kernel strictly depends on the choice of un-
labeled samples and the distance between the samples of
the image. Hence, to explore as much useful information
as possible, the best choice would be performing the semi-
supervised KOSP by processing the whole dataset at the
same time. This would involve an inversion of a huge matrix
that is not computationally possible at the moment, so one
have to choose a strategy to select the unlabeled samples
to build the model. For this experiment, we consider the
same block of K. x K, test samples used for the KOSP but,
in addition, the deformed kernel is evaluated by considering
also an overlapping of K, pixels between adjacent windows,
in order to use ‘cross-contextual’ information between pixels
belonging to neighbor windows (Fig. 3), .

In the following we compare the results of the canonical
OSP and KOSP methods, and the proposed semi-supervised
KOSP. Two versions of the proposed semi-supervised KOSP
are presented: (1) the windowed approach explained before,
and (2) a technique to select the unlabeled samples relying
on the results obtained with the standard KOSP.

Figure 4 shows the (raw and thresholded) outputs obtained
with KOSP and the two versions of S?KOSP presented.
From the KOSP predictions (top row), it can be seen that
class ‘fire’ presents a variability that cannot be captured by
the KOSP algorithm which offers poor results. Attending
to the thresholded outputs (bottom row), there is only one
pixel correctly classified by the KOSP (blue), but this is
the selected prototype pixel. Pixels marked in yellow are
all misclassified pixels with KOSP method, while red pixels
are ‘false alarms’, or pixels erroneously detected by KOSP
as belonging to class ‘fire’. Actually, a spectral inspection
reveals that most of these pixels are very similar to the
pixel correctly detected, and moreover, they are so spatially
connected to the manually-selected pixels containing fire that
they might contain fire as well.

The proposed S2KOSP performs well in this case: the
visually-built ground truth is completely detected (blue) and,
in addition, all red pixels are not ‘false alarms’, except
two in the lower part of the image. It has to be remarked
that S2KOSP is very sensitive to the choice of pixels used
as unlabeled samples, so a smarter selection of unlabeled
samples should be carried out. Two clear shortcomings of
the proposed method are: (i) one can easily note the presence
of a highly patched (and annoying) detection map, mainly
due to the windowed technique used for detection; and (ii)
by using the window technique, the computational time
for a given image increases linearly with the number of
windows, since for each block the evaluation of the inverse



Figure 3.

Figure 4.
KOSP in a WTC image detail.

of the matrix (I+ NK) (see Eq. 5) is needed. To solve
these problems, an alternative semi-supervised version of the
algorithm is introduced here. Note that, even though KOSP
cannot capture the variability of the class, it detects pixels
that are spectrally very similar to the target and, besides,
it is fast and generally reliable. Therefore, we advocate
that a proper selection of the unlabeled samples for the
S2KOSP can be accomplished in an easy way by performing
a preliminary detection applying KOSP. In this way, the
detected pixels by KOSP can be used as unlabeled samples
for S2KOSP. We want to remark that, even if there were
pixels identifying false alarms, with a correct tuning of the
S2KOSP parameters, they would be moved away from the
principal coordinates of the data manifold to not affecting
the detection. Note that, with this alternative method, the
inverse of the matrix (I + NK) has to be evaluated only
one time in the complete routine, making the computational
time of KOSP and S?KOSP similar. Detection maps offered
by this method are now smoother (see last column in Fig. 4)

570

Window Technique used to compute KOSP and S2KOSP.

S2KOSP KOSP + S?2KOSP

Raw detection (top) and thresholded outputs (bottom) for OSP, KOSP, S2KOSP, and S?2KOSP with unlabeled samples from the umbralized

while performance of the KOSP algorithm is improved: the
patches due to the use of different sets of unlabeled samples
per window have disappeared and the false alarm rate have
been reduced.

V. CONCLUSIONS

A semi-supervised version of the KOSP algorithm was
proposed for target detection applications. The information
from unlabeled samples is included in the standard KOSP by
means of the graph Laplacian with a contextual unlabeled
sample selection mechanism.

The good results obtained suggest that unlabeled infor-
mation is properly exploited, and that the data manifold
can be modeled with the unlabeled surrounding samples.
Additionally, the proposed methodology can be useful to
easily extend other kernel methods in general, and for target
detection in particular.
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