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Abstract—In this work we analyse the behaviour of the C4.5
classification method with respect to a bunch of imbalanced
data-sets. We consider the use of two metrics of data complexity
known as “maximum Fishers discriminant ratio” and “nonli-
nearity of 1NN classifier”, to analyse the effect of preprocessing
(oversampling in this case) in order to deal with the imbalance
problem.

In order to do that, we analyse C4.5 over a wide range of
imbalanced data-sets built from real data, and try to extract
behaviour patterns from the results. We obtain rules that
describe both good or bad behaviours of C4.5 in the case
of using the original data-sets (absence of preprocessing) and
when applying preprocessing.

These rules allow us to determine the effect of the use
of preprocessing and to predict the response of C4.5 to
preprocessing from the data-set’s complexity metrics prior
to its application, and then establish when the preprocessing
would be useful to.

Keywords-C4.5; Classification; Data complexity; Imbalanced
Data-sets; Oversampling.

I. INTRODUCTION

This contribution is focused on the framework of imba-
lanced data-sets, also known as class imbalance problem,
which refers to the case where one class, usually the one
that contains the concept to be learnt (the positive class), is
under represented in the data-set [1]. This issue is present
in many real-world classification tasks and has been defined
as a current challenge of the Data Mining community [2].

It is well-known that the prediction capabilities of classi-
fiers are strongly dependent on the problem’s characteristics.
An emergent field, that uses a set of complexity measures
applied to the problem to describe its difficulty, has recently
arisen. These measures quantify particular aspects of the
problem which are considered complicated to the classifi-
cation task [3]. Studies of data complexity metrics applied
to particular classification’s algorithms can be found in [3],
[4], [5], [6].

We are interested in analysing the relationship between
the preprocessing of the imbalanced data for classification
and two data complexity measures, which were computed
using the original data-sets (not preprocessed). Therefore we

try to predict when the use of the preprocessing technique
will benefit the classifier using the data complexity metrics.
The first one is known as maximum Fishers discriminant
ratio, which is based on the overlap in feature values from
different classes. The second one is the nonlinearity of
1NN classifier, which measures the geometry, topology and
density of manifolds. We have considered a well-known
classifier, the C4.5 decision tree [7], which has been used
in previous analysis of imbalanced data [8].

In order to deal with the problem of imbalanced data-
sets balancing the distribution of training examples in both
classes, we will make use of a preprocessing technique,
the hybridization of the “Synthetic Minority Over-sampling
Technique” (SMOTE) [9] with the Wilson’s Edited Near-
est Neighbour Rule (ENN) [8]. SMOTE-ENN forms new
minority class examples by interpolating between several
minority class examples that lie together and then removes
any example from the training set misclassified by its three
nearest neighbours.

We have selected a large collection of data-sets with
different degrees of imbalance from the UCI repository [10]
for developing our analysis. We have analysed the intervals
of values of the two data complexity measures in which
C4.5 performs good or bad, considering the use of SMOTE-
ENN or not. We have formulated a rule for such intervals
in both cases, comparing the support (number of data-sets
included in the interval) and average AUC for the rules
without preprocessing with those obtained using SMOTE-
ENN. We can determine when the use of SMOTE-ENN is
a necessity in order to obtain a good performance in the
framework of imbalanced data-sets.

This contribution is organised as follows. First, Section
II introduces two data-complexity measures used. Next,
Section III presents the problem of imbalanced data-sets,
describing its features and the metric we have used in this
context. Section IV contains the experimental framework for
the study and the analysis of the results for C4.5. Finally,
Section V summarizes and concludes the work.
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II. DATA COMPLEXITY MEASURES

In this section we introduce the two metrics we have
used in this contribution, first proposed in [11] among other
ones. We must point out that only these two measures offer
information in our experimental study after computing all
the twelve metrics. Their description is detailed next:

F1: maximum Fishers discriminant ratio. Fishers discri-
minant ratio for one feature dimension is defined as:

f =
(μ1 − μ2)2

σ2
1 + σ2

2

where μ1, μ2, σ2
1 , σ2

2 are the means and variances of the two
classes respectively, in that feature dimension. We compute
f for each feature and take the maximum as measure F1.
For a multidimensional problem, not all features have to
contribute to class discrimination. The problem is easy as
long as there exists one discriminating feature. Therefore,
we can just take the maximum f over all feature dimensions
in discussing class separability. F1 is a measure of overlap
in feature values from different classes and has a range of
(0,+∞).

N4: nonlinearity of 1NN classifier. This is the nonlineari-
ty measure, as defined by Linear Programming. Hoekstra
and Duin [12] proposed a measure for the nonlinearity of a
classifier with respect to a given data-set. Given a training
set, the method first creates a test set by linear interpolation
(with random coefficients) between randomly drawn pairs
of points from the same class. Then the error rate of the
classifier (trained by the given training set) on this test set
is measured. Here we use such a nonlinearity measure for
the linear classifier defined for the measure L1 (see [11]). In
the case of N4, error is calculated for a nearest neighbour
classifier. This measure is for the alignment of the nearest-
neighbour boundary with the shape of the gap or overlap
between the convex hulls of the classes. N4 is a measure
of geometry, topology and density of manifolds and it is
bounded in [0, 1].

III. IMBALANCED DATA-SETS IN CLASSIFICATION

Standard classification algorithms could be biased towards
the majority class trying to maximize the overall accuracy
and their performance is poor on imbalanced data-sets.
Thus these measures can lead to erroneous conclusions over
imbalanced data-sets since they do not take into account
the proportion of examples for each class. Therefore, in this
work we use the AUC metric [13], defined as

AUC =
1 + TPrate − FPrate

2
, (1)

where TPrate and FPrate are the percentage of correctly
and wrongly classified cases belonging to the positive class
respectively.

Finally, we must stress the concept of the Imbalance Ratio
(IR), which is defined as the ratio of the number of instances

of the majority class and the minority class [14] and that has
been used as a metric in this framework to categorise the
data according to their degree of imbalance [15].

IV. EXPERIMENTAL STUDY

In this study, our aim is to show the effect of the use
of SMOTE-ENN in the characterisation of the behaviour of
C4.5 in the scenario of imbalanced data-sets by means of
the F1 and N4 data complexity measures.

In the remaining of this section, we will first present
the experimental framework and all the parameters used
in this study in Subsection IV-A and then we will show
how the IR has little relationship with the behaviour of
C4.5 in Subsection IV-B. The empirical study for C4.5
in imbalanced data-sets with the data complexity measures
separately is presented in Subsection IV-C. In Subsection
IV-D we analyse the collective evaluation of the set of rules.

A. Experimental Set-Up

To carry out the different experiments we consider a 5-
fold cross-validation model, i.e., 5 random partitions of data
with a 20%, and the combination of 4 of them (80%) as
training and the remaining one as test. For each data-set we
consider the average results of the five partitions.

Table I
SUMMARY DESCRIPTION FOR IMBALANCED DATA-SETS

Data-set #Ex. #Atts. Class (min., maj.) %Class(min.; maj.) IR
Glass1 214 9 (build-win-non float-proc; remainder) (35.51, 64.49) 1.82
Ecoli0vs1 220 7 (im; cp) (35.00, 65.00) 1.86
Wisconsin 683 9 (malignant; benign) (35.00, 65.00) 1.86
Pima 768 8 (tested-positive; tested-negative) (34.84, 66.16) 1.90
Iris0 150 4 (Iris-Setosa; remainder) (33.33, 66.67) 2.00
Glass0 214 9 (build-win-float-proc; remainder) (32.71, 67.29) 2.06
Yeast1 1484 8 (nuc; remainder) (28.91, 71.09) 2.46
Vehicle1 846 18 (Saab; remainder) (28.37, 71.63) 2.52
Vehicle2 846 18 (Bus; remainder) (28.37, 71.63) 2.52
Vehicle3 846 18 (Opel; remainder) (28.37, 71.63) 2.52
Haberman 306 3 (Die; Survive) (27.42, 73.58) 2.68
Glass0123vs456 214 9 (non-window glass; remainder) (23.83, 76.17) 3.19
Vehicle0 846 18 (Van; remainder) (23.64, 76.36) 3.23
Ecoli1 336 7 (im; remainder) (22.92, 77.08) 3.36
New-thyroid2 215 5 (hypo; remainder) (16.89, 83.11) 4.92
New-thyroid1 215 5 (hyper; remainder) (16.28, 83.72) 5.14
Ecoli2 336 7 (pp; remainder) (15.48, 84.52) 5.46
Segment0 2308 19 (brickface; remainder) (14.26, 85.74) 6.01
Glass6 214 9 (headlamps; remainder) (13.55, 86.45) 6.38
Yeast3 1484 8 (me3; remainder) (10.98, 89.02) 8.11
Ecoli3 336 7 (imU; remainder) (10.88, 89.12) 8.19
Page-blocks0 5472 10 (remainder; text) (10.23, 89.77) 8.77
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34) 9.35
Vowel0 988 13 (hid; remainder) (9.01, 90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11) 10.29

build-win-non float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74, 93.26) 13.84
Yeast1vs7 459 8 (nuc; vac) (6.72, 93.28) 13.87
Shuttle0vs4 1829 9 (Rad Flow; Bypass) (6.72, 93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07, 93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93, 94.07) 15.85
Abalone9vs18 731 8 (18; 9) (5.65, 94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11) 19.44

build-win-non float-proc,headlamps)
Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65, 95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43, 96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96, 97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49, 97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77, 99.23) 128.87

We have selected forty-four data-sets from the UCI reposi-
tory [10]. The data are summarized in Table I, showing the
number of examples (#Ex.), attributes (#Atts.), name of each
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class (minority and majority), class attribute distribution and
IR. For every binary data-set generated, we compute the data
complexity metrics before preprocessing.

As we stated previously, the algorithm selected for our
study is C4.5, which was run using KEEL software [16]
following the recommended parameter values given in this
platform, that is, a confidence level of 0.25, 2 minimum
item-sets per leaf and the application of pruning for the final
tree.

B. Analysis of C4.5 behaviour based on the IR

In Table II we have summarized the global average
Training and Test AUC and standard deviation obtained by
C4.5 with and without SMOTE-ENN preprocessing.

Table II
GLOBAL AVERAGE TRAINING AND TEST AUC FOR C.45

Global % AUC Global % AUC
Training Test

C4.5 without preprocessing 87.33% ± 13.89 79.29% ± 15.15
C4.5 with SMOTE-ENN preprocessing 94.38% ± 6.35 83.62% ± 13.09

We depict in Figure 1 the results for C4.5 in the case of
preprocessing the 44 data-sets with SMOTE-ENN and not
preprocessing them, sorting the data-sets by their IR value.
We can observe that the good and bad results of C4.5 with
and without SMOTE-ENN preprocessing is not related with
the IR value, nor the improvements achieved with SMOTE-
ENN. Therefore, the use of IR in order to characterise the
improvement of the preprocessing is insufficient, and we
need to find alternatives in order to depict such behaviour.

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

90,00

95,00

100,00

0 5 10 15 20 25 30 35 40 45

C45-None Training C45-None Test C45-Enn Training C45-Enn Test

Figure 1. C4.5 without and with SMOTE-ENN AUC in Training/Test
sorted by IR

C. Determination of Rules Based on C4.5 Behaviour with
and without SMOTE-ENN

In Figures 2 and 3 the results for C4.5 with the original
data-sets are depicted, whereas Figures 4 and 5 represent the
results for C4.5 with SMOTE-ENN preprocessing.

In each figure the data-sets are sorted by the ascending
value of the corresponding complexity measure. The X axis
depicts the data-sets so each one has the same space in
the graphic representation. The Y axis depicts the AUC
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Figure 2. C4.5 without preprocessing AUC in Training/Test sorted by F1
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Figure 3. C4.5 without preprocessing AUC in Training/Test sorted by N4
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Figure 4. C4.5 with SMOTE-ENN AUC in Training/Test sorted by F1
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Figure 5. C4.5 with SMOTE-ENN AUC in Training/Test sorted by N4

obtained both in training and test. We can find different ad-
hoc intervals which present good or bad behaviour of C4.5
and we use a vertical line to delimit them.
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• We understand as good behaviour an average high test
AUC in the interval (at least 80%), as well as the
absence of over-fitting.

• By bad behaviour we refer to the presence of over-
fitting and/or average low test AUC in the interval.

Table III
SIGNIFICANT INTERVALS

C4.5 C4.5 with SMOTE-ENN Behaviour
Interval Interval
F1 ≥ 2.391 F1 ≥ 1.124 good behaviour
N4 ≤ 0.1122 N4 ≤ 0.2069 good behaviour

F1 ≤ 0.366 F1 ≤ 0.366 bad behaviour
N4 ≥ 0.2261 N4 ≥ 0.2261 bad behaviour

In Table III we have summarized the intervals found ad-
hoc from Figures 2 to 5. From these ad-hoc intervals we
construct several rules that model the performance of C4.5
in Table IV. Given a particular data-set X , we denote the
complexity measure of X with the notation CM [X]. Table
IV is organised with the following columns.

• The first column corresponds to the identifier of the
rule for further references.

• The “Rule‘” column presents the rule itself.
• The third column “Support” presents the percentage of

data-sets which verifies the antecedent of the rule.
• The column “% Training” shows the average AUC in

training of all the data-sets covered by the rule.
• The column “Training Diff.” contains the difference

between the training AUC of the rule and the global
training AUC.

• The column “% Test” shows the average AUC in test
of all the data-sets covered by the rule.

• The column “Test Diff.” contains the difference
between the test AUC of the rule and the global test
AUC.

The positive rules (denoted with a “+” symbol in their
identifier) always show a positive difference with the global
average AUC, both in training and test. The negative ones
(with a “-” symbol) verify the opposite case. The support
of the rules shows us that we can characterise a wide range
of data-sets and obtain significant differences in AUC. We
have also added the string “-W” for the obtained without
preprocessing, and the string “-S-ENN” for the rules based
on the use of SMOTE-ENN.

From this set of rules we can state that, according to the
thresholds of Table III for our data-sets, a high F1 value or
a low N4 value results in a good behaviour of C4.5 with and
without preprocesing. On the other hand, a low value in the
F1 metric or a high N4 value produces a bad behaviour of
C4.5 in both scenarios. If we compare the use of SMOTE-
ENN preprocessing with not preprocessing, we can observe
two interesting facts:

• The positive rules increment their support significantly
with the use of SMOTE-ENN preprocessing. The ave-
rage AUC in training and test are similar to not pre-
processing. Thus the positive rules for SMOTE-ENN
characterise the regions in which the use of SMOTE-
ENN preprocessing will allow C4.5 to increase its
performance with respect to not preprocessing.

• The negative rules maintain their support. The diffe-
rences in training AUC are lower, but the differences
in test are similar. Therefore the negative regions have
characterised the data-sets which do not improve with
the use of SMOTE-ENN very accurately.

D. Collective Evaluation of the Set of Rules

The objective of this section is to analyse the good rules
jointly, and the bad rules together as well. We perform the
disjunctive combination of all the positive rules to obtain a
single rule (and all the negative ones for another one) which
will be activated if any of the component rules’ antecedents

Table IV
RULES WITH ONE METRIC OBTAINED FROM THE INTERVALS FOR C4.5

Id. Rule Support %Training Training % Test Test
Diff. Diff.

C4.5 without preprocessing
R1-W+ If F1[X] ≥ 2.391 31.82% 96.76% 9.43% 91.89% 12.6%

then good behaviour
R2-W+ If 0 ≤ N4[X] ≤ 0.1122 36.36% 97.15% 9.82% 92.43% 13.14%

then good behaviour

R1-W- If 0.1691 ≤ F1[X] ≤ 0.366 20.45% 74.84% -12.49% 62.80% -16.49%
then bad behaviour

R2-W- If N4[X] ≥ 0.2261 36.36% 74.19% -13.14% 62.44% -16.85%
then bad behaviour

C4.5 with SMOTE-ENN preprocessing
R1-S-ENN+ If F1[X] ≥ 1.124 50.00% 97.85% 3.47% 92.34% 8.72%

then good behaviour
R2-S-ENN+ If 0 ≤ N4[X] ≤ 0.2069 63.63% 97.56% 3.18% 91.96% 8.34%

then good behaviour

R1-S-ENN- If 0.1691 ≤ F1[X] ≤ 0.366 20.45% 86.13% -8.25% 67.62% -16%
then bad behaviour

R2-S-ENN- If N4[X] ≥ 0.2261 36.36% 88.81% -5.57% 69.03% -14.59%
then bad behaviour
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Table V
DISJUNCTION RULES FROM ALL SIMPLE RULES

Id. Rule Support %Training Training % Test Test
Diff. Diff.

C4.5 without preprocessing
PRD-W If R1+ or R2+ 43.18% 96.96% 9.63% 92.11% 12.82%

then good behaviour
NRD-W If R1- or R2- 36.36% 74.19% -13.14% 62.44% -16.85%

then bad behaviour
not charac- If not PRD and not NRD 20.45% 90.34% 3.01% 82.19% 2.9%

terised then good behaviour
C4.5 with SMOTE-ENN preprocessing

PRD-S-ENN If R1+ or R2+ 63.63% 97.56% 3.18% 91.56% 7.94%
then good behaviour

NRD-S-ENN If R1- or R2- 36.36% 88.81% -5.57% 69.03% -14.59%
then bad behaviour

not charac- If not PRD and not NRD 0% -% -% -% -%
terised
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Figure 6. Three blocks representation for PRD, NRD and not covered
data-sets for C4.5 without SMOTE-ENN
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Figure 7. Three blocks representation for PRD, NRD and not covered
data-sets for C4.5 with SMOTE-ENN

are verified. In Table V we summarize both disjunctions,
and a third rule representing those data-sets which are not
charaterised by the previous two disjunctive rules.

From the collective rules we can observe that the support
has been increased from the single rules for the Positive Rule
Disjunction (PRD), while the Negative Rule Disjunction
(NRD) maintains it. On the other hand, the training and test
AUC differences are similar to the single rules from Table
IV in both with and without preprocessing cases. Since there
are no data-sets in PRD and NRD simultaneously in both
with and without preprocessing cases, we can consider three
blocks of data-sets with their respective support, as depicted
in Figure 6 and Figure 7 respectively. The data-sets have the
same order in both figures.

• The first block (the left-side one) represents the data-
sets covered by the PRD rule, which are recognised as
being those in which C4.5 has good AUC.

• The second block (the middle one) contains the un-
classified data-sets by the previous two rules.

• The third and last block (the right-side one) plots the
data-sets for the rule NRD, which are bad for C4.5.

The 80% of the analysed data-sets in the case of not pre-
processing are covered by PRD-W and NRD-W rules, and
hence the good behaviour and bad behaviour consequents
represent well the AUC of C4.5. In the case of SMOTE-
ENN preprocessing, we can achieve a full characteristation

by both PRD-S-ENN or NRD-S-ENN rule.
The NRD-W and NRD-S-ENN rules cover the same data-

sets, with little difference in AUC between both cases. The
PRD-S-ENN rule has a larger support than the PRD-W
rule, that is, the data-sets in the not characterised region
are included in the PRD-S-ENN rule.

V. CONCLUSIONS

We have carried out a study in the framework of im-
balanced data-sets to analyse the behaviour of preprocessing
using C4.5. We have computed two data complexity mea-
sures over the imbalanced data-sets in order to obtain
intervals of such metrics in which C4.5’s performance is
significantly good both using the original data and applying
the SMOTE-ENN preprocessing technique as an external
solution to deal with this type of data.

We have constructed descriptive rules, and we have ob-
served that the IR itself is not enough to predict when C4.5
obtains a good or bad performance, or when the use of
SMOTE-ENN will enhance the results significatively.

We have obtained two rules from the initial ones, which
are simple and precise to describe both good and bad
performance of C4.5. The use of the SMOTE-ENN pre-
processing technique has a positive influence on the rules
obtained, since it produces an increment in the amount
of data-sets characterised by the good rules, as well as
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improving the quality of all the rules in terms of average
AUC. Therefore, we present the possibility of determining
which data-sets C4.5 would increase its performance prior
to the preprocessing execution, using the data complexity
measures.

As future work our aim is to extend our study with a large
collection of imbalance data-sets and to analyse in depth
other data-complexity metrics that determines the behaviour
of different types of computational intelligence techniques
on the framework of imbalanced data-sets.
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