
Measures for Unsupervised Fuzzy-Rough Feature Selection
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Abstract

For supervised learning, feature selection algorithms at-
tempt to maximise a given function of predictive accuracy.
This function usually considers the ability of feature vectors
to reflect decision class labels. It is therefore intuitive to re-
tain only those features that are related to or lead to these
decision classes. However, in unsupervised learning, deci-
sion class labels are not provided, which poses questions
such as; which features should be retained? and, why not
use all of the information? The problem is that not all fea-
tures are important. Some of the features may be redundant,
and others may be irrelevant and noisy. In this paper, some
new fuzzy-rough set-based approaches to unsupervised fea-
ture selection are proposed. These approaches require no
thresholding or domain information, and result in a signifi-
cant reduction in dimensionality whilst retaining the seman-
tics of the data.

1. Introduction

Large dimensionality presents a problem for handling
data due to the fact that the complexity of many commonly
used operations are highly dependent (e.g. exponentially)
on the level of dimensionality. The problems associated
with such large dimensionality mean that any attempt to use
machine learning or data-mining tools to extract knowledge,
results in very poor performance. Feature selection (FS)
[4] is a process which attempts to select features which are
information-rich whilst retaining the original meaning of
the features following reduction. Most learning algorithms
are unable to consider problems of such size, whilst those
that are not will usually perform poorly.

Rough set theory (RST) [12] is an approach that can
be used for dimensionality reduction, whilst simultaneously
preserving the semantics of the features. Also, as RST op-
erates only on the data and does not require any external
information, it is completely data-driven. RST however has
one main disadvantage: its inability to deal with real-valued

data. In order to tackle this problem, methods of discretising
the data were employed prior to the application of RST. The
use of such methods can result in information loss however,
and a number of extensions to RST have emerged [6, 17]
which have attempted to address this inability to operate
on real-valued domains. One such approach is fuzzy-rough
sets (FRS) which have the ability to operate effectively on
real-valued (and crisp) data, thus minimising information
loss [8].

Conventional supervised FS methods evaluate various
feature subsets using an evaluation function or metric to
select only those features which are related to, or lead to,
the decision classes of the data under consideration. How-
ever, for many data mining applications, decision class la-
bels are often unknown or incomplete, thus indicating the
significance of unsupervised feature selection. In a broad
sense, two different types of approach to unsupervised FS
have been adopted: Those which maximise clustering per-
formance using an index function [5], [11], and those which
consider features for selection on the basis of dependency
or relevance. The central idea behind the latter, is that any
single feature which carries little or no further information
than that subsumed by the remaining features is redundant
and can therefore be eliminated [7, 10]. The approach de-
scribed in this paper is related to these techniques since it
involves the removal of features which are considered to be
redundant.

The work presented here is based on FRS, employing
novel fuzzy-rough measures to examine the level of depen-
dency between subsets of features. The remainder of this
paper is structured as follows. Section 2 introduces the the-
oretical background to RST and FRS and their application
to FS. Section 3 presents the new unsupervised fuzzy-rough
feature selection method. The proposed approach is com-
pared with an advanced supervised FS technique [9] which
is also based on FRS, and results are presented in Section 4.
The paper is then concluded in Section 5.
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2. Supervised rough approaches

There has been great interest in developing methodolo-
gies which are capable of dealing with imprecision and un-
certainty. The success of rough set theory for this is due in
part to the fact that it operates only on the data and does
not require any external information. As RST handles only
one type of imperfection found in data, it is complementary
to other concepts for the purpose, such as fuzzy set theory.
The two fields may be considered analogous in the sense
that both can tolerate inconsistency and uncertainty - the
difference being the type of uncertainty and their approach
to it; fuzzy sets are concerned with vagueness, rough sets
are concerned with indiscernibility.

2.1. Rough set feature selection

Let I = (U,A) be an information system, where U is a
non-empty set of finite objects (the universe of discourse)
and A is a non-empty finite set of attributes such that a :
U → Va for every a ∈ A. Va is the set of values that
attribute amay take. With any P ⊆ A there is an associated
equivalence relation IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (1)

The partition of U, generated by IND(P) is denoted
U/IND(P) (or U/P for simplicity) and can be calculated as
follows:

U/IND(P ) = ⊗{U/IND({a})|a ∈ P}, (2)

where ⊗ is specifically defined as follows for sets A and B:

A⊗B = {X ∩ Y |X ∈ A, Y ∈ B,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible
by attributes from P . The equivalence classes of the P -
indiscernibility relation are denoted [x]P .

Let X ⊆ U. X can be approximated using only the in-
formation contained within P by constructing the P -lower
and P -upper approximations of X:

PX = {x ∈ U|[x]P ⊆ X} (4)
PX = {x ∈ U|[x]P ∩X 6= ∅} (5)

The tuple 〈PX,PX〉 is called a rough set.
Let P and Q be sets of attributes inducing equivalence

relations over U, then the positive region can be defined as:

POSP (Q) =
⋃

X∈U/Q

PX (6)

The positive region contains all objects of U that can
be classified to classes of U/Q using the information in at-
tributes P. Based on this definition, dependencies between

attributes can be determined. For P, Q ⊂ A, it is said that Q
depends on P in a degree k (0 ≤ k ≤ 1), denoted P⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U|

(7)

The reduction of attributes is achieved by comparing
equivalence relations generated by sets of attributes. At-
tributes are removed so that the reduced set provides the
same predictive capability of the decision attribute as the
original. A reduct Rmin is defined as a minimal subset
R of the initial attribute set C such that for a given set of
attributes D, γR(D) = γC(D). From the literature, R is a
minimal subset if γR−{a}(D) 6= γR(D) for all a ∈ R.

The main limitation of crisp rough set-based approaches
to feature selection is their reliance on nominal data. For
processing real-valued data, a discretization step must first
be carried out which may result in information loss. This
motivates the use of fuzzy-rough sets for feature selection.

2.2. Fuzzy-rough feature selection

Fuzzy-rough sets [6] encapsulate the related but distinct
concepts of vagueness (for fuzzy sets) and indiscernibility
(for rough sets), both of which occur as a result of uncer-
tainty in knowledge

Definitions for the fuzzy lower and upper approxima-
tions can be found in [13], where a T -transitive fuzzy simi-
larity relation is used to approximate a fuzzy concept X:

µRP X(x) = inf
y∈U
I(µRP

(x, y), µX(y)) (8)

µRP X(x) = sup
y∈U
T (µRP

(x, y), µX(y)) (9)

Here, I is a fuzzy implicator and T a t-norm. RP is the
fuzzy similarity relation induced by the subset of features
P :

µRP
(x, y) = Ta∈P {µRa

(x, y)} (10)

µRa(x, y) is the degree to which objects x and y are sim-
ilar for feature a, and may be defined in many ways, for
example:

µRa
(x, y) = 1− |a(x)− a(y)|

|amax − amin|
(11)

µRa
(x, y) = max(min(

(a(y)− (a(x)− σa))
σa

,

((a(x) + σa)− a(y))
σa

, 0) (12)

where σa
2 is the variance of feature a. As these relations

do not necessarily display T -transitivity, the fuzzy transi-
tive closure can be computed for each attribute. The choice
of relation is largely determined by the intended applica-
tion. For feature selection, a relation such as (12) may be
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appropriate as this permits only small differences between
attribute values of differing objects. For classification tasks,
a more gradual and inclusive relation such as (11) should be
used.

In a similar way to the original crisp rough set approach,
the fuzzy positive region can be defined as [9]:

µPOSP (D)(x) = sup
X∈U/D

µRP X(x) (13)

An important issue in data analysis is discovering de-
pendencies between attributes. The fuzzy-rough degree of
dependency of D on the attribute subset P can be defined in
the following way:

γ′P (D) =

∑
x∈U

µPOSP (D)(x)

|U|
(14)

A fuzzy-rough reductR can be defined as a minimal sub-
set of features that preserves the dependency degree of the
entire dataset, i.e. γ′R(D) = γ′C(D). Based on this, a fuzzy-
rough greedy hill-climbing algorithm can be constructed
that uses equation (14) to gauge subset quality. In [9], it
has been shown that the dependency function is monotonic
and that fuzzy discernibility matrices may also be used to
discover reducts.

3. Unsupervised fuzzy-rough feature selection

This section introduces the new unsupervised subset
evaluation measures based on fuzzy-rough set theory, and
the corresponding reduction algorithm.

3.1 Dependency measure

The discovery of dependencies between attributes, is in
general, an important issue in data analysis. Intuitively, a
set of attributes Q depends totally on a set of attributes P ,
denoted P → Q, if all attribute values from Q are uniquely
determined by values of attributes from P .

The central idea behind the present work is that, as with
supervised fuzzy-rough FS [9], the fuzzy dependency mea-
sure can also be used to discover the inter-dependency of
features. This can be achieved by substituting the decision
feature(s) D of the supervised approach for any given fea-
ture or group of features Q such that

γ′P (Q) =

∑
x∈U

µPOSRP
(Q)(x)

|U|
(15)

where P ∩Q = ∅ and,

µPOSRP
(Q)(x) = sup

z∈U
µRP RQz(x) (16)

Here, RQz indicates the fuzzy tolerance class (or fuzzy
equivalence class) for object z. The lower approximation
becomes:

µRP RQz(x) = inf
y∈U
I(µRP

(x, y), µRQ
(y, z)) (17)

3.2. Boundary region measure

Most approaches to crisp rough set FS and all approaches
to fuzzy-rough FS use only the lower approximation for
the evaluation of feature subsets. The lower approxima-
tion contains information regarding the extent of certainty
of object membership to a given concept. However, the up-
per approximation contains information regarding the de-
gree of uncertainty of objects and hence this information
can be used to discriminate between subsets. For exam-
ple, two subsets may result in the same lower approximation
but one subset may produce a smaller upper approximation.
This subset will be more useful as there is less uncertainty
concerning objects within the boundary region (the differ-
ence between upper and lower approximations). The fuzzy-
rough boundary region for a fuzzy tolerance class RQz X
may thus be defined:

µBNDP (RQz)(x) = µRP RQz(x)− µRP RQz(x) (18)

with the upper approximation defined as:

µRP RQz(x) = sup
y∈U
T (µRP

(x, y), µRQ
(y, z)) (19)

As the search for an optimal subset progresses, the ob-
ject memberships to the boundary region diminish until a
minimum is achieved. From this, the total certainty degree
given a feature subset P is defined as:

λP (Q) = 1−

∑
z∈U

∑
x∈U

µBNDRP
(RQz)(x)

|U|2
(20)

It is this measure, λ, that can be used to guide an unsuper-
vised subset selection process.

3.3. Discernibility measure

There are two main branches of research in crisp rough
set-based FS: those based on the dependency degree and
those based on discernibility matrices and functions. There-
fore, it is natural to extend concepts in the latter branch to
the fuzzy-rough domain [3].

The fuzzy tolerance relations that represent objects’ ap-
proximate equality can be used to extend the classical dis-
cernibility function. For each combination of features P , a
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value is obtained indicating how well these attributes main-
tain the discernibility, relative to another subset of features
Q, between all objects.

f(P,Q) = T ( cij(P,Q)︸ ︷︷ ︸
1≤i<j≤|U|

) (21)

with

cij(P,Q) = I(T (µRa(xi, xj)︸ ︷︷ ︸
a∈P

), µRQ
(xi, xj)) (22)

Alternatively, rather than taking a minimum operation in
Eq. (21), one can also consider the average over all object
pairs, i.e.,

g(P,Q) =

2.
∑

1≤i<j≤|U|
cij(P,Q)

|U|(|U| − 1)
(23)

This measure is less rigid than equation (21), which pro-
duces the value 0 as soon as one of the cij equals 0.

3.4. Finding reductions

For the supervised approach, search is conducted within
P(C), the set of all possible subsets of the conditional fea-
ture set. However, for the unsupervised approach search is
performed within P(C)×P(C), as to search for reductions
any subset can be compared with any other subset. This is a
vastly more complex space in which to search. For the pur-
poses of this paper, a linear backward search is employed
that achieves reasonable reductions in a short space of time.

The algorithm (figure 1) starts by considering all of the
features contained in the dataset. The removal of each
feature is then examined iteratively, and the corresponding
measure is calculated. If the measure is unaffected then the
feature can be removed. This process continues until all fea-
tures have been examined. If no interdependency exists, the
algorithm will return the full set of features. The complex-
ity for the search in the worst case is O(n), where n is the
number of original features.

Reduction is achieved for the three measures by replac-
ingM(T, {x}) with either γ′T ({x}), λT ({x}) or g(T, {x}).
If a greater reduction in features is required (at the expense
of accuracy), line (4) in the algorithm can be replaced by:

if M(R, {x}) < α

with α ∈ (0, 1].

4. Experimentation

Following feature selection, the datasets are reduced ac-
cording to the discovered reducts. These reduced datasets

UFRQUICKREDUCT(F )
F , the set of all features.

(1) R← C
(2) foreach x ∈ C
(3) R← R− {x}
(4) if M(R, {x}) < 1
(5) R← R ∪ {x}
(6) return R

Figure 1. The UFRQUICKREDUCT Algorithm

are then evaluated using the relevant classifier learning
method (as described below) and evaluated with 10-fold
cross validation.

Two learning mechanisms were employed to create clas-
sifiers for the purpose of evaluating the resulting subsets
from the feature selection phase: JRip [2] and J48 [16].
JRip learns propositional rules by repeatedly growing rules
and pruning them. During the growth phase, features are
added greedily to fit training samples. Once the ruleset is
generated, a further optimisation is performed where rules
are evaluated and deleted, based on their performance on
randomised data. J48 creates decision trees by choosing the
most informative features via an entropy measure, and re-
cursively partitions the data into subtables based on their
values. Each node in the tree represents a feature with
branches from a node representing the alternative values
this feature can take according to the current subtable. Par-
titioning stops when all data items in the subtable have the
same classification.

The feature selection methods employed are:
correlation-based (CFS) [7], fuzzy-rough lower
approximation-based (FRFS), boundary region-based
(B-FRFS), discernibility-based (D-FRFS), unsuper-
vised fuzzy-rough lower approximation-based (UFRFS),
unsupervised boundary region-based (B-UFRFS) and
unsupervised discernibility-based (D-UFRFS). The classi-
fication accuracies for the unreduced data are also included
for comparison. All of the data used in this experimental
investigation is labelled. However, before applying the
unsupervised methods, the decision feature is removed
from the data, and the approaches operate on the unlabelled
data only. When learning classifiers, or applying supervised
FRFS, the complete dataset is used.

The results presented in Table 1 show the subset sizes
discovered by the methods. As feature selection takes place
for each fold in the cross-validation, the subset sizes in the
table are averages. It can be seen that the proposed methods
manage reduction in all cases and return substantial levels
of dimensionality reduction for some datasets. These results
compare well with the supervised approach and show that
the unsupervised approaches may even find smaller subsets
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Table 1. Subset sizes for UFRFS
Dataset Features Objects CFS FRFS B-FRFS D-FRFS UFRFS B-UFRFS D-UFRFS

Cleveland 13 297 6.7 7.7 7.7 7.7 10.5 10.5 10.5
Glass 9 214 6.3 9 8.2 8.2 7.1 7.1 7.1
Heart 13 270 7.4 7.1 7.1 7.1 10.2 10.2 10.2

Ionosphere 34 230 15 5 5 5 6.2 6 6.2
Olitos 25 120 10.8 7.1 7.1 6.9 9 9 9

Water 2 38 390 9.1 6 6 6 7 7.4 7
Water 3 38 390 10.6 6 6 5.9 7.1 7.4 7.1

Web 2556 149 54.4 18.4 17.4 16.0 18.4 18.8 18.4
Wine 13 178 10.7 5 4.9 4.8 6 6.2 6

in some cases.
The resulting classification accuracies for the classifiers

can be seen in Table 2 and Table 3. These demonstrate
that the unsupervised methods retain useful features, with-
out considering the decision feature. This is borne out by
comparison to the classification accuracy of the unreduced
data, showing that the greatest decrease amongst all of the
reduced data is only in the order of 10% overall. There
are also cases where the use of unsupervised-reduced data
outperforms the unreduced data and that of the supervised-
reduced data.

In table 2, there are only five cases where the drop in ac-
curacy is statistically significant. For the Web data, the per-
formance of UFRFS and D-UFRFS were statistically worse
and for the Wine data, the drop in accuracy for the three un-
supervised methods was significant. In table 3, there is only
one dataset (Wine) for which the unsupervised methods
perform statistically worse than the unreduced approach.
This demonstrates the power of the unsupervised methods
as they perform drastic dimensionality reduction that gen-
erally maintains the classification accuracy whilst ignoring
the class information. This implies that the quality of reduc-
tion should be high for datasets with no class labels using
these techniques.

5. Conclusion

This paper has presented novel techniques for unsuper-
vised feature selection, based on the fuzzy-rough depen-
dency measure. These approaches are data-driven, and
no user-defined thresholds or domain-related information
is required, although a choice must be made regarding
fuzzy similarity relations and connectives. Note that these
choices must also be made for the existing supervised FS
approaches that employ the same underlying mathemati-
cal theory. The results show that the approach can reduce
dataset dimensionality considerably whilst retaining useful
features.

At present the unsupervised search algorithm utilises
a simple but nevertheless effective backwards elimination

method for search. The problem with such search tech-
niques is that they often return a result which is sub-optimal.
The investigation of other search techniques such as ant
colony optimisation [8] and particle swarm optimisation
[14], may help in alleviating this problem and thus further
improving the efficiency of the approaches. Also, a more
complete comparison of UFRFS and other unsupervised FS
techniques for clustering performance, would form the ba-
sis for a series of topics for future investigation.

As mentioned previously the fuzzy similarity relations
and connectives must be chosen for UFRFS. As only one
choice of fuzzy connective (Łukasiewicz), and also a sin-
gle fuzzy similarity measure(as defined in 11) are explored
in this paper, the evaluation of other options in this regard
would form the basis for a further more comprehensive in-
vestigation.

A further interesting topic is the use of a method which
would combine both the unsupervised, and supervised mea-
sures. The supervised measure determines relevance and
the unsupervised measure determines redundancy, hence a
method that combines these should be particularly powerful
for subset evaluation.
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