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Abstract—Interest points have been used as local features
with success in many computer vision applications such as
image/video retrieval and object recognition. However, a major
issue when using this approach is a large number of interest
points detected from each image and created a dense feature
space. This influences the processing speed in any runtime
application. Selecting the most important features to reduce the
size of the feature space will solve this problem. Thereby this
raises a question of what makes a feature more important than
the others? In this paper, we present a new technique to choose
a subset of features. Our approach differs from others in a fact
that selected feature is based on the context of the given image.
Our experimental results show a significant reduction rate of
features while preserving the retrieval performance.
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I. INTRODUCTION AND RELATED WORK

The growing of image databases with large varieties in
image conditions such as geometrical and illumination changes
leads to the need for invariant features. Local features are
widely used because of their stability under different imaging
conditions and their success in many computer vision applica-
tions [8], [13]. Among those, features extracted from interest
points, which are found at different types of junctions, on
contrast areas, or texture areas, are used very often [7], [5], [8].
A good overview of existing works can be found in [13]. There
are several well-known techniques including Scale Invariant
Feature Transform (SIFT) [7], PCA-SIFT [5], and Multi-
Scale Oriented Patches (MOPS) [1]. These techniques usually
introduce a large number of descriptors. For instance, SIFT
descriptor in general creates approximately 2000 descriptors
for an image with size 500×500 pixels [7]. Therefore, the
main goal of runtime processing systems is to deal with the
large amount of data.

In [5], the authors present a method of reducing the di-
mensionality of SIFT descriptors, using the PCA dimensional
reduction method which projects the original SIFT feature
space from 128 dimensions to 20 dimensions. The PCA-SIFT
method achieves significant space benefits and requires a third
of the time in the matching phase compared to the original
SIFT. A different approach is put forward in [11] where a
vocabulary tree is used to index descriptors. The K-means
algorithm is used to cluster all descriptors and place them in
the correct branch. For each query image, extracted descriptors
are traced down the tree, a score list is given for all leaves, and
the one with the highest score is returned as the best match.

This approach has proved to be very fast and scalable to a
very large number of descriptors. In [12], another approach
is proposed that is instead of comparing all features, a subset
of features that are within a fixed radius around each point is
considered for computation.

The above approaches do not alter the original number
of features. This means that one need to compute all the
descriptors for every detected points before any further step
takes place. The computing descriptors is much more time
consuming compared to the finding interest points step. There-
fore, another approach is to first reduce the number of interest
points, then compute the descriptors of selected points only. In
[10], the authors also experiment that not all extracted points
are equally important i.e. some are irrelevant in the retrieval
phase. In this reference, it is proved that having too many
descriptors can reduce the recognition rate. For these reasons,
attention should be focused only on those feature points that
are informative.

In developing techniques for selecting descriptors, it is
generally assumed that certain descriptors are more important
than others. The terms “discriminative” and “informative” are
usually used to describe significant descriptors. In [6], the
authors observe that certain features are more stable and thus
able to being better handle variations in scale and viewpoint.
They therefore aim to select such features. For each feature
extracted by means of the SIFT detector from each image
at each location, they calculate a posterior probability. The
probability values are used as ranking criteria. In [1], the
authors present an adaptive non-maximal suppression (ANMS)
algorithm that selects a subset of interest points based on their
corner strength. The general idea of this algorithm is that for
each point extracted through the process described above, they
calculate the corner strength, and then select points that are
maximum within their neighbourhood of radius k pixels. In all
their experiments, the authors select a maximum of 500 points
for each image. This means a set of 500 descriptors is used
to describe the content of an image. Another technique for
selecting informative (i-SIFT) descriptors, using the SIFT de-
tector, can be found in [3]. For each given image, informative
descriptors are defined as those that appear in discriminative
regions. These regions are detected on the basis of an entropy-
coded image derived by calculating posterior distribution. Also
in [9], unique features which are stand out in the feature space
are chosen. Most of these methods select a fixed number of
features by considering their relations with nearby neighbors
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only.
In this paper, we also focus on developing a technique for

selecting a subset of descriptors. Our approach differs from
existing ones where we take into account the context of the
image. This means that an image with a complicated scene
(e.g. busy background, lots of textures, or overlapped objects)
should be expected to have more features than an image with a
simple scene, as well as more features should be located in the
part with more details in an image. Our approach assures that
the distribution of selected points should reflect this variety
of image context. Depending on the complexity of a given
image, our approach adaptively finds an appropriate number
of features. Moreover, there is always a trade off between
speeding up the system and the accuracy or retrieval rate. In
developing a new technique, we also aim at balancing these
two issues i.e. keeping the performance while reducing the
size of the feature space for an efficient process. In the next
section, we will describe in more details our approach in
selecting features. Experiments are carried out in section III.
Conclusions wraps up the paper in section IV.

II. OUR APPROACH

General local feature detector consists of two steps. The
first is to find interest points, and then describe a small region
centered at each point and convert this to a descriptor. In this
section, we will look into each step. Once all interest points
have been found, we will apply our proposed technique for
selecting the most informative set.

A. Multi-scales interest point detector

For finding interest points, multi-scale Harris detector is
one of the most common approaches [13]. The Harris corner
detector was first introduced in 1986 by Harris and Stephens
[4]. This detector is based on the auto correlation matrix to
describe local image structures. This method is able to find
points that are located in areas where image significantly varies
in both directions by measuring the cornerness. Points detected
by this method are shown to be invariant under rotation and
translation only. Alternatively, this method has been improved
to be invariant to scale as well [8], [7], [1], which is so called
multi-scales invariance. We chose the Multi-Scales Oriented
Patches (MOPS) in [1] as a starting point for detecting local
features. A brief description of this method is given as follows:

Let us take an image set I. Each input image Ii ∈ I is
incrementally smoothed with a Gaussian kernel {σt}t=1..n.
An image pyramid is then constructed by down-sampling the
image at rate r (see figure 1). In the second step, interest points
are extracted using the Harris corners detector at each level of
the pyramid. This step yields a set of points at locations where
the corner strength is a local maximum of a 3×3 neighborhood
and above a threshold of 10 [1]. In the next step, the sub-pixel
precision is found by means of a Taylor expansion (up to the
quadric term) at those extreme points. An example of features
extracted by MOPS is shown in figure 2.

At this stage, we are able to obtain a set of interest points.
In the following section, we describe the technique for filtering
non-important points.

Fig. 1. An illustration of image pyramid defined in MOPS.

Fig. 2. An example using MOPS, the size of circles defines different scales
in the image pyramid.

B. Image content representation

Different from existing techniques for selecting final interest
points, our selection mechanism takes into account the whole
image context. The image context often contains different
patches where some contain more details than the others. For
example, an image with a bicycle placing on a grass area,
other methods will find many points in the grass area because
of its textural surface. In our approach, we consider that the
grass patch is homogenous region so it is only required a small
number of points to represent the whole area, and more points
should be located on the patch with the bicycle. For that we
need to find a way to represent the whole image into a number
of patches, where each patch is a homogenous region. The B-
Tree triangular coding method introduced by Distasi et. al. [2]
meets this requirement.

B-Tree triangular coding (BTTC) is a method originally
designed for image compression. A given image I is con-
sidered as a finite set of points in a 3-dimensional space,
i.e. I = {(x, y, c)|c = F (x, y)} where (x, y) denotes pixel
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position, and c is an intensity value. BTTC tries to approximate
I with a discrete surface B = {(x, y, d)|d = G(x, y), defines
by a finite set of polyhedrons. In this case, a polyhedron is
a right-angled triangle (RAT). Let assume a RAT with three
vertices (x1, y1), (x2, y2), (x3, y3) and c1 = F (x1, y1), c2 =
F (x2, y2), c3 = F (x3, y3), we have a set {xi, yi, ci}i=1..3 ∈ I .
The approximating function G(x, y), (x, y) ∈RAT is computed
by the linear interpolation:

G(x, y) = c1 + α(c2 − c1) + β(c3 − c1) (1)

where α and β are defined by the two relations:

α =
(x− x1)(y3 − y1)− (y − y1)(x3 − x1)

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)
(2)

β =
(x2 − x1)(y − y1)− (y2 − y1)(x− x1)

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)
(3)

An error function is used to check the approximation:

err = |F (x, y)−G(x, y)| ≤ ε, ε > 0 (4)

If the condition does not meet then the triangle is divided
along its height relative to the hypotenuse, introducing two
other RAT. The coding scheme is recursively until no more
division takes place. In the worst case, the process is stopped
when it reaches to the pixel level i.e. three vertices of a RAT
are three neighbor pixels and err=0. The decomposition is
arranged in a binary tree. Without loss of generality, the given
image is assumed having square shape, if not the image is
padded in a suitable way. With this assumption, all RAT will
be isosceles. Finally, all points at the leave level are used for
the compression process. Figure 3 shows an illustration of
the above process. Examples using BTTC to represent image
context are shown in figure 4.

Fig. 3. An illustration of building BTree using BTTC. The last figure shows
an example of a final BTree.

In the reference [2], experiments prove that BTTC produces
images of satisfactory quality in objective and subjective point
of view. Furthermore, this method is very fast in execution

(a)

(b)

Fig. 4. Examples using BTTC: (a) all RATs are drawn for observation. (b)
vertices of RATS are embedded to the image.

time, which is also an essential factor in our selection process.
We note here that for encoding purpose, the number of points
(or RAT) is very high (up to several ten thousand points
depends on the image context). However, we do not need
that detail level, by setting the error approximation larger we
can obtain less points while still preserve homogenous region
criteria. We experimentally set ε = 50 in all experiments.

C. Point filtering

After finding all image patches, we will filter out non-
important points. Because each patch is a homogenous region,
only one point is needed to represent that region. We first
superimpose all interest point found in section II-A and
the BTTC representation into one image. Note that BTTC
representation contains only RAT at the leave level. At each
RAT, we find all points within that RAT including points
lying on the edges. Given a RAT defined by three vertices
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P1(x1, y1), P2(x2, y2), P3(x3, y3), and a point P (x, y), we
compute the Barycentric coordinates to detect if P is inside
the triangle RAT(P1, P2, P3):

T1 = ((P2 ◦ P2) ∗ (P1 ◦ P3)− (P1 ◦ P2) ∗ (P2 ◦ P3)) ∗ T

T2 = ((P1 ◦ P1) ∗ (P2 ◦ P3)− (P1 ◦ P2) ∗ (P1 ◦ P3)) ∗ T

where T = 1/((P1 ◦ P1) ∗ (P2 ◦ P2) − (P1 ◦ P2) ∗ (P1 ◦ P2))
and ◦ denotes the dot product. Then, P ∈ RAT(P1, P2, P3) when
T1, T2 > 0 and T1 + T2 < 1.

For selecting the representative point for that RAT, point with
highest corner strength is chosen. The process is repeated until all
the RAT are checked. Only for the set of representative, descriptors
will be computed. Figure 5 show some examples before and after
filtering with BTTC.

(a)

(b)

Fig. 5. Examples using BTTC for point filtering.

D. Descriptor computation
Computing descriptor is done similar to what described in [1].

Each representative point is described in terms of its orientation

within a window of size 28×28 (corresponding to a Gaussian kernel
with σ = 4.5), and through sampling of grey level values in a 40×40
neighborhood. The grey level values are sampled in a grid with a
spacing of 5 pixels rotated according to the orientation. This gives a
feature vector for each landmark consisting of 8×8 grey level values.
Before matching, the feature vector is standardized by subtracting the
mean and dividing it by its standard deviation. Then, as in [1], we
perform a Haar wavelet transform on the 8 × 8 descriptor patch to
form a feature vector of 64 dimensions Fj .

III. EXPERIMENTAL RESULTS

Our experiments are carried with two different datasets. The first
dataset is called the AAU dataset, which contains of 135 images.
Images are captured of 21 buildings in the Aalborg University area.
The second dataset, which is called the centrum set, contains of
images taken in the Aalborg center. This is a set of 442 images of 19
buildings. To create the diversity, images in these datasets are taken
by different persons, at different times and different days during one
year.

Our first experiment is setup to see how our approach can reduce
the number of features. To do that, we compute for each image the
number of interest points with and without using BTTC. Results are
shown in figures 6 and 7 with the AAU dataset and the centrum set,
respectively.

(a)

(b)

Fig. 6. Reduction rate of the AAU testset. (a) Reduction rate for each image
(in a sorting order). (b) Reduction probability.
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(a)

(b)

Fig. 7. Reduction rate of the Centrum testset. (a) Reduction rate for each
image (in a sorting order). (b) Reduction probability.

The dotted-lines show the averaged reduction rate for the whole
datasets. The other lines show reduction rate at each image, these
lines are sorted increasingly. The maximum values on the x-axis are
the sizes of the two datasets. In figure 6a, the average reduction rate
for the AAU dataset is 37%. Approximate 50% of the images in
this dataset have more than 37% of reduction rate, and the highest
reduction rate is 78%. For a better view, we draw a histogram of
the reduction probability where each column shows the number of
images at a certain reduction rate (see figure 6b). In case of the
centrum dataset, the average reduction rate is 23%. Compared to the
AAU dataset, this dataset in general is much more complex in the
image content, therefore, more points should be used to represent the
image.

Now we know that the number of features can be reduced
significantly, we need to prove that this process does not come at the
cost of lower retrieval rate. The local feature detector is implemented
in an offline process. All images from each dataset are calculated
interest points. The BTTC is applied to select representative set for
each image. Descriptors are then computed for representative points.
These descriptors are stored in a database. When a query comes,
the same process is implemented on the query image. A matching
between query descriptors and the database is done to find a matching
list. The matching list is ranked based on similarity values using the
Euclidean distance. We only consider the top 5 in the matching list
and compute the precision value. With the AAU dataset, we capture

another 37 images of AAU buildings and use this set as a query
set. In case of the centrum dataset, we consequently use each image
from the dataset as a query one. The query image is compared to
the rest of the dataset. For comparison, we implement the original
MOPS without BTTC filtering. The same matching process is used
and we get precision values in top 5 best matches for each query
image. In figure 8, we calculate the precision for top 1,2,3,4, and 5
in the matching list. Results show that the proposed approach with
much less points not only be able to preserve the retrieval rate, but
even improve it further in both experiments.

(a)

(b)

Fig. 8. Precision with the AAU and the Aalborg centrum datasets: comparison
between using standard interest points and points after filtering with BTTC.

To evaluate the speed, we store the computing time of the BTTC
filtering for both datasets. The BTTC is applied to all 25 images
in the image pyramid including 5 different scales and 5 different
down-samples. The average time for processing one image pyramid
is 0.05 second. This is a small number compared to the time com-
puting descriptors (approximate 1 second for each image pyramid).
Moreover, with the reduction of the feature size, the time complexity
in the retrieval process achieves 20 and 40% for the AAU and the
centrum dataset, respectively. In overall, the adding of BTTC for
filtering interest points speeds up the search significant.

IV. CONCLUSION

Reducing the size of searching space to speed up the search process
is an essential factor in many computer vision systems, especially
when dealing with a fast growing of image databases and realtime
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applications. Different ways to approach the goal can be considered.
In this paper, we focus on reducing the size of the feature space
by removing non-important features. Our technique is different from
existing ones where we consider the representation of image context
as the criteria for selecting informative features. We proved that the
proposed technique can reduce a significant number of features. Our
experiments show that the system can even improve the retrieval
results a bit further with informative features. Considering the context
of the image in filtering will remove unnecessary features and will
be able to present important detail in the image content.
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