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Abstract 
 

This paper investigates a new hybrid evolutionary 
agent model for agent-based social simulations 
(ABSS), which incorporates two decision components: 
(i) sub-symbolic (genetic) and (ii) symbolic (cultural). 
These components are coherently combined to produce 
a more plausible agent model. Experiments were 
carried out using the Plausible Agents Matrix (PAX) 
framework, and modeled a real dengue fever spreading 
scenario. They aim to analyze the qualitative and 
quantitative predictive power of the model. Previous 
work has explored the impact of structuring elements 
on agents’ behaviors and the impacts of 
communication mechanisms on agents’ behaviors 
using PAX. In this paper we investigated three types of 
agent models regarding to the combination of decision 
components: (1) agents only with genetic component; 
(2) agents only with cultural component; and (3) 
agents with both genetic and cultural components. 
Results show the importance of each component in the 
model and their synergic effects when combined.  
 
1. Introduction 
 

Agent-based social simulations (ABSS) have been 
widely used by social scientists to understand real 
social phenomena. The major motivation to use agent 
models in social simulations is the possibility of 
modeling and controlling different granularity levels. 
Epstein and Axtell are prolific in providing reasons for 
use of agent-based models instead of the analytical 
ones [1]. 

Many platforms and models were proposed to 
support ABSS, e.g., the Schelling’s segregation model 
[2], the garbage can model [3], the Sugarscape model 
[1] and the Vidya platform [4][5][6]. Previous works 
introduced the PAX (Plausible Agents Matrix) 
framework [7], whose main objective is to facilitate the 

development of social simulations, considering 
modeling of spatial structuring elements [8]. 

In the 70s, the biologist Richard Dawkins had an 
insight of what he called the theory of memes [9]. If 
genes are physical replicators responsible by the 
genetic evolution, memes are mental replicators 
responsible by cultural evolution. Differently of genes, 
memes can change substantially along the agent 
lifetime. 

In this paper we investigate a new model of agent, 
which combines two perspectives: (1) genetic – agents 
have genetic codes that influence their behaviors – and 
(2) cultural – agents have beliefs systems that also 
influence them behaviors. We highlight the plausibility 
of this model and its implication for mimicking 
society. 

Results show interesting emergent phenomena in 
simulations of a real town in the countryside of 
Pernambuco state (Northeast of Brazil), relative to 
different configurations of model, namely, model with 
only genetic component, with only cultural component 
and with both genetic and cultural component. We 
perform a comparative analysis between simulated and 
real data. Finally, we investigate the influence of 
culture on genes distribution over population. 
 
2. The PAX Framework 
 

As in previous works, we have built our model and 
performed all simulations using the PAX (Plausible 
Agent Matrix) Framework. Its architecture was 
conceived to be as modular as possible, allowing to the 
social scientist to model and perform the ABSS 
including the following elements: 

• Environments: structures, structural levels and 
environments cell’s labels; 

• Entities (or objects): the basic elements of 
simulations, defined by a set of spatial 
characteristics; 
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• Entities’ interaction interfaces: set of actions 
that entities can invoke from others; 

• Agents: abstract structures to implement 
context-specific agents. 

 
2.1. Environments 
 

In PAX, the environments are 2-dimensional 
matrices defined by different types of elements: 
structural level, structuring elements, environmental 
cell’s labels. All structures in PAX are entities with 
spatial coordinates (i.e. placement), dimensions (i.e. 
width and length), and may also contain other 
structures in it. The placement of structures in the 
environment affords and can influence the  choice  of  
different  agents’  strategies,  work as means of  
promotion of global  order, as  well  as  may create 
beneficial contexts that impact on the dynamics of 
social networks. 
 
2.2. Entities 
 

Entities are anything conceivable to be a part of the 
environment. They are composed by a 2-dimensional 
spatial coordinates, meta-location (i.e. the structure 
where it is located or no structure) and an entity 
interaction interface. As the basic class of the 
simulator, it is used by the user (i.e. the social scientist) 
to create context-specific objects. It allows the 
implementation of some abstract methods and the 
provision of an entity interaction interface (if 
necessary). 
 
2.3. Entities’ Interaction Interfaces 
 

An Entities’ interaction interface represents a set of 
rules that guide the way entities interact with each 
other. For this, an entity interface incorporates a set of 
possible actions that entities can perform over other 
entity and its state; restrictions may be top of which 
restrictions will be placed based on the current state of 
the entity. Therefore, when the user is designing an 
object and wants to include restrictions on its behavior 
during interactions with other entities, he may only 
need to implement an entity interaction interface. 
 
2.4. Agents 
 

In the framework, agents are entities designed to be 
intelligent. Nevertheless, the framework does not 
supply any particular implementation of intelligent 
components for the agents’ behavior. However, PAX 
provides an abstraction for perception and action, 
leaving it opens for the developer to include intelligent 

processing routines. Therefore, the user, when 
implementing a specific kind of intelligent agent, is 
free to build an intelligent module, mapping 
perceptions to actions according to its needs (regarding 
behavior). 

 
3. Hybrid Evolutionary Agent Model 
 

This section explains the proposed hybrid 
evolutionary agent model. The model is evolutionary 
because the agent learning is based on evolutionary 
processes and it is hybrid because it combines two 
different evolutionary approaches. 

The Darwin’s Theory of Evolution and subsequent 
advances on Genetics applied to ethology (i.e. study of 
animal behaviors) show that a substantial part of 
human structures and behaviors are dictated by our 
genes In 1976, the ethologist and geneticist Richard 
Dawkins proposed another ground breaking theory that 
casts cultural evolution as an evolutionary process 
whose fundamental units are “mental replicators”, as 
he coined, memes (Theory of Memes [1]). 

Memes, differently from genes, are not physical 
structures – but virtual ones – which only exist due to 
the mental activity of human and other animals able to 
replicate symbolic expression of other individuals 
(frequently) of the same species. In human societies, 
these symbols, here referred as memes, have some 
evolutionary properties (or operators, in the 
evolutionary algorithm perspective), like mutation (i.e. 
random alteration) and crossover (i.e. combination 
with other memes). Obviously, the environment (i.e. 
the human mind and its communication schemes) and 
its morphology impose different evolutionary 
dynamics to memetics when compared to genetics. 

We assume that two main driving “forces” – not 
always (but sometimes) divergent – guide the human 
behavior: genetics and culture. For example, the 
decision of a human being to marry is influenced by 
genetic (e.g. reproduction, cooperation) at the same 
time it is influenced by cultural (e.g. social reputation) 
factors. In this example, the same behavior (to marry) 
could be reinforced by the two factors, which could not 
be the case at all times. 

The majority of traditional ABSS models present 
low plausibility regarding the mentioned genetic and 
cultural influence factors on agents’ behaviors. 
Because of that, the proposed model incorporates these 
factors as decision components, aiming to increase the 
plausibility of produced social simulations in the 
behavioral dimension; regarding the quality 
dimensions of social simulations, see [8]. A BDI-like 
architecture for the hybrid evolutionary agent model is 
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illustrated in Figure 1. It shows the combination of the 
cultural and genetic components. In the illustrated BDI 
architecture, beliefs are the perception, the genetic 
database (BG) and the cultural database (BC); desires 
can be innate (Di) or learnt (Dl); and intentions (or 
action plans) are produced by the decisor module, 
combining both genetic and cultural influences. 

 
Figure 1.  BDI-like architecture for the proposed hybrid 

evolutionary agent model. 

Notice the dashed line from the genetic component 
to the cultural one. This means that the cultural 
component is influenced by genetic characteristics. For 
example, a tendency to communicate more or less with 
other individuals could be genetically coded, but this 
could impact on the agent´s culture. 

 
3.1. Cultural component 

 
The cultural component of the model is responsible 

for the agent cultural learning. This means that agent 
learning can modify its behavior along life and the 
acquired knowledge can be disseminated throughout 
society by available communication media. The 
cultural component provides both individual and social 
learning, since beliefs can be disseminated in the 
society and can be useful for solving problems that 
require participation of groups of individuals. 

Our proposition of cultural component is based on 
the Theory of Memes, where beliefs (or memes) are 
represented – in its simplest case – by reinforcement 
learning structures. Thus, memes survival will depend, 
mainly, based on their adaptability to the environment 
in which they are inserted. 

In the proposed cultural component, memes can be 
generated by experience (i.e. interaction with 
environmental entities) and communication with other 
agents. Therefore, the cultural component is 
continually modified throughout the agent lifetime. 

Communication among Agents – Communication is 
the main “operator” of the cultural component for 
memes dissemination. We can think about very 
complex communication mechanisms, with beliefs 
regulating the communication flow (e.g. 
communication regulated by social reputation of 
individuals) and highly expressive communication 

protocols. However, one of the simplest mechanisms – 
adopted in the experiments of this work – is the 
interchange of reinforcement learning values (i.e. 
weight of connections among states) among agents that 
are geographically close. In all simulations of this 
work, communication is also regulated by genetic 
factors that reinforce the likelihood of genetically close 
agents to communicate. 

 
3.2. Genetic component 

 
Differently of the cultural component, the genetic 

one keeps immutable along the agent lifetime, that is, 
changes happen between generations. It is composed of 
the genetic memory passed on by ancestors of the 
agent, perpetuating behaviors of survivors through 
natural selection. The genetic component has a 
genotype, or genetic database, which will quantify 
agent’s attributes and will code some of its behavioral 
tendencies. 

Two genotypes of agents can be crossed-over to 
produce a new genotype for a descendent agent. 
Several combination strategies can be adopted; in the 
simplest case, the genetic values can be the average of 
the parents’ genetic values. This is the strategy used in 
this work. Another approach used is to combine half of 
the two agents’ genotypes. In the case of similar genes 
of parents, the generated gene is reinforced. An 
interesting consequence of that is the transformation of 
recessive genes into dominant ones for some 
individuals of the offspring. The genetic component 
provides learning in the population level, which may 
ideally converge to optimize agents’ behaviors that 
survive by means of natural selection of genes. 

 
4. Case of study 
 

In a previous work, we have used the PAX 
framework to simulate a fictitious environment to 
investigate the impact of structuring elements’ 
placement on agents’ behaviors [10]. In that 
environment, we simulated a generic epidemic on 
some scenarios, aiming to assess yield impact. 

Regarding the modeling of environments, the 
present work innovates in the following aspects: (a) 
scales-up to representation the level of a real town; (b) 
incorporates representation aspects of a real disease 
(i.e. dengue fever); (c) allows many more agents to be 
considered; and most important, (d) incorporates the 
hybrid evolutionary agent model commented before. 

 

499



4.1. Modeling of Iguaraci Town 
 
In this work, we have simulated Iguaraci, a small 

Brazilian town located in the Northeastern state of 
Pernambuco. Real data was collected from the official 
database of the state government – BDE/PE (at 
http://www.bde.pe.gov.br) and from demographic data 
from the Brazilian Institute of Geography and Statistics 
– IBGE (at http://www.ibge.gov.br/english). Iguaraci 
has an area of approximately 780 km2, and a 
population of approximately 12,000 inhabitants, that is 
a population density of 15 per km2.  

In the simulated environment, we have represented 
Iguaraci as a grid of square cells of cardinality 28×28; 
each cell corresponds to 1 km2 of Iguaraci. Based on 
the real geographic aspects of the town, the 
environment was divided in 4 structures, representing 
each one of the communities in the city — 2 large 
communities (22 per km2) and 2 small (5 per km2). As 
we are simulating dengue dissemination over the 
population, we placed in the environment health 
structures, i.e. hospitals and health stations. Iguaraci 
has 1 hospital and 3 health stations, but these structures 
are not sufficient to attend all its health services 
demand. Hence, the population has to use health 
services of two neighbor towns: Afogados da Ingazeira 
and Sertânia. For this reason, two additional hospitals 
were considered in the model, representing the 
Hospital of Afogados da Ingazeira (19 km away) and 
the Hospital of Sertânia (46 km away). These two 
towns are connected to Iguaraci by a state road, PE-
292. These elements are all illustrated in Figure 2. All 
data from the abovementioned sources was collected in 
the beginning of the 2007 year.  

 
4.2. Modeling of Agents 
 

In the environment described above, 12,000 agents 
were added, each one with an “infection” and a 
“wellbeing” label. The former represents the health 
status of the agent (i.e. if the agent is infected or not by 
the dengue fever), and the latter informs if the agent is 
“feeling good” or “feeling sick”, regardless of its 
health status. Even if the agent is not infected, its 
“wellbeing” label may be set to sick. However, if the 
agent is infected, it always feels sick. The decision to 
go or not to a health unit is based on the “wellbeing” 
label, not in the health condition by itself. This is a 
hedonistic perspective, as most humans naturally 
subscribe to. 

 
Figure 2. Schematic view of the considered environment 

(adapted from [10]). 

We assumed that each agent in the simulation 
perform 5 actions in one day, thus the simulated day 
has 5 iterations. Total simulated time period was 1825 
iterations, meaning 365 days in the real world. 

The learning module of the agent in this hybrid 
evolutionary approach is composed by cultural and 
genetic components. To investigate the influence of 
each component in the action chosen by the agent, we 
simulated 3 different scenarios: (i) cultural component; 
(ii) genetic component; (iii) cultural and genetic 
components. In the environment, the agent has to move 
to the different structures according to the action 
chosen. To perform the action, the agent will face a 
cost, proportional to the distance from origin to 
destination. Therefore, this cost has an important role 
on the cultural learning component, once it will 
determine the learning reinforcement rate. The genetic 
component will determine the probability of an agent 
chose and perform an action according to its 
genetically coded behavior tendencies.  

In the beginning of all simulations, agents do not 
know the best action to perform for each state. In the 
scenarios with cultural learning, agents learn through 
reinforcement learning aiming to adjust their behavior 
to their particular needs, considering their current state. 
An agent state is a combination of its current location 
and feeling. At a certain moment, an agent can be in 
one of the following locations: Community1; 
Community 2; Community 3; Community 4; Hospital 
of Iguaraci; Hospital of Afogados da Ingazeira; 
Hospital of Sertânia; Health station1; Health station2; 
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and Health station3. The possible feelings are “feeling 
good” and “feeling sick”. For each state, an agent has a 
set of possible actions to chose and performs. The 
available actions, considering all possible states are: go 
to community1; go to community2; go to community3; 
go to community4; go to hospital of Iguaraci; go to 
hospital of Afogados da Ingazeira; go to hospital of 
Sertânia; go to health station1; go to health station2; 
go to health station3; walk inside community; go 
home; and, do nothing.  

Regarding cultural learning, agents can 
communicate with each other and transmits their 
knowledge (i.e. values learnt by reinforcement) to 
other agents. The meme transmission between two 
agents is the main part of the cultural evolution, since 
the agent shares knowledge about the best options of 
actions to be performed in the location where they 
gather at each time.  

Each agent’s genetic code has the following genes: 
• Gene 1 – quantify the reinforcement applied to 

bad and good feelings (values in the interval 
[100.0, 600.0]); 

• Gene 2 – preference of staying at community, or 
the tendency to accommodate at the current 
community (values in the interval [-1.0, 1.0]); 

• Gene 3 – preference of walking inside 
community (values in the interval [-1.0, 1.0]); 

• Gene 4 – preference of doing nothing (values in 
the interval [-1.0, 1.0]); 

• Gene 5 – preference of backing to home (values 
in the interval [-1.0, 1.0]); 

• Gene 6 – probability of talking to others (values 
in the interval [0.0, 1.0]). 

 
4.3. Modeling Dissemination Dynamics of 
Dengue Fever 
 

The dengue fever is a vector-borne disease, and its 
dissemination dynamic applied in the proposed model 
is based on the mosquito-human-mosquito (mainly 
Aedes aegypti) infection cycle. The agent infection 
occurs when a healthy agent is bitten by an infected 
mosquito. The mosquito infection is caused by: (i) if a 
mosquito bites an infected agent (i.e. horizontal 
transmission); (ii) if it is descendant from an infected 
female mosquito (i.e. vertical transmission). Ponds and 
other water accumulation places are deeply connected 
with the disease dissemination [11].  

Due to the fact of only female Aedes aegypti are 
hematophagous (i.e. are dissemination vectors), in our 
model only 50% of mosquitoes are able to “bite” the 
agents. In this model, the intrinsic and extrinsic virus 
incubation period was abstracted. However, all those 

parameters can be easily included later. 
In our model, the dissemination cycle was 

subdivided in: (1) hatching of the eggs – the number of 
eggs to hatch is proportional to de number of eggs and 
the rate of water inside the cell; (2) infection 
dissemination – 50% of the mosquitoes inside the cell 
can bite the agents. The number of agents bitten, at 
each iteration, is proportional to the number of agents 
and the number of mosquitoes inside de cell. If a 
healthy mosquito bites an infected agent, this mosquito 
will become infected and from now on will transmit 
the infection to all its offsprings; (3) mosquitoes 
spreading – considering that each cell is an abstraction 
of 1km2 of the Iguaraci area and the fact of an Aedes 
aegypti can fly up to 100m of distance, the number of 
mosquitoes that will fly to a neighbor cell is a function 
of the cell area (i.e. 1 Km2), the number of mosquitoes 
in the cell and the maximum distance a mosquito can 
fly; (4) oviposition (i.e. laying eggs) – the female 
mosquito needs a blood meal and water to lay its eggs. 
Hence, the number of new eggs in the cell is a function 
of number of agents, amount of water and number of 
mosquitoes in the cell. 

The dengue disease was simulated following a 
Cellular Automata -like dynamics. Therefore, Aedes 
aegypti mosquitoes were not represented in the model 
as agents, but they were abstracted in each cell of the 
environment by its quantity and the percentage of 
infected mosquitoes. Other variable values were kept 
constant for each cell, namely, the number of eggs, the 
percentage of infected eggs and the level of water in 
that cell. These values were initialized uniformly for all 
executions and changed over time as the simulation 
progressed, based on neighborhood and presence of 
agents. Although hard-coded, most of these simulation 
variables could be readily obtained (and used) should a 
more precise simulation would be necessary. This fact 
only confirms the flexibility PAX as a powerful 
simulation tools for social problems. 
 
5. Experiments and results 
 
5.1. Experimental setup 

 
As the proposed agent model has two decision 

components: genetic and cultural, experiments were 
carried out to investigate their mutual influence. Three 
simulation scenarios were devised: (1) agent only with 
cultural component; (2) agent only with genetic 
component; and (3) agent with both cultural and 
genetic component. 

The performance of each scenario was inferred by 
its approximation power relative to real data, after one 
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simulated year. Population state was inspected each 7 
days. All simulations have two distinct moments, of 
which only the second one is considered in results. The 
first moment is a “free run” of 3 simulated months – a 
period of time needed to produce a more stable 
population behavior. After these three initial months, 
one year is simulated and results observed. 

To build a more realistic environment relative to 
public health services, 10% of population per iteration 
was induced to feel sick, generating extra demand to 
hospitals and health stations in addition to the regular 
infected agents demand. Each hospital or health station 
was allowed to have different waiting queue limits and 
different number of beds, which determines the 
number of agents that it is able to attended. In this 
work, we considered all simulated health units with 
waiting queue of size 50. The hospital of Iguaraci has 
16 beds; the hospital of Afogados da Ingazeira has 96 
beds; the hospital of Sertânia has 55 beds; each health 
station has only 1 bed. 

Other parameters relative to communication were: 
global communication (i.e. the governmental broadcast 
mechanism used to instruct population on how to 
combat dengue) reaches 60% of population per 
iteration; the instructed agent, called a “conscientious” 
agent, is capable of remove 5% of water of water pools 
in every location it visits; 1% of the population is 
initialized as conscientious. In local communication 
(i.e. communication between two agents) conscientious 
agents instructs others. The percentage of agents that 
an agent can locally communicate is determined by 
genetic factors. 

The number of confirmed cases of dengue fever 
infection in the end of 2006 was 1. In the end of 2007, 
this number grows to 19. Thus, simulations were 
initialized with 1 infected agent and arbitrary dengue 
fever dissemination spots; this including concentration 
of mosquitoes and water pools in the town. 

After one simulated year, we expected to analyze the 
approximation power of each model configuration in a 
qualitative perspective, even using quantitative real 
data. The analysis will be focused basically on the 
percentage of sick individuals and the approximation 
of models to this number, as well as the population 
behavior over time in a cultural and genetic 
perspective. 

The genetic component has two parameters: 
mutation rate and crossover rate. The mutation rate 
determines the probability of an agent to have its 
genetic code mutated per iteration, situation in which 
one of its genes is randomly modified. The crossover 
rate is the probability of an agent to crossover with 

other, generating a child agent. We have used a 
mutation rate of 0.5% and a crossover rate of 0.25%. 

Agents have a minimum and maximum initial 
lifetime. They are initialized randomly in this interval. 
The minimum and maximum initial lifetimes of an 
agent are 50 and 80 years, respectively. Diseases have 
negative effect on agents’ lifetimes as “natural” 
selection helps on the dissemination of robust genetic 
characteristics and cultural habits. Simulations were 
carried out using an Intel® Core™ 2 Quad q 6600 64 
bits processor of 2.4 GHz with 4 GB of RAM. Results 
were averaged over 10 distinct runs. 

 
5.2. Simulation results 

 
We conducted two types of investigations for each 

scenario: (1) qualitative confrontation of the model 
with real data; (2) verification of influence of the 
cultural component over the genetic one. 

The first type of investigation was carried out 
through simulations parameterized with real data, with 
its qualitative results confronted with real data after a 
simulated time. The second type of investigation was 
carried out through the generation of genetic 
histograms. Obviously, this investigation was only 
conducted when the genetic component is enabled. The 
mentioned genetic histogram aims to capture the 
distribution of genes values over the population. Each 
agent has six genes, so consequently six genetic 
histograms were generated. Therefore, we compared 
the six genetic histograms when the cultural 
component is disabled and enabled. 

Figure 3 shows the population size over time. Since 
reproduction is enabled only when the genetic 
component of agents are also enabled, we observe a 
growth only in scenarios with genetic component. Of 
course, we could assume a reproduction mechanism 
even when only cultural component is enabled, but this 
would be somehow incoherent with real scenarios, 
since we basically see in the real world genetic 
motivations in reproduction, even if determined 
cultural symbols are indirectly benefited with 
reproduction. Notice in Figure 3 that the cultural 
component has little influence over the reproduction (a 
genetic-based mechanism), denoted by a similar 
growth. Reproduction of agents only happen when the 
genetic component is enabled, thus the little influence 
of the cultural component towards population growth. 
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Figure 3. Populational growth over time (circles-cultural; 

squares-genetic; triangles-both components). 

Figure 4 shows the cumulative number of infected 
agents over time. One can perceive the inconsistence of 
the agent model with only cultural component enabled 
and the influence of genetic characteristics on disease 
dissemination. Real data informs that, in the end of 
2006, Iguaraci has a cumulative number of sick agents 
equals to 1, and in the end of 2007 equals to 19. 
Therefore, the best model, regarding quantitative terms 
is the one with cultural and genetic components. 

 
Figure 4. Cumulative number of infected agents over time 
(circles-cultural; squares-genetic; triangles-both components). 

Figure 5 shows the non-cumulative (i.e. 
instantaneous) percentage of sick agents over time. It 
indicates that the model with only cultural component 
enabled is insufficient to approximate real data. When 
the genetic component is enabled, the model produces 
a more accurate approximation. The cultural 
component seems to refine the behavior of agents 
when the genetic component is enabled, since more 
tuned results are found with this scenario. 

Figure 6 shows the cumulative number of attended 
agents in health units (hospitals and health stations), 
and Figure 7 shows the instantaneous percentage of 
sick individuals over time. In both, it is clear that the 
model with cultural and genetic components enabled 
represents a mean term between the other two extreme 
models (i.e. with only cultural or genetic components). 

 
Figure 5. Instantaneous percentage of infected agents over 

time (circles-cultural; squares-genetic; triangles-both 
components). 

 
Figure 6. Cumulative number of attended agents over 
time(circles-cultural; squares-genetic; triangles-both 

components). 

 
Figure 7. Instantaneous percentage of attended agents over 

time (circles-cultural; squares-genetic; triangles-both 
components). 

To better understand the influence of the culture on 
the genetics of agents, we built histograms for each 
gene type (with and without cultural component 
enabled). They show the value distribution for that 
particular gene over the population. In our simulation 
we have six gene types. 

Two example histograms can be seen in Figure 8 
and 9. They are for gene 2 (without and with cultural 
component, respectively). We observe that the 
presence of the cultural component only refines the 
genetic convergence. This refinement may be due a 
faster convergence in the genetic code. 

Notice the genetic convergence to values between 
0.6 and 0.2. This means that the population prefers 
migrate to others communities instead of stay for long 
times at a specific community. 
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Another interesting observation is that in almost all 
results we have noticed little influence of the cultural 
component on the genetic component, which can be 
understood as robustness of the genetic evolution. 

 
Figure 8. Gene 2 values distribution over population without 

cultural component enabled. 

 
Figure 9. Gene 2 values distribution over population with 

cultural component enabled. 
 
6. Conclusion and future work 
 

In this paper we presented a new model of hybrid 
evolutionary agent which combines two perspectives: 
genetic and cultural. We tested three different model 
combinations, namely, only with the genetic 
component enabled, only with the cultural component 
enabled and with both components enabled. 
Experiments used real data, which was compared 
quantitatively and qualitatively with the produced 
simulated ones.   

To sum up we highlight the following results: 
• The cultural component has little influence over 

the reproduction, since the population with only 
genetic component and with both genetic and 
cultural components showed similar growth; 

• Model with only cultural component enabled 
showed to be completely inconsistent with real 
disease dissemination; 

• Configuration with both cultural and genetic 
component enabled performed best among the 
three tested models in approximating real 
phenomena of dengue fever dissemination; 

• In almost all results, the cultural component has 
little influence over the genetic component, 
denoting a robustness of genetic evolution; even 

thou not large, this influence is an important 
counter intuitive finding as one would expect 
only genetics affecting culture; 

• The cultural component seems, most of times, 
to be refining the genetic-motivated behavior. 
 

In the future we plan to put together more aspects 
of real populations in order to produce even more 
realistic results. Finally we stress the great flexibility 
and realism of PAX framework when processing the 
introduced hybrid evolutionary agent model (i.e. the 
combination of genetic and cultural characteristics). 
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