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Abstract—In this paper, we propose a framework for deploying
and configuring a set of given sensors in a synthetically generated
3-D terrain with multiple objectives on conflicting attributes:
maximizing the visibility of the given terrain, maximizing the
stealth of the sensors and minimizing the cost of the sensors used.

Because of their utility-independent nature, these complementary
and conflicting objectives are represented by a multiplicative total
utility function model, based on multi-attribute utility theory.
In addition to theoretic foundations, this paper also present
a hybrid evolutionary algorithm based technique to solve the
sensor placement problem. It includes specialized operators for
hybridization, which are problem-specific heuristics for initial
population generation, intelligent variation operators which com-
prise problem specific knowledge, and a local search phase. The
experimental study validates finding the optimal balance among
the visibility, the stealth and the cost related objectives.

Keywords-Sensor planning; multi-attribute utility theory; hy-
brid genetic algorithms.

I. INTRODUCTION

In the military operations, reconnaissance, surveillance and

target acquisition can include a plurality of sensor platforms

that are used to collect information about an area under surveil-

lance and play a vital role [1]. In order to detect position of

foes, some sensors should be placed to cover a certain terrain

to provide maximum visibility while maintaining sensors’

stealth.

In this paper, we develop a framework and a novel solution

approach for determining the optimal number of sensors, locat-

ing and setting their orientational sensor-specific parameters in

a synthetically generated 3-D terrain with multiple objectives.

Our solution approach relies on rational trade-off between

three conflicting objectives which are maximizing the coverage

area while maintaining the maximum stealth, and minimizing

the total acquisition cost of deploying the sensors.

Motivated by our constructed framework, this paper ex-

plores the employing of a hybrid evolutionary algorithm for

sensor placement and orientation problem. Simple evolution-

ary algorithms are generally poor for solving the complex

combinatorial problems [2]. GAs are usually strengthen with

the domain-specific characteristics [3], [4], [5], and they are

combined with specialized heuristics to produce hybrid sys-

tems, which are called with different names including hybrid

evolutionary algorithms and memetic algorithms [6].

In this paper, we propose two specialized crossover opera-

tors called the Contribution-Based Crossover (CBX) and the

Proximity-Based Crossover (PBX) that comprise the domain

specific information on sensor placement problem, and a local

search technique for improving the quality of solution. Exper-

iments on synthetic 3-D terrains with various characteristics

are conducted in order to present the effectiveness of our

GA-based framework. The results of the experimental study

clearly show that our proposed approach is very successful

in deploying and utilizing sensors by considering the multiple

objectives.

The remainder of the paper is organized as follows: In

Section 2, we first present an overview to Multiple Attribute

Utility (MAU) theory, which is followed by our novel multi-

attribute utility function model and its sub-objective formu-

lations. Section 3 gives our hybrid GA-based formulation

for solving the sensor optimization problem. Performance

evaluation and experimental study is discussed in Section 4;

and Section 5 concludes the paper.

II. MULTI-ATTRIBUTE UTILITY FUNCTION FOR SENSOR

OPTIMIZATION PROBLEM

Utility analysis is a widely preferred multi-objective op-

timization method, since it enables, especially in military

applications, the testing of various scenarios (such as risk

averse, risk prone, etc.) under uncertainty or limited data cases.

If there is more than one objective, utility analysis gets very

complicated and can only be applied if certain decomposition

conditions (additivity, independency, etc.) are met [7], [8].

If there is more than one objective which are both conflicting

and at the same time supporting each other and if all objectives

are independent, multiplicative or multi-linear utility function

may be used. Our basic assumption states that in a military

operation, the perception behavior of the sensors should rely

on rational trade-off between three conflicting criteria (pri-

orities). These three criteria are: maximizing the information

about the land, minimizing the data collected by the enemy

and minimizing the total cost of the positioned sensors.

In our formulation, the total utility value is computed as

a multiplicative function over the given three attributes. For-

mally, the total function to maximize, U(A,S, P ), of scanning
an area A using a set S of sensors which are located on a set
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P of polygons (i.e. the sensor si located on the polygon pk),

is represented with the following formulation:

U(A,S, P ) = wvis Uvis(A,S, P ) + wst Ust(A,S, P ) +

wcost Ucost(S, P ) + wvis wst Uvis(A,S, P )Ust(A,S, P ) +

wvis wcost Uvis(A,S, P )Ucost(S, P ) +

wst wcost Ust(A,S, P )Ucost(S, P ) +

wvis wst wcost Uvis(A,S, P )Ust(A,S, P )Ucost(S, P )
(1)

where Uvis(A,S, P ) is the utility of visibility of area A
by the set of sensors S located on the set of polygons P;

Ust(A,S, P ) is the utility of stealth of the set of sensors S
located on set of polygons P and Ucost(S, P ) is the utility
of the cost of the sensors S located on set of polygons P. In

this equation, wvis, wst, wcost are the weights (coefficients) of

visibility, stealth and cost utility functions, respectively, where

0 ≤ wvis, wst, wcost ≤ 1 and wvis + wst + wcost = 1. These
weights are set based on experimentation on a given terrain

by considering various military scouting missions.

Additionally, we also consider the total utility of each sensor

sj located on polygon pk in our computations, which is rep-

resented by U j(A, sj , pk). By using the Equation 1, this term
requires U

j
vis(A, sj , pk), U j

st(A, sj , pk) and U j
cost(A, sj , pk)

terms, which are the sensors-specific utility of visibility, stealth

and cost, respectively.

A. Computing the Utility of Visibility

The value of utility of visibility is derived by using the

amount of visibility of the terrain, which is computed by

adding the visibility of all polygons on it. Formally, the utility

of visibility of area A by the set of sensors S (located at set of

polygons P), Uvis(A,S, P ) is computed using the Equation 2,

Uvis(A,S, P ) =

∑
pi ∈A V (S, P, pi) ×Wpi

∑
pi ∈ AWpi

(2)

where, Wpi
is the weight of the polygon pi, which indicates

the importance of the polygon, and V (S, P, pi) is the visibility
value of polygon pi by using the set of sensors S located on

the set of polygons P , which is computed by the average of

visibility of the points on polygon pi. Since any point can

be recognized by multiple sensors (with different visibility

values), maximum visibility of the point is considered in

computing the visibility value of polygon pi. In our study,

four points, i.e., the three corner points and the center of

mass, are considered as the selected polygon points. The term

Vsj
(sj , pk, b) is the visibility of the destination point b (which

can be one of the four points of polygons) from the sensor

sj located at source point a (which is the center of mass of

polygon pk). This term formally defined by Equation 3,

Vsj
(sj , pk, b) = (1 − ηsj

×
D(a, b)

∆sj

) × (1 − max
pc∈a→b

ψW
c )

×(1 − max
pc∈a→b

ψO
c ) (3)

where D(a, b) is the distance between point a and point b;
∆sj

is the depth of view and and ηsj
is the range effect

coefficient of sensor sj . The range values varies with respect

to different types of the problem addressed; i.e., there will

be three different range values (for detection, recognition,

identification) of each sensor.

Weather density (ψW
i ) and object density (ψ

O
i ) of polygon

pi, where their values are in the range 0 ≤ ψW
i , ψO

i ≤ 1, are
used to compute the permeability value of a ray that traverses

from an origin to a predefined destination through the given

polygon pi by considering object and weather conditions over

the polygon.

The second term is the weather permeability value, which is

derived by the density values of weather conditions. The term

ψW
c is the weather density over a polygon pc where pc is a

polygon that is in between point a and point b. The density

values of weather conditions over all polygons in between

points a and b are considered as part of LOS algorithms ( [9],

[10]) and the maximum value is returned if no intermediate

point (between a and b) is obstructed by terrain.

The last term in Equation 3 is the object permeability value,

which is set by using the density value of objects. There can be

two types of objects located on synthetically generated terrain,

which are natural objects such as trees and artificial objects

such as buildings. It should be noted that the values of weather

density (ψW
c ) and object density (ψ

O
c ) of polygon pc are in

the range 0 ≤ ψW
c , ψO

c ≤ 1.

B. Determining the Utility of Stealth

The utility of stealth value for a set of sensors that are

already located on the terrain is derived by subtracting the cost

of the total visibility of the located sensors (by using enemy

or opponent objects) from one. For this purpose, a predefined

number of opponent objects of different types are scattered

across the terrain randomly (by utilizing angle and distance

constraints), as part of a given scenario m. These objects are

the vehicles carrying opponent sensors. In our experimental

study, the angle-based locational attributes (such as viewing

angle, depth of view etc.) of opponent sensors can be set with

those values of either best or worst sensor in our system.

The utility of stealth of a set of S sensors that are positioned

on a set of polygons P by considering r different scenarios (for

setting the opponent objects) is computed with the following

equation

Ust(A, S, P ) =

∑
r

x=1
(1 −

∑
si ∈S

VE(E, P, psi
) × RU (A, si, psi

))

r
(4)

where VE(E,P, psi
) is the maximum visibility of the sensor

si (located on polygon psi
) from the set of opponent vehicles

E which are located on set of positions P . As in the sensor

visibility, it is computed by,

VE(E,P, psi
) = max

ej∈E
{VE(ej , pk, psi

)} (5)

The VE(ej, pk, psi
) term in this equation is the visibility of

a single point on the terrain (where the sensor si is located)

from an opponent sensor located on polygon pk. Here, this

term is the dual of the term V P
S (sj , pk, b); therefore it is also

computed with the Equation 3.
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The RU (A, si, psi
) term is the ratio of the utility of visibility

of the given sensor si to the cumulative utility of visibility of

all sensors, as shown in the following equation.

RU (A, si, psi
) =

Uvis(A, si, psi
)

∑
sj ∈S Uvis(A, sj , psj

)
(6)

It should be noted that the denominator in the previous

equation is not the overall utility of visibility, but it is the

cumulative utility of visibility. It is due to the fact that overall

utility of visibility may be even equal to utility of visibility

of a single sensor, which may generate a negative value in

Equation 4. If a sensor with a high utility of visibility value

(and therefore a high utility ratio) is completely seen by an

opponent object, this will significantly decrease the utility of

stealth.

The locational attributes (polygon number, heading and tilt

angles, sensor types) of r ∗ |E| opponent sensors are set at the
beginning of the program execution, where |E| is the set of
opponents considered at each scenario.

C. Computing the Utility of Cost

In our study, the term cost of a given sensor si includes two

separate meanings a) the (normalized) financial cost of sensor,

NCostF (si), and b) the (normalized) placement cost of sensor
to its current location (i,e., polygon k), which is represented

by NCostL(si, pk). Based on these terms, the utility of cost
for a set of sensors S placed on a set of locations P is formally

defined by

Ucost(S, P ) = 1 − {

∑
Si ∈S(ωF ×NCostF (si))

|S|
+

∑
Si ∈S(ωL ×NCostL(si, pk))

|S|
} ×N |S|. (7)

It should be noted that financial and placement (locational)

costs are independent, and ωF and ωL are the weights (from

the range [0..1]) of the two cost terms, respectively. In our
experiments, ωF = 0.7 and ωL = 0.3, unless otherwise
specified. The placement cost term in the right side of this

equation is computed by NCostL(si, pk) = PL(si, pk)× ϕsi

where PL(si, pk) is the locating probability of sensor si on

polygon pk; and ϕsi
is a sensor specific constant that is set to

1, unless otherwise specified. The locating probability values

of all terrain polygons are set by considering the heights and

slopes of polygons and characteristics of the sensors (i.e.,

sensor carriers). In order to simplify the model, this term

can be set with the weights of polygons based on the second

method explained in Section II-A. In Equation 7, N |S| is the
normalized value of sensors usage, which is computed by

N |S| =
|S|

E(S)
, (8)

where |S| is the number of sensors used in the solution, and
E(S) is the expected value of the number of sensors for the
given terrain, which is equal to the mean value of upper and

lower limits of sensor usage.

III. HEA-BASED SENSOR PLACEMENT

In order to build hybrid evolutionary algorithms (HEA),

there are various methods to incorporate specialized operators

and domain specific knowledge with evolutionary algorithms.

We consider problem-specific heuristics for the initial popula-

tion generation. There are novel intelligent variation operators

presented in our study, such as Contribution-Based Crossover

and Proximity-Based Crossover operators that incorporate

problem specific knowledge. Additionally, a local search phase

is applied on the output of the variation operators.

In our GA-based approach, each solution contains the type

and the locational attributes (position, heading angle, tilt angle)

of sensors. There is no restriction on sensor quantity; therefore

string representation supports variable-length chromosomes.

Additionally, this work has no restriction on the order of

sensors in a given solution. A steady-state Genetic Algorithm

is applied which generates one individual at each iteration. We

consider tournament selection mechanism and the tournament

size is varied in the experiments. The value of the fitness

function is set with the total utility value.

A. Initial Population Generation

The first phase to generate a solution for initial population is

to determine the number of sensors considered in the solution,

which is set randomly between the upper and the lower limit of

the sensor quantity. The sensor mode (detection, recognition,

identification) and the horizontal depth of view (∆) on the
given sensor mode are considered in order to calculate the

limits. After the sensor quantity of a solution is determined, the

type of each sensor is set randomly by preserving the inverse

proportionality to sensor capacities (i.e., the view ranges with

respect to given sensor mode). Then, locations of sensors in

each solution are determined with a heuristic which aims to

distribute the selected sensors evenly on the given terrain.

B. Crossover Operation

Our GA-based approach includes a set of variation operators

(crossover and mutation operators) and a local search phase

that is applied in between crossover and mutation operators.

In our study we consider three different crossover operators,

which are Contribution-Based Crossover (CBX), Proximity-

Based Crossover (PBX) and Cut and Splice Crossover (CSX).

It should be note that CBX and PBX are the ones that con-

sider problem-specific knowledge. All of the three crossover

operators generate a single offspring as the output.

1) Contribution Based Crossover (CBX) Operator: The

main idea behind this operator is to carry a sensor to the

offspring from one of the parents based on its contribution,

which is expressed in terms of utility of the sensor. The sensors

in both parents are examined in this operator. One sensor is

selected randomly from each parent and the better one, which

has higher total utility value than the other sensor, is moved

into the offspring as the first sensor of the offspring. Then,

at each step, one of the remaining sensors from each parent

is selected and the best one of selected sensors is moved

to the offspring if the sensor keeps acceptable proximity
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distance with all sensors that are already in the offspring. The

calculation steps of acceptable proximity distance is explained

in the following part.

Fig. 1. Contribution Based Crossover.

Assume that the sensor sm is the sensor which has the

highest total utility value (highest contribution value) among

the two sensors that are selected from the remaining sensors

of each parent solution; and assume that sm is already located

on polygonm with the heading angle θm as given in Figure 1.

Assume that sn is one of the sensors which is already copied

to offspring; and sn is located on polygon n with the heading

angle θn. Assume that (horizontal) viewing angles of sm and

sn are α
m and αn, respectively. In order to decide whether

sensor sm located on polygon m will be accepted for the

offspring, the following two inequalities are considered.

D(n,m) > (∆n + ∆m) × µ (9)

|θm − θn| >
αm + αn

2
× κ (10)

The right side of the first inequality is the acceptable prox-

imity distance. The distance between sensors should be equal

or greater than the acceptable proximity distance, which is

computed by multiplying the summation of depth of views

with a problem specific constant, µ. The depth of view value

of each sensor is based on the sensor mode considered in the

experiments.

If sm validates the first inequality, it is selected for the

offspring; then, the second inequality is not considered any

more. Similarly, if it fails in the first inequality but it validates

the second one, the sensor is still moved to the offspring. If the

angular distance between heading angles of sensors (the left

side in the second inequality) is greater than the summation of

half of horizontal viewing angles of two sensors, the candidate

sensor is copied since they are looking at different directions

even if the distance between them is less than the acceptable

proximity distance. The term κ, an angular constant related

with overlapping ratio of horizontal viewing angles of sensors,

is set to 0.8 unless otherwise specified.

If it does not validate both of the inequalities, the candidate

sensor is dropped and sensor with the next highest total utility

value is considered. This process is repeated as long as the

number of sensors (|S|) moved to the offspring is less than
the upper limit, which is computed by using the following

inequality.

|S| ≤ (|SP
1
| + |SP

2
|) ∗ ǫ (11)

In this inequality, |SP
1
| and |SP

2
| are the number of sensors

allocated in the first and the second parents of the offspring,

respectively; and ǫ is a constant which is less than 1.

2) Proximity Based Crossover (PBX) Operator: In this

operator, firstly, a crossover point k is selected randomly by

considering 1 ≤ k ≤ m− 1 where m is the minimum of the
sensor quantities of the two parent solutions. Starting from

the first sensor, k sensors of the first parent are copied to the

offspring. The next phase is to copy sensors from the second

parent. Starting from the first element of the second parent,

sensors are copied to the offspring in the order by considering

the inequalities given in Equation 10. The first equation is for

testing the proximity distance; and if the current sensor of the

second parent passes this test for all sensors already in the

offspring, it is copied to the offspring. Otherwise the second

test related with viewing angle is applied.

3) Cut and Splice (CSX) Operator: This operator is similar

to the original single-point crossover operator proposed in the

literature. As in the previous operator, a crossover point is

selected randomly from the range [1..m − 1] where m is the
minimum of number of sensors exist in two parents. Then,

both parents are separated at the given crossover point, and

two children are created by exchanging the tails; and the better

one is selected as offspring. The tests of proximity distance

and viewing angle are not applied in this operator, and there

is no upper bound for number of sensors considered.

C. Local Search Phase

After a solution is generated using the crossover operator,

the local search phase targets on improving the quality of the

solution by modifying angular attributes of sensors. At each

iteration of the local search the sensor with the minimum

utility of visibility value is selected.

The heading angle is updated by adding a predefined

increment amount (δH ) repeatedly until the first improvement

on utility of visibility for the given sensor. If there are large

number of polygons on the terrain, δH can be low; otherwise

a higher value can be set. The next phase is to modify the tilt

angle of the sensor in order to improve sensor’s visibility. An

increment amount (δT ) is added to the tilt angle of the given

sensor repeatedly. This process is repeated until all possible

alternatives covered.

This process is repeated until one of the following two

conditions occurs: a) the cumulative improvement ratio on the

utility of visibility of the modified sensors is greater than or

equal to 20%, b) at a least 10% of sensors in the original
solution is considered as part of the local search process. Only

local improvements of sensors are considered and number of
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sensors to be examined is limited in order to bound the running

time of this phase.

D. Mutation Operators

Mutation operators in our study can be considered in two

categories, which are the locational mutation operators, and

the angular mutation operators.

1) Locational Mutation Operators: There are three types

of mutation operators in this category which deal with the

locations of sensors: the update, the delete and the insert

operators. The other parameters of our experimentation is set

with the default values.

The first operator updates the location of a sensor in two

steps: i) selecting the sensor, and ii) selecting the new

location. The sensor for the update operator is selected either

randomly or it is the one which has the minimum utility

of visibility value. On the other hand, the new location is

selected randomly either from the whole terrain, or from

the same region where the original sensor is located on.

The second operator deletes one of the sensors, which can

be either a randomly selected sensor or the one which has

the minimum utility of visibility value. The last operator

in this category adds a new sensor to the solution on a

polygon that is selected randomly either from the whole

terrain or from the region which already includes the sensor

with the minimum utility of visibility value. The sensor

type and the heading and the tilt angles of the new sensor

is set randomly by considering the feasibility ranges of angles.

2) Angular Mutation Operator: This category is to update

the angular properties of a sensor, which is either selected

randomly or the sensor that minimizes the utility of visibility

value. There are two operators in this category, which are

mutation on the heading angle and mutation on the tilt angle.

The former one updates the heading angle of the sensor

randomly, and the latter one updates the tilt angle randomly

from a predefined feasible range. One extension is to select one

of the two mutation operators from this class non-uniformly.

Specifically, mutation on the heading angle can be selected

with a higher probability than mutation on the tilt angle.

In addition to these two classes of mutations, updating

the sensor type is also considered as a mutation operator. In

our experimental study, type of a randomly selected sensor

is updated randomly at every 100 generations; if the update

causes an improvement, then it is accepted; otherwise it is

rejected. The update on the sensors type is applied for both

of the mutation classes given above.

IV. EXPERIMENTAL STUDY

In this section, we present the results of experiments that

evaluate the effectiveness of our algorithm. The experiments in

this study were performed on a cluster of PCs, each of which

has Intel Xeon 2.33GHz processor running Linux operating

system. The default values of general parameters in our hybrid

evolutionary algorithm listed in Table I are considered.

TABLE I
DEFAULT SETTINGS OF SELECTED PARAMETERS OF EXPERIMENTATION

Parameter Value

-Sensor Allocation Probability (20%, 80%)
in a Terrain Region (center, random)
-Coefficient for Depth of View in Crossover Operators µ = 0.4
-Coefficient for Sensor Quantity ǫ = 0.5
Inherited from Parents to Offspring
-Improvement Ratio in Local Search Phase IR = 20%
-Sensor Ratio in Local Search Phase SR = 10%
-Number of Enemies (detection, (10, 40, 100)
recognition and identification modes)
-Tournament Size 5
-Number of Generations for Termination 1000

The first set of experiments is for identifying the values

of GA-parameters, which are the population size, the type

of the crossover operator, the type of the mutation operator

and the sensor selection criteria in mutation. The population

size is assigned from the set {30, 50, 100}. Three crossover
operators and two categories of mutation operators given in

Section III are considered in the experiments. Additionally,

the source sensors for mutation is selected either randomly

or the one which has minimum visibility. The combination of

those parameters constructs 54 different cases, each of which

is run with 30 replications. Therefore, a total of 1620 tests are

conducted in the first set of experiments. On the other hand,

the other parameters of our experimentation is set with the

default values. Specifically, initial population of our algorithm

is set randomly without any heuristic. The increment amount

of heading angle (δH ) is set to 25o, which is one-fourth of

the minimum horizontal viewing angle of sensors considered.

The increment amount of the tilt angle is set to δT = 3o. A

visibility-dominant mission by selecting recognition mode of

sensors with a rough terrain is considered.

The optimization results are obtained by setting the goals

for the total utility value and generating the optimal con-

ditions. When the results of experiments are examined, the

population size is set to 50, the contribution-based crossover

is selected, and the sensors with the minimum visibility value

is considered for the mutation operator. However, the mutation

operator does not have a significant effect on total utility, when

a visibility-dominant mission is performed.

The second set of experiments evaluates the effects of

the following parameters on the performance, which are the

strategy for selecting the initial population, increment values

for the heading and the tilt angles, the mission-specific utility

weights and the terrain type. Initial population is set either

randomly or based on the heuristic presented in Section III.

The increment value in heading and tilt angles are assigned

from the sets {25, 50, 75} and {3, 5, 7, 10}, respectively. Three
different missions (visibility-dominant, stealth-dominant and

cost-dominant cases) and two terrain types (smooth and

rough terrains) are taken into account in the experiments.

The coefficients (wvis, wst, wcost) given in Equation 1 are

set with {0.6, 0.3, 0.1}, {0.3, 0.6, 0.1}, and {0.25, 0.25, 0.5}
for visibility-dominant, stealth-dominant and cost-dominant
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missions, respectively. Based on the analysis of variance, it

is found that the first three parameters do not significantly

affect the total utility values. Both the terrain type and the

mission type affect the quality of solutions as expected.

A. Performance Evaluation and Discussion

In this part, we present the effectiveness of our algorithm

for detection, recognition and identification modes of sensors

on both smooth and rough terrains. Since sensors have limited

range for all modes, a steep slope on the view cone of a sensor

decreases the visibility range of the sensor. Therefore, the total

utility value observed on a smooth terrain is higher than the

total utility value on a rough terrain, when comparable number

of sensors are utilized on both terrains (see Tables II & III).

Three different sensor modes on both the visibility-dominant

(M1) and the stealth-dominant (M2) missions are considered

in these tables.

TABLE II
PERFORMANCE RESULTS ON A SMOOTH TERRAIN WITH DIFFERENT

SENSOR MODES

Sensor Mission Number of Total

Mode Type Algorithm Sensors Utility

Detection
M1

RS 13.9 0.5267
HEA 14.7 0.7419

M2
RS 9.7 0.6894
HEA 14.7 0.9216

Recognition
M1

RS 80.7 0.5524
HEA 59.7 0.7061

M2
RS 54.9 0.6465
HEA 62.3 0.8731

Identification
M1

RS 227.7 0.5138
HEA 178.2 0.6474

M2
RS 162.7 0.6620
HEA 170.3 0.8409

The performance comparison of the HEA with a random

search method (RS) is presented for all sensor modes and

mission types pairs in Tables II and III. The best individual

in a randomly generated initial population of the HEA with

50 individuals is the output of the RS method for each

test. The individual utility values and the total utility of the

solutions generated by the HEA are significantly outperforms

those of the RS method for both smooth and rough terrains.

Additionally, the required number of sensors to cover a 3-D

terrain varies according to the selected sensor mode. Since,

the behavioral attributes of sensors including depth of view,

horizontal and vertical angles for the detection mode are

better than those values for the other modes, fewer sensors

are required to cover in the detection mode for both smooth

and rough terrains.

V. CONCLUSIONS

Positioning and utilizing multiple sensors for acquisition of

a given environment is one of the fundamental research topics

in various domains including military operations, computer vi-

sion and robotics. The contributions of this paper can grouped

TABLE III
PERFORMANCE RESULTS ON A ROUGH TERRAIN WITH DIFFERENT

SENSORMODES

Sensor Mission Number of Total

Mode Type Algorithm Sensors Utility

Detection
M1

RS 11.3 0.4645
HEA 16.3 0.6545

M2
RS 8.0 0.6516
HEA 16.3 0.8561

Recognition
M1

RS 77.3 0.4975
HEA 63.0 0.6638

M2
RS 44.5 0.6321
HEA 61.3 0.8385

Identification
M1

RS 214.3 0.4777
HEA 180.6 0.6121

M2
RS 141.9 0.6564
HEA 166.5 0.8148

in two-folds. Firstly, we present a novel multi-attribute utility-

based framework for deploying and configuring multiple sen-

sors in a 3D terrain that combines three conflicting objectives

into a unified total utility function, which are maximizing the

coverage area while maintaining the maximum stealth and

minimizing the total acquisition cost of deploying sensors.

Secondly, this paper presents a new hybrid evolutionary al-

gorithm (HEA) based solution for the constructed framework.

The computational study clearly points out the effectiveness

and robustness of our HEA-based solution under various

values of several experimental parameters.
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