
Agglomeration and Elimination of Terms for Dimensionality Reduction

Patrick Marques Ciarelli
Department of Electrical Engineering

Universidade Federal do Espírito Santo, UFES
Vitória, Brazil

pciarelli@lcad.inf.ufes.br

Elias Oliveira
Department of Information Science

Universidade Federal do Espírito Santo, UFES
Vitória, Brazil

elias@lcad.inf.ufes.br

Abstract—The vector space model is the usual representation
of texts database for computational treatment. However, in
such representation synonyms and/or related terms are treated
as independent. Furthermore, there are some terms that do
not add any information at all to the set of text documents,
on the contrary they even might harm the performance of
the information retrieval techniques. In an attempt to reduce
this problem, some techniques have been proposed in the
literature. In this work we present a method to tackle this
problem. In order to validate our approach, we carried out
a serie of experiments on four databases and we compare
the achieved results with other well known techniques. The
evaluation results is such that our method obtained in all cases
a better or equal performance compared to the other literature
techniques.

Keywords-dimensionality reduction; feature selection; ag-
glomeration of terms; text classification

I. INTRODUCTION
Text categorization is an activity that is rapidly growing in

importance nowadays, due to the huge amount of informa-
tion available and the great challenge of retrieving relevant
information. These difficulties are tackled by the information
retrieval (IR) communities, both in academic and industrial
contexts. In order to be able to face this challenge of dealing
with a huge amount of information at once it is necessary
to consider the computer systems as a useful tool. However,
in order to process a great quantities of available texts in
a computer systems, it is necessary to model them before
accordingly. A quite common model used is the vector space
[1]. In this model each text is represented by a vector, where
each dimension of this vector means a possibily weight of a
term 1. This weight can be the term’s frequency, absence
or presence of term (binary weight) or another form of
weighting. In this way, the database can be represented by
a M×N matrix, where M is the number of distinct terms
and N the number of texts in the database. Such matrix is
also called term-document matrix.
Nevertheless, this approach presents some problems. First,

the word ordering information is lost. Second, the number of
distinct terms in database is normally huge (many times of

1Such representation is called of bag of words. There are other type of
representation that do not use terms, but other extracted features of the
documents. For more details we recomended to see [2].

the magnitude of thousands of terms), as a consequence the
computer cost is high. Third, each text is represented by just
a small part of this terms, therefore, the matrices are much
sparse. Fourth, synonimous and strong correlated terms are
treated as independent terms, and this may lead to loss of
information. Fifth, terms well known as stopwords, which
have low semantic value [3] (such as articles, prepositions,
etc), and terms with great frequency among the texts have
low power of categories’ discrimination.
Some methods to avoid, or minimize, these problems have

been proposed in the literature. In order to reduce the number
of terms with low semantic value is common to perform the
procedure of removing out the stopwords. Other techniques
use a procedure of weighting of the terms to select the
terms with higher power of discrimination and eliminate the
others, and thus to reduce the dimension of the matrix [3].
Moreover, there are techniques that perform the clustering of
the terms to reduce the sparsity and the size of the matrices
[2].
The last two set of techniques have obtained good results

in the literature [4], [5], [6], [7]. Due to these results we
expect the combination of these techniques may return better
results than when they are separately applied. Thus, in this
article we propose a novel approach that combines the
caracteristics of these techniques to eliminate and merge
terms. To show the performance of our proposed technique
we carried out a series of experiments and compare them
against others well known techniques in the literature.
We conducted experiments on four databases and we

applied the statistical t-test to evaluate the performance of
the algorithms. As result, our approach was statistically
superior to some widespread methods (see Section IV for
more explanation) and it presented similar performance to
Latent Semantic Indexing (LSI). Furthermore it achieved 11
out of the 20 best results in the experiments.
This work is organized in the following structure: in

Section II we present a revision of the techniques used in
this work. We describe our proposed technique in Section III.
In Section IV is defined how we performed our experiments
and the results achieved. Finally, we present our conclusions
and indicate some future paths for this research in Section
V.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.9

547

II. LITERATURE REVISION

We start this section with a brief dicussion on some of the
literature’s techniques for the reduction of the dimension of
the text-documents matrices.
The task of feature selection, or term selection, is to

select a good subset of terms from database which helps
to discriminate between classes, and eliminate terms that
add noise. On the other hand, agglomeration of terms helps
to reduce the level of stochastic dependence between terms,
besides may merge terms which are highly correlated. Both
methods can be employed to reduce the dimension of the
data matrices.
Two main approaches can be employed to perform feature

selection and groups of terms: the filter approach and the
wrapper approach [6], [8]. In the first one the terms are
selected or merged independetly from the learning method
that will use them. In the second one the terms are chosen or
grouped based on some learning algorithm that will identify
the best combination of terms and then it will use them. The
second approach has the disadvantage that is computational
more costly than the filter approach, because it needs to call
the learning algorithm for each combination. Due to this,
the approach used in this work will be the filter.
Now we will do a brief general description of the methods

of feature selection and agglomeration of terms.
A usual procedure in documents classification, or clus-

tering, is the use of a document (formed by many terms)
previously represented by a vector space and, by the use of
a classifier, we identify one or more documents similar to
the one at hand.
In the clustering of terms a similar process is done,

however with a slight difference. In this case, each vector
represents a term and its element is associated to a document.
By this way, the measure of distance can be accomplished
among the interest’s point and the points assigned to a group,
or it can be achieved between a point and a centroid of a
group. The algorithms of clustering presented in this article
refer to the second method. In addition, it is possible to
devise two types of cluster: a soft cluster and a hard cluster.
In the first case, the terms may belong more than one group
and, in the second case, the terms are associated just to a
unique group. With the exception of the Latent Semantic
Indexing (see Section II-C), that perform a task similar to a
soft clusters, all the clustering algorithms in this paper will
form hard clusters.
For the feature selection methods the basic idea is to

mathematically measure the importance level of each term
for categorization. Terms with good scores are keeped in
the database and those with bad scores are removed. All
the algorithms presented in this article are unsupervised,
including that proposed by us here.

A. Mutual Information (MI)
Mutual information (MI) measures the probability of

observing two variables x and y together with the probability
of observing x and y independently. High value of MI
between x and y indicates that there is a high association
between these two variables. For low value means that there
is not significant association between them [9]. In this work
we use MI to extract the words that minimize the loss
of information. Words with high value of MI have high
relationship with the texts contained in the database. Words
with low value may have low information to categorization
of texts, so they can be removed. Equations 1 and 2 will be
used in our experiments, so that x is the word (x ∈W), y is
the document (y ∈ ST), W is the set of distinct words and
ST is the set of texts. The only difference between these two
equations is the fact that in Equation 2 it is not considered
the probability of word x.

MIx = p(x) ∑
y∈ST

p(y | x) log
(
p(x | y)
p(y)

)
, (1)

MIx = ∑
y∈ST

p(y | x) log
(
p(x | y)
p(y)

)
. (2)

B. Inverse Document Frequency (IDF)
IDF is a classical term-weighting scheme that gives a

high weight to words that appear in few documents and low
weight to words that appear in many documents [3], [10].
Note that in the computation of IDF it is not considered the
term’s frequency. It is taken into account whether a term
occurred or not. In our experiments, the words with small
and the large values of IDF were removed. In so doing that,
the rare and the very common terms in the database are
eliminated, and only the terms with intermediary frequency
are kept.
The IDFx is then calculated as in Equation 3:

IDFx = log
(
N
nx

)
, (3)

where x is the word, N is the number of documents in the
database and nx is the number of documents that the word
x occurs.

C. Latent Semantic Indexing (LSI)
The core of this method is the mathematical procedure

of singular value decomposition (SVD), which application
decomposes a term-document matrix into a set of orthogonal
factors from which the original matrix can be approximated
by linear combination. A new term-document matrix can be
formed from weighted combinations of terms [11].
Let P and Q be the training and test term-document

matrix, respectively. Then applying SVD on P, we obtain:

P= TSDT , (4)

548

where S is a matrix whose the elements of its main diagonal
are the singular values and the others elements are equal
to zero. Let Sk be formed by k largest singular values and
Tk and Dk their corresponding singular vectors from T and
D, respectively, we can obtain a k-reduced singular value
decomposition (rank-k SVD) from Equation 5.

Pk = TkSkDTk . (5)

However, we cannot get any reduction of the dimension-
ality using this procedure. Therefore, instead of using the
Pk, we will use another formulation. Knowing matrix D
holds the coordinates of individual document vectors, we
can obtain the new training and test matrices (with the
dimensionality reduction) from Equations 6 and 7 [12], [13]:

P̂= Dk, (6)

Q̂= S−1k T
T
k Q. (7)

It is important to note that the matrices P̂ and Q̂ have
smaller dimensions than the original ones, when k is smaller
than the number of rows (terms).

D. Agglomerative Information Bottleneck (aIB)
In the aIB approach there are initially k clusters, where k is

equal to number of words and each cluster contains exactly
one word. At each step the algorithm merge a pair of clusters
into a single new cluster in a way that locally minimizes the
loss of mutual information. Thus, it is expected to perform
the best possible merge [5]. This procedure is repeated until
the number of wished clusters is met. This algorithm uses a
greedy procedure to reduce the number of clusters.
The inputs of the algorithm are the probability matrix

(term-document matrix), the number of wished clusters and
the value of the parameter β. The β is a parameter of tradeoff
between compression and precision and the softness of the
classification. For β → ∞, the clusters are induced to have
hard partition, that is, each word just can belong to one
cluster. This was the value chosen in our experiments.

E. Sequential Information Bottleneck (sIB)
In the sIB method the words are initially randomly

particioned in the number of chosen clusters. At each
step, one word is taken out of its current cluster and is
represented as a new cluster nc. Using a greedy algorithm,
we can merge this new cluster into a cluster tnew, such that
tnew = argmint∈T dF (nc,t) to obtain a new partition Tnew,
where dF (., .) is a measure of score. So, at each iteration it
is obtained a new words’ partition such that it is expected
to increase the performance of the partition. These steps are
performed until do not exist any more change. Since this
method can fall into local optima, the previous procedure
is repeated H times to obtain H different solutions. The
solution that obtains the better perfomance is chosen to be
the output of the algorithm [4].

Similar to aIB, the inputs of this algorithm are probability
matrix (matrix of documents), the number of wished clus-
ters, the value of the parameter β and the value of H. In our
experiments, we use β→ ∞ and H = 15.

III. ITERATIVE AGGLOMERATION WITH ELIMINATION
(IAE)

In our proposed technique, as similarly one can find
in aIB, we consider n groups at the beginning, where
each group contains exactly one word. On the other hand,
differently from the aIB, at each step of the algorithm it
is perfomed a procedure of two parts. In the first part, the
algorithm uses a method to compute the power discrimina-
tion of the groups and to determine when a group must be
removed or not. In order to make this decision, it is used
a threshold value. In the second part, the algorithm decides
when to merge a number of groups which can vary from
zero to a half of the total number of groups. In the latest
case, the number of existent groups would fall down to the
half of the initial number, depending on the pre-established
threshold’s value. Whether none group is merged at any step,
the threshold’s value is reduced. This procedure is repeated
until the number of required groups k has been achieved.
The algorithm pointing out this methodology is described in
Table I.
According to what is shown in Table I, two measures

are applied to determine the power of discrimination and
relationship’s level among groups. In this work, we selected
the IDF to remove groups which happen with a certain level
of frequency in the database. But, we apply the Equation 8,
instead of Equation 3 shown in Section II, because in the
first equation its value is within of range from 0 to 1.

IDFx = log
(
N
nx

)
/ log(N) = 1− logN (nx) . (8)

The chosen measure to acquire the relationship’s level
among the groups was the Hamming distance. Such distance
considers only the presence or absence of terms within the
documents, it is thus not considered in this case the weight of
the terms. If the same set of terms appears in two documents,
then the distance between them is zero. But, we modified a
little the original metric, as is shown in Equation 9:

Hamming(A,B) = 1−
1
N

N

∑
i=1
xor (Ai,Bi), (9)

where A and B are distinct terms, N is the number of
documents in the database e the xor operator computes the
logic operation exclusive–or. Thus, this metric measures
the co-occorence of terms in the documents. The selected
measurements have the advantages of that they are quick to
compute and they do not need any normalization of the data
2, just one step of binarization. However, it is possible to

2Since the threshold of binarization considers the presence or absence of
terms as one and zero, respectively.

549

Table I
PSEUDO CODE OF IAE.

Algorithm IAE
Input

data: term-document matrix
k: number of groups
threshold1: threshold to eliminate groups
threshold2: threshold to merge groups
reduction: value of reduction of the threshold2

Output
out put: relationship among terms - groups

1 while k is not achieved do
2 compute descrimination power of the groups
3 if exist groups with descrimination power below of threshold1 then
4 these groups are eliminated
5 compute the relationship among the terms
6 if exist relationship among terms above of threshold2 then
7 merge these terms
8 else
9 threshold2 := threshold2− reduction

apply any other set of measurements in such technique.
In the step of clustering of terms, when Equation 9 is used,

the vectors are submitted at a logic operation of inclusive-
or. Furthermore, it is not possible to merge more than two
groups into only one group for step – for exemple, merge
three groups in one. In the experiments we used the threshold
to remove groups equal to 0.1, where groups with values
below of this value are eliminated. The initial threshold to
merge the groups and reduction’s value were set to 0.95 and
0.05, respectively. Thus, every time that it is necessary to
reduce the merge’s threshold, it will be decreased 0.05 from
the threshold’s value. The low value of the first threshold is
to avoid the elimination of many terms, but just a small set.
Whereas the high value of the second threshold is to allow
that the formation of the groups happens slowly, instead of
suddenly. Both values must be in a range between 0 and 1.

IV. EXPERIMENTS

In ours experiments we used four distinct single-label of
text database: WebKB, Reuters-52, Reuters-8 and CNAE-
9. The first three databases were obtained from [14] and
Cardoso-Cachopo has applied the following pre-processing
in them: keep only letters (that is, numbers, punctuation
and etc were removed). Turn all letters to lowercase. The
title/subject of each document was added at the body of the
document. Words with less than 3-characters length were
removed. We also removed the stopwords of the documents
[3]. Next step, the words were stemmed, that is, the words
were reduced to their stem by applying Porter’s Stemmer
algorithm [15]. Finally, each document was represented as a
vector, where each dimension of the vector is one stemmed
word and its value is the frequency of the word in the
document. Words which do not happen in the document
have frequency zero. Besides theses procedures, we reduced
the quantity of words to 3000 using mutual information
(Equation 1) on the training set of each database (see

Table II
INFORMATION ABOUT THE DATABASES USED IN THE EXPERIMENTS.

#C #t Training set Test set
Reuters-52 52 3000 6532 2568
Reuters-8 8 3000 5485 2189
WebKb 4 3000 2803 1396
CNAE-9 9 856 900 180

Table II). This latter step was needed because of the aIB
algorithm’s limitation, that uses a great quantity of memory.
For the CNAE-9 database the following steps were per-

formed: initially, we also kept only letters and then we
removed prepositions of the texts 3. Next, the words were
transformed to their canonical form. Finally, using a similar
procedure applied to the other databases, each document was
represented as a vector, where the weight of each word is
its frequency in the document.
Information about each database are illustrate in Table II,

where #C indicates the number of classes, #t the number
of terms and “Training” and “Test” set indicate the number
of documents used to training and test in the experiments,
respectively. The division of the three first databases is equal
to found in [14].
The chosen parameters’ values for the aIB and sIB were

those mentioned in the Section II, and they are the same
applied in [4], [5]. For IAE’s parameters we chosen the
cited values in Section III. The other algorithms do not
need to fix any parameter, just the number of terms/clusters.
With exception of sIB, every algorithms used here are
deterministic, therefore they were applied only once on
each database. The sIB algorithim needed a long time to
accomplish the experiments, so it was applied just once on
the databases, but since it repeats H times its procedure, it
is possible to obtain a good estimate of its performance.
All algorithms were applied to the set of training

databases to reduce their dimension down to 50, 100, 150,
200 and 250 terms/clusters. In addition to the reduction,
we applied to the vectors representing the documents the
infinite norm normalization. The terms/clusters selected by
each algorithm were used by Nearest Neighbor with cossine
metric on the test databases to perform the classification of
documents [16]. The choice of this classifier is motivated by
its simplicity, because it does not need any fit of parameter
and it is a deterministic classifier.
The performances achieved by techniques are shown in

Table III and they are in percentage. Each row in the table
corresponds to one technique and each column represents
one dimension. The best obtained result for each dimension
of each database is highlighted in boldface. The techniques
MI_1 and MI_2 are two versions of mutual information,
where the first employs Equation 1 and the second uses

3In previous unpublished works using similar databases we noted that
this procedure had presented better results.

550

Equation 2.
Analyzing the performance of methods, we can see that

the performance of the IDF and MI_2 were much inferior
than the performance of other techniques. For example, for
Reuters-52 database they almost ever obtained results below
than 10%, ridiculous values if we compare with average
result, that was around 80%. Some times such equations are
used to reduce a dimension of the databases, because they
are fast and do not require great amount of memory, however
such approaches may be very poor, as it is illustrated here.
But, the version MI_1 of mutual information has almost the
same speed and consumption of memory than the MI_2,
and it had a quite superior performance, becoming it in a
approach more interesting.
Other observed details are the hit rate obtained by LSI and

the proposed technique IAE, that achieved in many cases the
best result for different databases and dimensions.

Table III
RESULTS OBTAINED BY TECHNIQUES ON THE DATABASES.

Technique Dimensions
50 100 150 200 250

Reuters-52
aIB 0.7998 0.8279 0.8396 0.8579 0.8489
sIB 0.7457 0.8361 0.8474 0.8645 0.8660
MI_1 0.7601 0.8033 0.8364 0.8497 0.8586
MI_2 0.0117 0.0218 0.0323 0.0460 0.0549
LSI 0.8501 0.8645 0.8637 0.8594 0.8567
IDF 0.0358 0.0553 0.0849 0.1336 0.1589
IAE 0.7948 0.8275 0.8633 0.8738 0.8750

Reuters-8
aIB 0.8977 0.9077 0.9150 0.9278 0.9292
sIB 0.9032 0.9100 0.9105 0.9169 0.9173
MI_1 0.8789 0.9045 0.9173 0.9274 0.9315
MI_2 0.4966 0.4984 0.4998 0.5002 0.5039
LSI 0.9260 0.9274 0.9210 0.9114 0.8990
IDF 0.5162 0.5368 0.5413 0.5482 0.5582
IAE 0.8611 0.9328 0.9283 0.9392 0.9360

WebKb
aIB 0.6461 0.6712 0.6605 0.6504 0.6669
sIB 0.6390 0.6748 0.6977 0.6948 0.6848
MI_1 0.6705 0.6662 0.6762 0.6891 0.7006
MI_2 0.3926 0.4011 0.4062 0.4176 0.4269
LSI 0.6905 0.6755 0.6812 0.6748 0.6726
IDF 0.4083 0.4327 0.4312 0.4513 0.4799
IAE 0.7013 0.7256 0.7256 0.7135 0.7178

CNAE-9
aIB 0.7722 0.8500 0.8556 0.8889 0.9111
sIB 0.8611 0.8556 0.8722 0.9222 0.9111
MI_1 0.8444 0.8722 0.9000 0.9278 0.9278
MI_2 0.1278 0.1444 0.1667 0.1889 0.2000
LSI 0.8778 0.9278 0.9222 0.9167 0.9056
IDF 0.1667 0.1833 0.2056 0.2389 0.2778
IAE 0.8389 0.8722 0.8833 0.9056 0.9111

In order to accomplish an cleared evalution of the meth-
ods, we applied two-tailed paired t-test at 5% significance
level. In order to perform this task, each method was
represented by the 20 obtained results and we applied the
t-test to evaluate the performance between each pair of
methods.
For better comprehension a mark > to indicate which al-

gorithm is statistically superior. In that way, if the technique
A1 has a better performance than A2, so we have A1> A2.

The results of this test are shown in Table IV. For example,
in the first row is shown aIB performance: it was superior
to MI_2 and IDF, and it was inferior to LSI and IAE.

Table IV
RELATIVE PERFORMANCE AMONG THE APPROACHES.

Technique Statistical Performance
aIB {LSI, IAE} > aIB > {MI_2, IDF}
sIB {LSI, IAE} > sIB > {MI_2, IDF}
MI_1 IAE > MI_1 > {MI_2, IDF}
MI_2 {aIB, sIB, MI_1, LSI, IDF, IAE} > MI_2
LSI LSI > {aIB, sIB, MI_2, IDF}
IDF {aIB, sIB, MI_1, LSI, IAE} > IDF > MI_2
IAE IAE > {aIB, sIB, MI_1, MI_2, IDF}

According Table IV both LSI and IAE were the best
methods, whose approaches were not inferior to none. Fur-
thermore the IAE was superior to 5 out of the 6 methods and
it obtained 11 out of the 20 best results, whereas the LSI was
superior to 4 methods and was the best in 7 out to the 20. In
third appears MI_1, which was inferior to IAE. aIB and sIB
come after with similar performance. In the last positions we
have IDF and MI_2, where both were statistically weaker
than the other ones.
Observing the outputs of IAE we can verify that happened

a larger elimination of terms to 50 dimensions, around
500 terms, and the performance of the system was slightly
altered. Nevertheless to 100 or more dimensions there were
few terms removed, around 5, and for CNAE-9 database any
term was removed.
Other comparisons among the algorithms are the time and

consumption of memory. The IDF, MI_1 and MI_2 are the
fastest and they needed little memory. The LSI was also
quick, but it requires a reasonable amount of memory, both
to storage and to generate the matrices. Such algorithms
needed about a hour to perform the task. The IAE and aIB
needed more time (around a day) to compute the outputs
than the previous cited ones, in addition the aIB requests
a great amount of memory, this turns prohibitive apply it
to huge databases. The sIB and IAE demand considerable
quantity of memory, nevertheless the sIB is very slow and
it needed some days (around a week) to obtain the results
of the experiments. The reason to this long wait is the
fact that the sIB computes just one dimension at each run,
whereas the other algorithms need only one step of run.
All algorithms were implemented in the Matlab software,
version 7, and they were executed on a PC with Athlon 64
Dual Core Processor 3800 with 1 GHz of RAM.

V. CONCLUSIONS

Although the vector space model has been shown to be a
good representation for documents in Information Retrieval,
it has some undesirable effects, specially in the bag of words
representation. Some of them are the presence of terms with
low semantic information, the fact that synonyms and/or

551

related terms are treated as independent, and the usual huge
sparse matrix of documents’ representation to be dealt with.
In order to minimize these drawbacks, we presented

a technique that both eliminates and merges terms for
dimensionality reduction of text database. To show the
performance of our technique we carried out a series of
experiments on four databases, and we compared their
results against others well known techniques in the literature.
Our approach was superior to 5 out of the 6 methods, and
it has similar performance to LSI. Furthermore it achieved
11 out of the 20 best results in the experiments.
To the best knowledge of the authors, this approach was

one of the first attempts to merge techniques of eliminations
and clustering terms in an iterative way. Actually, there
are many works in the literature which have applied such
techniques together, however they are normally used in
sequential steps, where each method is applied onde after
another only once. The results which we have obtained from
this work are promising. In future work we are planning on
studing new methods to enhance even more the performance
of our approach in order to get even better results.

ACKNOWLEDGEMENTS

This work is partially supported by the Internal Revenue
Brazilian Service (Receita Federal do Brasil) and Fundação
Espírito Santense de Tecnologia – FAPES-Brasil (grant
41936450/2008).

REFERENCES

[1] G. Salton, A. Wong, and C. S. Yang, “A vector space model
for automatic indexing,” Ithaca, NY, USA, Tech. Rep., 1974.

[2] F. Sebastiani, “Machine learning in automated text catego-
rization,” ACM Computing Surveys, vol. vol. 34, no. 1, pp. 1
– 47, 2002.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval, first edition ed. New York: Addison-Wesley, 1998.

[4] N. Slonim, N. Friedman, and N. Tishby, “Unsupervised
Document Classification using Sequential Information Maxi-
mization,” Proceeding of SIGIR’02, 25th ACM intermational
Conference on Research and Development of Information
Retireval, pp. pp. 129–136, 2002.

[5] N. Slonim and N. Tishby, “Agglomerative Information Bot-
tleneck,” Neural Information Processing Systems (NIPS), pp.
pp. 617–623, 1999.

[6] G. Uchyigit and K. Clark, “A New Feature Selection Method
for Text Classification,” International Journal of Pattern
Recognition, vol. 21, no. 2, pp. 423 – 438, March 2007.

[7] Y. Yang and J. O. Pedersen, “A comparative study on feature
selection in text categorization,” in ICML ’97: Proceedings of
the Fourteenth International Conference on Machine Learn-
ing. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997, pp. 412–420.

[8] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and
the subset selection problem.” Morgan Kaufmann, 1994, pp.
121–129.

[9] K. W. Church and P. Hanks, “Word Association Norms,
Mutual Information, and Lexicography,” Computational Lin-
guistics, vol. 16, no. 1, pp. 22 – 29, 1990.

[10] G. Salton and C. Buckley, “Term weighting approaches in
automatic text retrieval,” Ithaca, NY, USA, Tech. Rep., 1987.

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman, “Indexing by Latent Semantic Analysis,”
Journal of the American Society for Information Science, pp.
391 – 407, 1990.

[12] E. Garcia, “Latent Semantic Indexing (LSI) A Fast Track Tu-
torial,” 2006, http://www.miislita.com/information-retrieval-
tutorial/latent-semantic-indexing-fast-track-tutorial.pdf.

[13] P. Moravec, M. Kolovrat, and V. Snás̆el, “LSI vs. Wordnet
Ontology in Dimension Reduction for Information Retrieval,”
p. 9, 2004.

[14] A. Cardoso-Cachopo, “Datasets for single-label text catego-
rization. http://web.ist.utl.pt/ acardoso/datasets/,” 2007.

[15] M. Porter, “The Porter Stemming Algorithm.
http://tartarus.org/ martin/porterstemmer/,” 2006.

[16] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classifi-
cation, second edition ed. New York: Wiley-Interscience,
2001.

552

