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Abstract—The use of feature selection can improve accuracy,
efficiency, applicability and understandability of a learning
process and its resulting model. For this reason, many methods
of automatic feature selection have been developed. By using a
modularization of feature selection process, this paper evaluates
a wide spectrum of these methods. The methods considered
are created by combination of different selection criteria and
individual feature evaluation modules. These methods are com-
monly used because of their low running time. After carrying
out a thorough empirical study the most interesting methods
are identified and some recommendations about which feature
selection method should be used under different conditions are
provided.
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I. INTRODUCTION

The task of a classifier is to use feature vectors to assign
the represented object to a category or class [1]. Feature
selection helps us to focus the attention of a classification
algorithm on those features that are the most relevant to pre-
dict the class. Theoretically, if the full statistical distribution
were known, using more features could only improve results.
However, in practical learning scenarios, it may be better to
use a reduced set of features [2].

Sometimes, a large number of features in the input of
induction algorithms may turn them inefficient as memory
and/or time consumers, even turning them inapplicable.
Besides, irrelevant data may confuse algorithms leading
them to reach false conclusions, and hence producing worse
results. Other advantages of using feature selection may
be improving understandability and lowering costs of data
acquisition and handling. Because of all these advantages,
feature selection has attracted much attention within the
Machine Learning and Data Mining communities and many
methods have been developed [3], [4], [5], [6] with diverse
applications.

According to the different parts identified in feature selec-
tion methods [3], [7], [8], its process can be modularized [9]
as shown in figure 1. With this modularization almost every

feature selection method can be characterized through the
evaluation function and search strategy employed.

One widely used group of feature selection methods is
formed by those using the evaluation of individual features
(the lower evaluation module in figure 1) together with a
cutting criterion to select the features (this can be seen as
a simple search module). The goal of this paper is to carry
out an extensive and rigorous empirical evaluation of these
feature selection methods applied in classification.

Figure 1. Feature selection modularized

II. FEATURE SELECTION METHODS

The methods considered utilize evaluation functions that
assign an evaluation value to each feature. After the eval-
uation process, the features with a higher evaluation are
chosen, but some method is necessary to determine how
many features are selected. There are many possible cutting
criteria to perform this task. However, up to our knowledge,
there is no study in order to decide which cutting criterion is
the most appropriate. Many proposals simply establish that
some threshold should be chosen and leave the choice to the
practitioner.

This work considers a set of feature selection methods
that are created by combination of:

1) a feature evaluation measure to assign preference
values to features and
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2) a cutting criterion to choose the number of features
selected

The description of the five measures considered follows:
Mutual information (info),

also known as information gain, measures the
quantity of information that a feature gives about
the class. It comes from the Information Theory
of Shannon [10] and it is defined as the difference
between the entropy of the class and the entropy of
the class conditioned to know the evaluated feature.

Gain ratio (gain)
is defined as the ratio between information gain
and the entropy of the feature. In this way, this
measure avoids favoring features with more values,
which is the natural behavior of previous measure.
This measure was used by Quinlan in his C4.5
algorithm [11].

Gini index (gini)
can be seen as the probability of two instances
randomly chosen having a different class. It was
used by Breiman [12] to generate classification
trees.

Relief-F (reli)
is an extension of the original Relief [13] devel-
oped by Kononenko [14]. It can handle discrete
and continuous attributes, as well as null val-
ues. Despite evaluating individual features, Relief
takes into account relations among features. This
makes Relief-F to perform very well, becoming
well known and very commonly used in feature
selection.

Relevance (rele)
is a measure that discriminates between attributes
on the basis of their potential value in the formation
of decision rules [15].

In this study, we intend to apply general cutting criteria.
They have been designed to be used with any measure in any
data set. The description of the six cutting methods chosen
follows.

N best (n)
simply selects a fixed number of features.

Fraction (p)
selects a fraction, given as a percentage, of the total
number of available features.

Threshold (t)
selects the features whose evaluation is over a user
given threshold.

Threshold given as a fraction (pm)
selects the features whose evaluation is over a
threshold, where this threshold is given as a frac-
tion of the range of evaluation function.

Difference (d)
selects features, starting from the one with greater

evaluation and following the sorted list of features,
until evaluation difference is over a threshold.

Slope (s),
on the sorted list of features, selects best features
until the slope to the next feature is over a thresh-
old.

All combinations of the feature evaluation measures and
cutting criteria considered are feasible, so 30 methods will
be evaluated.

III. EMPIRICAL METHODOLOGY

With the goal stated in the introduction in mind, we
designed and conducted an extensive and rigorous empirical
study. In this section, we provided a detailed description of
the experimental method followed.

A. Experimental design

The main measures to be taken into account when eval-
uating a feature selection method are accuracy and feature
reduction.

In our classification task, there are three main factors:
1) Feature selection method, with measure and cutting

criterion as subfactors
2) Learning algorithm that generates the classifier
3) Classification problem represented in a data set
The goal of this work is to compare feature selection

methods taking into account all factors, so a complete
experimental setup has been used. In this setup, the number
of independent experiments is the number of the possible
combinations of the three factors above.

In order to get reliable estimates for classification accu-
racy on each classification task, every experiment has been
performed using 10 fold cross-validation. Any result shown
is always the average of the 10 folds.

The significance of results is assessed using statistical
tests. To choose the right test, two features of results must
be noted. First, classification rates among data sets are
not commensurable, as results on different data sets are
not comparable for a given classifier. And second, many
methods are compared at the same time. Since we are
performing multiple comparisons, we can not simply repeat
–so many times– the tests designed for a pair of variables,
as the number null hypotheses rejected by random chance
will become high. Following the methodology recommended
by Demsar [16] for this type of comparisons, we have used
Iman Davenport and Nemenyi statistical tests. A detailed
description of these tests can be found in Zar’s book [17].

B. Data sets

In order to include a wide range of classification problems,
publicly available repositories [18] [19] [20] [21] have been
explored, seeking for representative problems with different
properties (discrete and continuous data, different number of
classes, features, examples, and unknown values). Finally,
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the following 36 diverse data sets have been used: adult,
anneal, audiology, balance-scale, breast-cancer, bupa, car,
credit, echocardiogram, horse-colic, house-votes84, iono-
sphere, iris, labor-neg, led24, lenses, lung-cancer, lymphog-
raphy, mushrooms, parity3+3, pima, post-operative, primary-
tumor, promoters, saheart, shuttle-landing-control, soybean,
splice, tic-tac-toe, vehicle, vowel, wdbc, wine, yeast, yeast-
class-RPR, and zoo.

C. Classifiers

In order to estimate the quality of feature selection per-
formed by each method, the selected features are tested in
a complete learning scenario of classification problems. The
following well known learning methods [1] are considered.
To set up parameters of learning methods, preliminary
experiments with different parameter values were performed
on the data sets.

• Naive-Bayes (with LOESS for continuous data) [15]
(Nbayes), a simple method that establishes a base on
the minimal performance that other more elaborated
methods should improve on.

• k Nearest Neighbors [15] (kNN). This method has
been considered as a representant of those methods
that use distances in classification. After the preliminary
experiments, the value k = 15 was chosen as a value
large enough to get good results in all considered data
sets.

• Classification trees (C45). We intend this classifier to
represent tree and rule based classifiers in our experi-
ments. C4.5 [11] is well known and commonly used to
evaluate feature selectors.

• Artificial Neural Networks [22] (ANN). As a represen-
tation of ANN in classification we have chosen the well
known multilayered perceptron with one hidden layer.
The number of nodes in the hidden layer is adjusted to
the average between the number of inputs and outputs.
The network will have one output per class, and the
class is decided by the output with the highest value.
The training algorithm is standard back-propagation
with learning rate of 0.1 and 500 learning cycles.

D. Data transformations

Some feature selection methods require certain conditions
on data. Consequently, data are transformed just for these
feature selection methods. After feature selection, original
data are passed to the learning methods.

When necessary features were discretized using equal
frequency intervals. When continuous features were required
discrete features were translated to equidistant points in
[0, 1]. For those methods that could not cope with null or
unknown values, these values were replaced by the average
or the most frequent value on discrete features.

E. Development and running environment

The software used for learning methods has been Orange
component-based data mining software [15], except for
artificial neural networks where OrangeSNNS [23] was used.
The feature selection methods have been coded using the
Python programming language.

F. Parameters of feature selection methods

In order to compare the methods, we want completely
determined methods with fixed parameters. All evaluation
functions are parameter free except Relief-F. Based on
Relief-F analysis [24] and some preliminary experiments,
the number of neighbors to search is set to 6, and the number
of instances to sample is set to 100.

For each cutting criterion, some reasonable values of the
parameters have been tested. The finally chosen value is the
one which has lead to best average ranking in accuracy over
all data sets and measures. Cutting criteria are refered in
experiment results by the abreviation formed with its name
as given in section 2 and the value of its parameter (n17,
p0.8, t0.1, pm0.8, d0.2, and s1.5).

IV. EXPERIMENTAL RESULTS

The experimental results are extense so, just the most
relevant will be commented organized in three parts. First,
a comparison of the evaluation functions. Second, a com-
parison of cutting criteria and, finally, the comparison of the
composed methods.

A. Comparing evaluation functions

For every cutting criterion, all feature evaluation measures
have been compared. Figure 2 shows the comparison of
feature evaluation functions using the t0.1 cutting criterion.
On these figures, the abscissa axis represents the ranking
of each measure in relation with the others. The ranking
belongs to the interval [1, n] when comparing n measures
(the lower the ranking the better accuracy). The value shown
for each measure is the average ranking over the 36 data sets.

The rows of figure 2 show the results for each of the four
considered learning methods. In this way, we can compare
the effect of feature selection on each learner and we assure
independence for the application of statistical tests. The
rectangle shows Nemenyi critical distance from the best
method, at significance level of p = 0.05. Those methods
outside the rectangle can be considered to obtain a worse
accuracy. Besides, if the rectangle is slipped, all methods
that can be separated by the rectangle (lying one on each
side) have a significative difference on accuracy.

Lower figure 2 shows the same comparison but on the
number of features selected (the lower the ranking the
greater the reduction). Only one reduction is shown as the
feature selection is the same for all the classifiers.

From these figures about t0.1 comparison, we can see Re-
lief (reli) leading on accuracy, though significative difference

543



2.0 2.5 3.0 3.5 4.0 4.5 5.0
Ranking average

C45

Nbayes

ANN

kNN

reli
gain
info

rele

gini

reli
rele

info
gain

gini

reli
info
rele

gain

gini

reli
gain

rele
info

gini

1 2 3 4 5
Ranking average

No.features

gini
gain

info
rele

reli

Figure 2. Comparison of feature evaluation functions with cutting criterion
t0.1

can only be found with Gini ratio (gini). However, Relief is
the evaluation function that achieves worst feature reduction
with this cutting criterion, while gini is the measure that
offers the greatest reductions. Having in mind both objec-
tives, probably, a good choice is using information gain ratio
(gain) because, while applying the second greatest reduction
with no significative difference with the first (gini), gain
achieves good accuracy (near the first with no significative
difference).

Comparing measures with other cutting criteria, the fol-
lowing facts can be observed. For space reasons, all these
figures can not be included. n17 and p0.8 apply equal
reduction for all measures and differences on accuracy are
not significant.

As t0.1, all the remaining cutting criteria perform lower
or greater feature reduction depending on the measure value.
No significative differences have been found with them.
Anyway, the differences coming from experiments are com-
mented now. Using pm0.8 cutting criterion, gain, info and
gini stand out on accuracy and reduction simultaneously.
However, reli seems not appropriate to be used with this
cutting criterion as it gets worst accuracy and reduction
results. With d0.2, rules relevance (rele) performs best with
similar accuracy to the others and with best reduction. Relief
(reli) works better than with pm0.8 as improves on reduction,
but it is still the worst on accuracy. Gini index obtains
similar accuracy to the other methods, but being the worst

on reduction. Using s1.5 the differences are smaller.

B. Comparing cutting criteria
On figure 3, cutting criterion methods are compared when

using gain measure. While applying the greatest reductions,
pm0.8 and s1.5 criteria get the worst results on accuracy with
a significative difference. The t0.1 cutting criterion obtains
intermediate results on both accuracy and reduction, where
significative differences have not been detected with the first
method on both concepts. The rest of methods depend on
the learner being applied after them. Considering feature
reduction, p0.8 get better reduction than n17 and d0.2. On
kNN and ANN, n17 leads accuracy results. On C4.5, n17
and p0.8 lead accuracy results, while on NBayes, all of them
obtain pretty similar results.
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Figure 3. Comparison of cutting criteria with gain evaluation function

Comparing cutting criteria with other measures, the fol-
lowing facts can be observed. Reli results are similar to
those of gain, but with t0.1 becoming the worst on reduction
and improving a bit on accuracy. Considering the gini
measure, two groups of cutting criterion methods can be
clearly distinguished, as a significative distance separates
them. The first group is composed by those that achieve
higher accuracy with lower reductions. The three cutting
criteria (n17, p0.8, and d0.2) obtain very similar accuracy,
achieving greater reductions in this order: p0.8, n17 and
d0.2. The other group is formed by those methods that apply
higher reductions and achieve lower accuracy (pm0.8, t0.1,
and s1.5). Using the rele measure, the two cutting criteria
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that have achieved worst accuracy with greater reduction
are more separated of each other —near to a significative
distance at 0.05, but lower— than in all the other measures.
In this way, p0.8 get better results on accuracy while keeping
the same distance to s1.5 on reduction than in all the other
measures. On NBayes, all ahead criteria (n17, p0.8, and
d0.2) get practically the same results on accuracy, while on
C4.5, p0.8 leads accuracy with greater reduction and n17
leads on kNN and ANN.

It can be concluded that the cutting criterion to use
depends on the measure and the learner. Despite our efforts
to normalize measures and set cutting criterion parameters
that performs best with all measures, the results vary among
measures and no criterion can be generally recommended.

C. Global comparison of feature selection methods

The measures and cutting criteria have been compared
above varying just one of them independently. All the 30
combinations of measures and cutting criteria considered can
not be displayed clearly on a figure like the previous ones.
Neither a table with all the results (non aggregated) can
be interpreted. For this reason, a table with ranking from
the global comparison and some different figures are shown
here.

The results of comparing all methods at the same time are
shown in table I. The values are the average ranking over the
36 data sets. This table also considers not applying feature
selection at all, this is identified as NoFS method. Data for
each learner is ranked independently of the others

Looking at this table, we can see that n17-info, n17-
gain, n17-gini improve accuracy results from not applying
feature selection (except for NBayes). This means that
applying feature selection, even with these simple methods
can improve results while reducing data used by the learner.
The method p0.8-gini has provided greater reduction without
without a great accuracy loss.

The best method for each learner is marked with a
boldface type in table I. These are n17-gain for ANN, p0.8-
reli for C4.5, n17-info for kNN, and d0.2-info for NBayes.
While they do not reduce much the number of features, all of
them reduce features and perform better than NoFS. On the
other side, the method that applies the greatest reduction
is t0.1-gini, but its results on accuracy —though not the
worst— do not give much confidence about its application
to other problems.

V. CONCLUSIONS

In the field of classification problems, a rigorous empirical
study on individual feature evaluation measures and cutting
criterion methods has been presented. All methods created
by combination of the evaluation functions and the cutting
criteria chosen are explored with a state of the art experi-
mental design.

Feature selec- Accuracy (avg. rank) Feat.
tion method C45 Nbay. ANN knn red.
NoFS- 12.88 12.61 10.02 12.35 26.91
d0.2-info 14.12 11.58 14.26 11.45 23.58
d0.2-gain 14.61 13.14 14.64 13.80 23.09
d0.2-gini 12.80 12.61 12.98 12.35 26.91
d0.2-reli 17.35 16.41 16.11 16.03 21.21
d0.2-rele 13.67 12.39 14.55 14.15 21.71
n17-info 10.89 13.24 9.65 10.39 22.98
n17-gain 11.27 13.39 9.18 10.62 22.98
n17-gini 11.03 13.17 9.98 11.17 22.98
n17-reli 12.33 14.62 10.59 12.70 22.98
n17-rele 11.65 13.27 10.32 11.27 22.98
p0.8-info 10.09 15.38 12.65 12.42 18.73
p0.8-gain 11.79 14.09 14.73 13.26 18.73
p0.8-gini 10.83 13.53 12.50 12.35 18.73
p0.8-reli 9.35 16.08 14.56 14.45 18.73
p0.8-rele 10.73 12.94 13.65 13.35 18.73
pm0.8-info 21.79 19.35 19.55 20.73 7.17
pm0.8-gain 21.85 19.88 20.42 20.33 7.35
pm0.8-gini 21.42 18.50 18.70 19.38 7.59
pm0.8-reli 20.02 20.53 22.00 20.32 9.18
pm0.8-rele 19.76 18.35 18.95 19.14 8.65
s1.5-info 22.74 19.61 22.03 21.50 6.00
s1.5-gain 22.17 19.97 21.86 20.94 6.48
s1.5-gini 22.71 20.08 22.55 21.62 5.91
s1.5-reli 21.26 21.21 23.02 22.41 8.06
s1.5-rele 23.18 21.70 22.80 22.20 7.08
t0.1-info 17.00 15.21 16.17 17.18 11.33
t0.1-gain 15.15 16.09 15.47 16.65 10.36
t0.1-gini 21.39 20.62 22.97 21.83 5.59
t0.1-reli 12.65 12.61 13.23 12.35 26.91
t0.1-rele 17.52 13.86 15.92 17.30 16.36

Table I
GLOBAL COMPARISON OF ALL FEATURE SELECTION METHODS

CONSIDERED

While reducing the number of features used, some of the
feature selection methods evaluated improve results in most
of the problems considered. This confirms the usefulness of
feature selection.

A contraposition of accuracy and feature reduction is
detected, showing that methods performing greater reduc-
tions start losing relevant features leading to worse accuracy
results. For this reason, a single method can not be recom-
mended for all situations, the table with methods ranked on
accuracy and reduction for each learner can be used as a
guide.

About evaluation functions, in general, those based on
information theory reached better accuracy results, while for
C4.5 learner Relief was the best measure.

No cutting criterion can be generally recommended.
Those independent from measure reach better accuracy
results, while the others reach higher feature reductions.

Results vary among learners, having different feature
selection methods that perform well with each of them.
Altough, this would recommend using the wrapper approach,
this approach could not compete with individual feature
evaluation methods in computing time nor in applicability
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with a large number of features. On that kind of problems,
some of the evaluated methods are more appropiate.
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