
Implementing metaheuristic optimization algorithms with JECoLi

Pedro Evangelista1,2 Paulo Maia1,2

Miguel Rocha1

1CCTC - Computer Science and Technology Center
2CEB - Centre of Biological Engineering / IBB

Universidade do Minho
Campus de Gualtar, Braga, Portugal

{paulo.maia, ptiago}@deb.uminho.pt, mrocha@di.uminho.pt

Abstract

This work proposes JECoLi - a novel Java-based li-
brary for the implementation of metaheuristic optimiza-
tion algorithms with a focus on Genetic and Evolutionary
Computation based methods. The library was developed
based on the principles of flexibility, usability, adaptabil-
ity, modularity, extensibility, transparency, scalability, ro-
bustness and computational efficiency. The project is open-
source, so JECoLi is made available under the GPL li-
cense, together with extensive documentation and exam-
ples, all included in a community Wiki-based web site
(http://darwin.di.uminho.pt/jecoli). JECoLi has been/is be-
ing used in several research projects that helped to shape
its evolution, ranging application fields from Bioinformat-
ics, to Data Mining and Computer Network optimization.

1. Introduction

Over three decades ago, in both sides of the Atlantic, a
number of researchers were developing new approaches to
tackle hard optimization problems. Those had in common
their inspiration, since they were based on analogies with
the way natural creatures solve their own optimization prob-
lems: natural selection. This trend led to the development,
in the 1960s/70s, of methods such as Genetic Algorithms
(GA) [5], Evolution Strategies (ES) [18], Evolutionary Pro-
gramming (EP) [4] or Genetic Programming (GP) [8].

Over the last decades, these methods have been used to
solve numerous problems over a wide range of scientific
and technological fields, with an overall remarkable suc-
cess. Also, a large number of variants have been proposed
(e.g. Differential Evolution [21] or Memetic Algorithms
[12]), new nature-based approaches were developed (e.g.
Particle Swarms [6]) and new features were introduced (e.g.

Table 1. Examples of some general purpose
software platforms for GEC.

Name URL
Opt4J http://opt4j.sourceforge.net
JGAP http://jgap.sourceforge.net
ECJ http://cs.gmu.edu/ eclab/projects/ecj/
JAGA http://www.jaga.org
Eva2 http://www.ra.cs.uni-tuebingen.de/software/EvA2
JCLEC http://jclec.sourceforge.net/
Watchmaker https://watchmaker.dev.java.net/
GAA http://www.aridolan.com/ga/gaa/gaa.html
PISA http://www.tik.ee.ethz.ch/sop/pisa/
EO http://eodev.sourceforge.net/
OpenBeagle http://beagle.gel.ulaval.ca/
JECL http://sourceforge.net/projects/jecl

new solution encoding schemes, selection or reproduction
operators).

All this activity lead to an impressive growth of the
whole field of Genetic and Evolutionary Computation
(GEC), easily measured by the number of scientific publi-
cations, books, international conferences and journals, sub-
jects/ courses taught at universities, commercial applica-
tions, etc. Also, a number of open-source software plat-
forms have been provided with implementations of sub-sets
of these methods (see Table 1 for some examples). These
aim to take into account the common features underlying
these approaches, to create software components that can
be used by developers to implement their applications and
ultimately solve their optimization problems.

However, none of these platforms was able to achieve a
significant success in terms of the number of users, being

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.161

505



normally restricted to a few research groups and special-
izing in some domains of application. This situation can
be explained by the lack of flexibility or adaptability of the
tools, given the broad range of requirements imposed by
the users. Also, in some cases, the lack of appropriate doc-
umentation that can help to ease the learning curve is also
noticed. Therefore, we believe there is still room for the
proposal of new software platforms in this field.

This paper introduces the Java Evolutionary Computa-
tion Library (JECoLi), a novel framework that allows the
development of metaheuristic optimization algorithms, us-
ing the Java programming language. JECoLi is focused on
implementing approaches from the GEC field, while sup-
porting other popular alternative methods.

It aims to be an adaptable, flexible, extensible and mod-
ular software platform, supporting two main types of tasks:
(i) to develop components of other systems and applications
using the provided optimization algorithms; (ii) to allow the
rapid benchmarking of distinct approaches in specific opti-
mization tasks.

The main features of the library, together with some is-
sues regarding its architecture are given in the next section.
Then, some examples and research projects that use JECoLi
are briefly explained. The paper finishes with the conclu-
sions and further work.

2. Architecture and main features

2.1. Main features

Available algorithms JECoLi implements a large set of
metaheuristic algorithms, namely:

• General purpose Evolutionary Algorithms, including
Genetic Algorithms and Evolutionary Programming;

• Differential Evolution (variants DE/rand and DE/best
variants);

• Genetic Programming and Linear GP;

• Simulated Annealing (SA) [7];

• Cellular Automata GAs [1];

• Multi-objective optimization Evolutionary Algorithms
(NSGA II [2] and SPEA2 [23]);

For all these algorithms, a large number of variants can
be executed, using the configuration classes for each case.
These enable to setup the encoding scheme, reproduction
and selection operators, the termination criteria and other
specific parameters. To support beginner users, default pa-
rameters are provided in most cases.

Encoding schemes Solutions can be encoded using dif-
ferent types of representations: binary, integer, real, per-
mutations, sets or trees are currently available. Numerous
reproduction operators are provided for each of these repre-
sentations. In the current release, a total of 29 reproduction
operators (crossover and mutation) are available. Also, 8
distinct selection operators were implemented for EAs. A
number of pre-processing schemes applicable to the selec-
tion operators are also made available (e.g. scaling, rank-
ing).

Hybridization Adequate support is given to the combi-
nation of general purpose algorithms with problem-specific
methods, therefore allowing the easy development of hybrid
approaches. The main examples are:

• local optimization enriched EAs (also termed Memetic
Algorithms), where local optimization operators are
defined as mutation operators. The user can also opt
to re-define the methods that run the algorithms and
incorporate it as a mandatory step for all individuals.

• hybrid crossover operators that use information from
the problem instance in the process of combining in-
formation from the parents;

• initial population enrichment with problem-specific
heuristics.

Flexibility, adaptability, modularity and extensibility
The platform is highly flexible, allowing the available com-
ponents to be easily arranged and configured in diverse
ways. A loose coupling is provided between optimization
algorithms and problems that allows the easy integration of
the library with other software. New problems are added by
the definition of a single class (the evaluation function).

JECoLi provides a component-based platform, with a
set of reusable modules that can be used by developers to
build applications and integrating new components. In fact,
a number of programming interfaces are provided that en-
able the extension of the platform with novel algorithms,
representations, reproduction or selection operators, termi-
nation criteria, etc. These are easily integrated into the ex-
isting platform and automatically profit from the available
features.

Compatibility and software development process The
code is 100% Java, using the most recent features (e.g.
generics) to make the development simple while enforcing
good development practices. In the development process,
the issues of computational efficiency, robustness and scal-
ability (e.g error handling, software testing) were taken into
account.

506



Availability, documentation and web site The frame-
work is open source released under the GPL license,
allowing its easy integration into other projects. Ex-
tensive documentation (several howto’s, examples and a
complete API reference), binaries and source code re-
leases are available in the Wiki-based project’s web site
(http://darwin.di.uminho.pt/jecoli)

2.2. Architecture

In Figure 2.2 a simplified class diagram of the library is
shown. For easier legibility this contains only the main enti-
ties of the software. The general software structure contains
the following set of entities:

• Algorithm: represents the optimization method ab-
straction, i.e. all algorithms share a number of features
that are summarized in the IAlgorithm interface.

• Termination Criteria: verifies if the termination condi-
tions are satisfied. Several alternative criteria that fol-
low the ITerminationCriteria interface are defined (e.g.
number of generations, function evaluations, computa-
tional time, target fitness value) although the developer
has the option to create new ones.

• Evaluation Function: represents the classes that handle
the decoding of the genomes into solutions to the prob-
lem and the fitness assignment process. This compo-
nent is dependent on the problem domain and makes
the connection between the problem and the algo-
rithm’s domains. Each instance of an evaluation func-
tion implements the IEvaluationFunction interface.

• Algorithm Configuration: contains all the necessary
information to execute the different algorithms and can
be further divided in two separate components:

– Information common to all algorithms: termi-
nation criteria, evaluation function and statistics
configuration (specifies the metrics to be calcu-
lated and displayed on the screen and/or to be
saved to disk).

– Algorithm dependent information: the different
algorithm parameters (e.g. selection operators or
recombination parameters in EAs, or the anneal-
ing schedule in SA).

• Solutions and solution sets: each solution is composed
by a genome encoding it in a specific representation
and a set of fitness values (one for each objective),
following the ISolution interface. Populations and
archives are implemented by the ISolutionSet inter-
face, that keeps lists of solutions with enhanced func-
tionalities.

• Representations: The classes that implement solution
representation follow the IRepresentation interface. Its
hierarchy allows to work over logical representations
that do not depend on the underlying data structures.
For example a linear genome can be portrayed by a
linked list or a vector, if there exists a class that imple-
ments the ILinearRepresentation interface.

• Solution factories: To build and copy solutions, the
concept of solution factories was developed. This no-
tion is based on the factory design pattern. In certain
situations, these factories also serve as central reposi-
tories of constraints applied to a certain genome, e.g.
in a real value representation each gene has a lower
and upper limit. Auxiliary methods, like generating a
specific gene, were also created to ease the program-
ming burden. These factories are extensively used by
the predefined set of reproduction operators available.

If the necessary parameters have been instantiated, the
algorithm can be executed. While running, each algorithm
has an internal state that represents the algorithm status and
the set of results collected during previous iterations. The
state includes the current solution set being manipulated by
the algorithm, previously obtained solutions (based on user
defined criteria) and a set of iteration dependent statistics.
This strategy allows to save the algorithm state indepen-
dently from the method implementation and to decouple the
method implementation from statistics specific code.

3. Examples and research projects

3.1. Examples

A number of examples is made available in the project’s
web site to illustrate the main features of the library. These
are listed below:

• the counting ones task is used as a toy problem to show
potential developers how to address the resolution of a
problem with several algorithms.

• the classical Traveling Salesman Problem illustrates
the use of permutation representations, as well as
the development of problem specific mutation and
crossover operators (i.e. hybrid approaches). It is also
used to show the support to perform several runs of a
given algorithm and configuration.

• the numerical optimization examples include several
benchmarking functions and show the use of real value
representations. The algorithms used are the EA, the
SA and the DE.

507



Figure 1. Class diagram of the general architecture of the framework

• the Knapsacking problem shows how to handle con-
straints in combinatorial optimization problems.

• the multiobjective optimization example shows the ap-
plication of the NSGAII and SPEA2 algorithms.

• the symbolic regression task shows the use of GP and
Linear GP.

3.2. Projects using JECoLi

In this section, we present an overview of the main re-
search projects that have been using the JECoLi software
over the last few years showing its maturity. In each case,
we present a brief statement of the project’s main goals, of
the problem definition and also of the approach taken to
solve them using JECoLi, revealing the main technical is-
sues addressed in each case.

Metabolic engineering applications In this work, the
main aim is to identify sets of gene deletions towards the
maximization of a desired physiological objective function.
The optimization problem consists in selecting, from a set
of genes in a microbe’s genome, a subset to be deleted in
order to maximize a given objective function.

Our approach was to develop EAs and SA algorithms
using a set-based representation, where only gene deletions
are represented in the solution [14]. Since a variable size
representation is used, this allows the automatic finding of
the best number of gene deletions necessary for achieving a
given productivity goal.

Each solution (mutant strain) is evaluated by resorting
to the simulation of its phenotype using a steady-state ap-
proach. This allows to calculate the values of the fluxes
for the organism’s metabolic model. The adopted fitness

function is the Biomass-Product Coupled Yield, a non linear
function that aims to simultaneously maximize the biomass
and the desired product fluxes. These algorithms have
been implemented as part of the OptFlux software platform
(http://www.optflux.org).

Recently, the development of methods for multi-
objective optimization [10] and the simulation of mutants
using dynamic models based on ordinary differential equa-
tions (ODEs) have also been approached [3].

Fermentation optimization In fed-batch fermentations
there is an addition of nutrients along the process, allow-
ing the achievement of higher product concentrations. Dur-
ing this process the systems states change considerably and
this dynamic behavior motivates the development of opti-
mization methods to find the optimal input feeding trajec-
tories in order to improve the process performance. White
box mathematical models based on ODEs that represent the
mass balances of the relevant state variables are typically
used to simulate the processes.

The numerical optimization task addressed in this work
[11] aims at finding the best trajectory of some input vari-
ables (feeding), that yield the maximum performance index,
defined in each specific case. A solution to the problem will
consist of a set of real-valued vectors of equal length. Each
vector encodes an input variable as a temporal sequence of
values, defined as a piecewise linear function. Feeding val-
ues are provided only at equally spaced points, while the
remaining values are linearly interpolated.

The evaluation process, for each solution, is achieved by
running a numerical simulation of the defined model, given
as input the feeding values. For any solution, the fitness
value is then calculated after the simulation, taking the cal-
culated values of the state variables, according to a perfor-
mance index defined for each case.

508



To solve this problem, EAs with real value representa-
tions, several variants of DE and also PSO [6] were tested
and evaluated. The DE/rand methods were the best candi-
dates in most case studies. Also, in recent work [16] we
have approached this optimization problem, but consider-
ing its online implementation (i.e. performed in real-time
while the fermentation process is running).

Network traffic engineering In this project, the main aim
is to improve the Quality of Service levels in TCP/IP based
networks, by configuring the routing weights of link-state
intra-domain routing protocols such as Open Shortest Path
First (OSPF). A mathematical model is used to provide
the simulation environment, allowing to define flexible cost
functions that can take into account several measures of the
network behaviour.

We aim to improve the process of OSPF weight setting
implementing traffic engineering methods [19], assuming
that the administrator has access to a matrix representing
traffic demands between each pair of nodes in the network.
The particular problem addressed in this work was to find
the best configuration that simultaneously could minimize
the overall network congestion and the end-to-end delays
between the pairs of routers in the network.

Since the underlying problem is NP-hard, the approach
was to develop EAs to solve it. In order to encode the so-
lutions, integer representations were used, where each so-
lution encodes a set of weights, one for each network link.
Those are used to configure the OSPF routing protocol and
therefore allow the calculation of the routing tables, using
the well known Dijkstra algorithm.

The fitness assignment process goes through the simula-
tion of the network behaviour taking into account the net-
work model and the provided traffic demands matrix. Using
this information, the loads in the network links and the over-
all end-to-end delays are calculated. In both cases, a penalty
function is defined to assess the performance of the network
in each objective.

Two approaches have been implemented to address this
multi-criterion problem: (i) to use linear weighting func-
tions, with a parameter that tunes the trade-off between both
components of the cost function; and, (ii) to use multiobjec-
tive EAs, such as NSGAII or SPEA2.

More recently, this work has been extended to handle
multi-class traffic [20] and also to provide traffic engineer-
ing approaches for networks with both unicast and multicast
traffic [17].

Neural network evolution The search for the optimal Ar-
tificial Neural Network (ANN) to solve a particular prob-
lem is a challenging task: the ANN should learn the in-
putoutput mapping without overfitting the data and training

algorithms may get trapped in local minima. This prob-
lem involves two main distinct tasks: selecting an appropri-
ate topology (how many layers and neurons in each layer,
which nodes are connected) and training the ANN, i.e. set-
ting the adequate weights to the connections.

In our work [13] we proposed two hybrid GEC/ ANN al-
gorithms: the first evolves neural topologies, while the latter
performs simultaneous optimization of the architecture and
weights. In both cases, a solution to the problem is directly
encoded, i.e. the EA’s individuals directly include the ANN
and the reproduction operators work over the ANNs chang-
ing their topologies and connection weights.

In the first case, the evaluation of the solution involves
training the encoded ANN and estimating the error over a
set of validation examples. In the latter case, only the sec-
ond operation is necessary.

Biomarker discovery DNA microarrays allow to mea-
sure the expression of all genes in a genome and is becom-
ing quite important in biomedical research. In particular,
the automatic classification of samples has been a promis-
ing approach in cancer diagnosis and a number of classifiers
have been proposed.

A major problem with the application of these methods
is the huge number of attributes (genes) in the datasets (typ-
ically thousands). Gene reduction is extremely important
because it usually increases the accuracy of the classifiers
and it provides sets of genes that are important for classifi-
cation (e.g. biomarkers).

Our work [15] relies on the development of a wrapper
feature selection approach based on EAs as the optimiza-
tion engine, where solutions encode a set of features us-
ing a variable size set-based representation. The evaluation
of each solution requires the use of a classifier (k-nearest
neighbour, decision trees and support vector machines were
used) and the estimation of its error (using methods of
cross-validation or leave-one out); this process is achieved
by using the Weka software system [22].

Artificial Life An Artificial Life environment (getALife)
has been developed [9], whose major aim is to provide a
framework to evaluate single and multi-agent systems and
evolutionary approaches to the development of reinforce-
ment learning algorithms.

The environment is based on a predator-prey scenario,
with multiple species and where individuals are mainly
characterized by their decision modules and genetic in-
formation. The encoding of the decision modules in the
genome, as well as all the reproduction processes are han-
dled by JECoLi software. A recent version of the getAlife
GUI is provided in http://darwin.di.uminho.pt/alife.

509



4. Conclusions and further work

In this paper, a novel optimization library and the major
architectural software decisions were presented. The main
aim of this work was to provide a new and extensible frame-
work, for the development of meta-heuristics and also to
stimulate and complement the existing efforts in the soft-
ware engineering community, to build better optimization
packages, allowing these methods to reach a wider scien-
tific audience.

Since this is still a young framework, most of the future
work includes the improvement of the existing functional-
ities and support to the current users. Also, we aim to de-
velop new capabilities including new algorithms (e.g. Evo-
lution Strategies or Particle Swarms), new representations
or selection/reproduction operators. Other future aims are
to develop appropriate support for GUI development over
the library and to implement wrappers that allow the inte-
gration of the framework with existing scientific computa-
tion environments (e.g. Matlab, R, etc.)

References

[1] E. Alba and B. Dorronsoro. Cellular genetic algorithms.
Springer Verlag, 2008.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE
transactions on evolutionary computation, 6(2):182–197,
2002.

[3] P. Evangelista, I. Rocha, E. Ferreira, and M. Rocha. Evo-
lutionary approaches for strain optimization using dynamic
models under a metabolic engineering perspective. In
C. Pizzuti and M. Ritchie, editors, Proceedings of the Evo-
Bio 2009, Lecture Notes Computer Science, 2009.

[4] L. Fogel. Intelligence Through Simulated Evolution: Forty
Years of Evolutionary Programming. John Wiley and Sons,
New York, 1999.

[5] J. Holland. Adaptation in Natural and Artificial Systems.
PhD thesis, University of Michigan, Ann Arbor, 1975.

[6] J. Kennedy and R. Eberhart. Particle swarm optimization.
In Proceedings of IEEE International Conference on Neural
Networks, pages 1942–1948. IEEE Press, 1995.

[7] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, 1983.

[8] J. Koza. Genetic programming: on the programming of com-
puters by means of natural selection. MIT press, 1992.

[9] D. Machado and M. Rocha. getalife - an artificial life envi-
ronment for the evaluation of agent-based systems and evo-
lutionary algorithms for reinforcement learning. In New
Challenges in Applied Intelligence Technologies, Proc. of
the IEA-AIE 2008 conference, Studies in Computational In-
telligence Series. Springer, 2008.

[10] P. Maia, E. C. Ferreira, I. Rocha, and M. Rocha. Evaluat-
ing evolutionary multiobjective algorithms for the in silico
optimization of mutant strains. In 8th IEEE International
Conference on BioInformatics and BioEngineering Work-
shops(BIBE2008).Athens, Greece, pages 509–514, 2008.

[11] R. Mendes, I. Rocha, E. Ferreira, and M. Rocha. A com-
parison of algorithms for the optimization of fermentation
processes. In 2006 IEEE Congress on Evolutionary Compu-
tation, pages 7371–7378, Vancouver, BC, Canada, jul 2006.

[12] P. Moscato and M. Norman. A ‘Memetic’ Approach
for the Traveling Salesman Problem. Implementation of a
Computational Ecology for Combinatorial Optimization on
Message-Passing Systems. In M. Valero, E. Onate, M. Jane,
J. L. Larriba, and B. Suarez, editors, Parallel Computing and
Transputer Applications, pages 187–194, Amsterdam, 1992.
IOS Press.

[13] M. Rocha, P. Cortez, and J. Neves. Evolution of neural net-
works for classification and regression. Neurocomputing,
70(16-18), oct 2007.

[14] M. Rocha, P. Maia, R. Mendes, E. C. Ferreira, K. Patil,
J. Nielsen, and I. Rocha. Natural computation meta-
heuristics for the in silico optimization of microbial strains.
BMC Bioinformatics, 9(499), 2008.

[15] M. Rocha, R. Mendes, P. Maia, D. Glez-Pena, and F. Fdez-
Riverola. A platform for the selection of genes in dna mi-
croarray data using evolutionary algorithms. In Proceed-
ings of Genetic and Evolutionary Computation Conference
(GECCO 2007), London, pages 415–421, 2007.

[16] M. Rocha, J. Pinto, I. Rocha, and E. Ferreira. Evaluating
evolutionary algorithms and differential evolution for the
online optimization of fermentation processes. In Lecture
Notes in Computer Science 4447, Proc. EvoBio2007, Valen-
cia, pages 236–246, 2007.

[17] M. Rocha, P. Sousa, P. Cortez, and M. Rio. Multiconstrained
Optimization of Networks with Multicast and Unicast Traf-
fic. In G. P. el al., editor, 11th IFIP/IEEE International Con-
ference on Management of Multimedia and Mobile Networks
and Services (MMNS 2008), volume 5274 of Lecture Notes
in Computer Science, pages 139–150, Samos Island, Greece,
sep 2008. Springer.

[18] H.-P. Schwefel. Numerical Optimization of Computer Mod-
els. Wiley, 1981.

[19] P. Sousa, M. Rocha, M. Rio, and P. Cortez. Efficient OSPF
Weight Allocation for Intra-domain QoS Optimization. In
Lecture Notes in Computer Science 4268, 16. Autonomic
Principles of IP Operations and Management, pages 37–48.
Springer, 2006.

[20] P. Sousa, M. Rocha, M. Rio, and P. Cortez. Class-Based
OSPF Traffic Engineering Inspired on Evolutionary Com-
putation. In 5th International Conference on Wired/Wireless
Internet Communications, Coimbra, Portugal, May 2007.
Lecture Notes Computer Science, pages 141–152. Spriner-
Verlag, 2007.

[21] R. Storn and K. Price. Differential Evolution - a Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces. Journal of Global Optimization, 11:341–359, 1997.

[22] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufman, 2005.

[23] E. Zitzler, M. Laumanns, L. Thiele, et al. SPEA2: Im-
proving the Strength Pareto Evolutionary Algorithm. EU-
ROGEN, pages 95–100, 2001.

510


