
Improved Accuracy Rates of a Prototype Based
Classifier Using Evolutionary Computation

Gustavo Recio, Yago Saez and Pedro Isasi
Department of Computer Science, Carlos III University, Madrid, Spain
Evolutionary Algorithms, Neural Networks and Artificial Intelligence
(EVANNAI) grecio@inf.uc3m.es; ysaez@inf.uc3m.es; isasi@ia.uc3m.es

Abstract

Prototype based classifiers allow to determine the class
of a new example based on a reduced set of prototypes in-
stead of using a large set of known samples. By doing
this, the computational time gets substantially decreased as
the initial set is replaced by a reduced one and hence the
classification requires less computations to estimate near-
est neighbours. In most simple classification problems the
samples associated to each class are in general gathered in
a particular region of the euclidean space defined by their
characteristic features.
In these particular problems prototype classifiers reach

their best performance. Unfortunately, not all classifica-
tion problems have their samples distributed in this way
and therefore improvements are needed in order to reach
acceptable classification accuracy rates. This work pro-
poses a nearest prototype classifier that uses evolutionary
computation techniques to increase the classification accu-
racy. A genetic algorithm was used to evolve the spatial
location of each prototype resulting in a better distribution
of prototypes which are able to obtain larger classification
accuracy rates.

1. Introduction

Nearest prototype classifiers [1] allow to determine the
class of a new example on the basis of a set of previously
classified prototypes. The way of obtaining this set of pro-
totypes is based on selecting them from an original set of
labelled samples, or by replacing the original set by a dif-
ferent and reduced one [2]. Learning vector quantisation
algorithms [3] are a family of algorithms focused on near-
est prototype classification. They are based on a the dy-
namical computation of a set of prototypes in order to min-
imise the classification error. Several approaches are based
on this model [4]. Some other approaches are based on lo-

cal weighting in nearest prototype classification [5]. The
way they do this is by providing the prototypes with their
continuous weight vector. Thus, the algorithm follows a
prototype-specific weighting approach, instead of a typical
instance-specifying one [6]. Other approaches are based on
the so called evolutionary nearest prototype classification
algorithm [7] which is a nearest prototype approach that
follows an evolutionary process to compute a correct num-
ber of prototypes. Prototype classification has also been ap-
plied to handwriting recognition in a method that employs
a learning process to determine both the number and the lo-
cation of prototypes [8].
Next section describes in detail the hybrid method that

combines a prototype based classifier and evolutionary
computation techniques. Section 2.1 deals with the gen-
eration of prototypes from the databases whereas Section
2.2 describes the implementation of the genetic algorithm
used to evolve the spatial location of the prototypes. The
databases used in this work are described in Section 3. In
Section 4, the experiments carried out in this research are
explained and followed by the main conclusion and future
work that arose as a result of this work.

2. Hybrid Classifier

In this paper a hybrid classification technique that uses a
prototype selection mechanism to generate the seed of a ge-
netic algorithm is presented. The algorithm can be divided
in two different stages, in the first one the number of proto-
types is specified and a first classification is done over the
training set of instances. As this is not usually enough to ob-
tain accurate classifiers over the validation set of instances,
a second stage where the prototypes are reallocated to a dif-
ferent spatial location is needed. The first stage, which will
be explained in next section, consists of a prototype based
classifier, this classifier uses the euclidean distance to iden-
tify nearest neighbours, it also sets the number of prototypes
and places them in a particular spatial location.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.172

491

Figure 1. Two dimensional artificial domain
for illustration of prototype classification.

The second stage is described in Section 2.2 and uses the
prototype set previously obtained as the seed of a genetic al-
gorithm which evolves the spatial location of the prototypes
and aims at a better classification accuracy. The genetic al-
gorithm itself would be no better than the hybrid technique
as typical genetic algorithms use random initial populations
wereas this technique uses as initial population the proto-
type set generated in the first stage of the algorithm.

2.1. Selection of Prototypes

Reducing the number of computations at the time of sort-
ing unknown instances is the motivation behind prototype
classifiers. In this manner, each prototype replaces a set
of instances of the same class as their prototype. Figure 1
represents an artificial two-dimensional domain where in-
stances of two different classes, A and B, are distributed in
two separate regions of the euclidean space which is defined
by the characteristic features or attributes of the instances.
Using the euclidean distance as the metric to find nearest
neighbours, it is clear that each set of instances in regions A
and B can be replaced by a single prototype associated with
a particular class (circled instances). Then it is possible to
sort all instances in Figure 1 by choosing which of the two
prototypes is closest to each instance.
Many prototypes can be chosen, however, this is an im-

portant decision which will affect the final accuracy of the
classifier. The first stage of the proposed algorithm consists
of a method for choosing such prototypes. That is imple-
mented by computing for each instance its nearest neigh-
bour of a different class using as metric the euclidean dis-
tance defined by their normalised attributes. Then, every
couple of instances that satisfy being the nearest neighbour

of each other are selected as prototypes. This can be clearly
understood by looking at Figure 1, every instance of class
A has an associated nearest neighbour of class B, however,
there are only two instances that satisfy being the nearest
neighbour of each other and only these are taken to build up
the prototype set. This bi-univocal relation is represented
by two parallel arrows with opposite directions whereas the
prototypes are represented by circled instances.
This method provides a very large accuracy when han-

dling simple and linear domains like the one represented in
Figure 1. However, for more complicated domains it does
not perform so well by itself and thus it needs further im-
provements which were achieved by including new proto-
types in a second classifying round. It was noticed that the
instances that were not correctly classified could be grouped
according with the prototype they were confused with, i.e.
instances of class B which distance to prototypeA is smaller
than their distance to prototype B (they are missclassed or
their prototype is confused).
Within each group, the instance which distance to the

missleading prototype is smaller will be selected as a new
prototype. This process is repeated until 100% accuracy
is obtained over the training set. Unfortunately, doing this
some of the prototypes would be classifying just one in-
stance and the classifier would be specialised in a particular
training set. Also, during the second stage of the algorithm,
i.e. the evolution of prototypes using a genetic algorithm,
the fitness of individuals consists of the classification ac-
curacy obtained by that set of prototypes over the training
set, which can not be larger than 100%. Then, in order to
evolve the spatial location of the prototypes some of the se-
lected prototypes must be ignored. The removing policy
uses a certain threshold to eliminate prototypes that do not
classify a minimum number of instances. In this way the
accuracy over the training set would be less than 100% and
therefore a larger accuracy can be achieved by evolving the
spatial location of the prototypes at the same time that the
classifier would not be specialised. The selection of proto-
types is summarised in the flowchart of Figure 2.
The proposed method, of course, can be extended for the

n-dimensional case where each instance is defined by n dif-
ferent attributes. Also, these basic principles can be applied
to domains with k classes. This is the general case for the
actual datasets used through this work. Once the prototype
set is obtained its spatial distribution must be optimised to
obtain a larger classification accuracy.

2.2. Reallocation of Prototypes

The optimisation of the spatial location of each proto-
type can be done using a genetic algorithm. First, the geno-
type of this algorithm must be defined from the initial dis-
tribution of prototypes or phenotype. Take as an exam-

492

Figure 2. Flowchart for selection of proto-
types.

ple a two-dimensional domain with two possible classes
(i.e. instances with two attributes that belong to one of two
classes). Assume that through the above process six proto-
types of each class have been selected. Then, there are 12
prototypes with 2 attributes each. This phenotype can be
represented by a single chromosome with 24 genes. There-
fore, the genotype representation for the proposed genetic
algorithm depends on the above prototype selection pro-
cess, through the number of prototypes, and on the actual
domain, through the number of attributes that define each
instance. The genetic algorithm will modify the spatial lo-
cation of each prototype in order to find the optimal set of
prototypes.
The evaluation of fitness for each individual can be done

by counting the number of instances that it is able to classify
with no error. As in every evolutionary algorithm, individu-
als with the best fitness have more chances of being selected
for reproduction and propagate their genes through future
generations. The genetic algorithm is linked to the proto-
type classifier through the initial population which is based
on the prototype set. This initial population contains the
prototype set itself, versions of the prototype set modified
through a process of mutation and individuals generated at
random.
The initial population is then evolved through a typical

genetic algorithm process with fitness proportional selec-
tion, one point crossover, uniform mutation, and an elitist
replacement strategy to obtain further and improved gener-
ations. The entire process is summarised in Figure 3. The
classifier and the genetic algorithm work together towards

Figure 3. Flowchart of the algorithm.

achieving the same aim, i.e. every time the genetic algo-
rithm needs to evaluate the fitness of an individual, its phe-
notype is obtained and used by the classifier to compute the
fitness. The process normally stops when there is no fur-
ther improvement for a number of generations, otherwise, it
continues for a given number of generations.

3. Data Sets

Artificial data sets were created for the evaluation of the
algorithm performance at the developing stage. These were
bi-dimensional domains for easy graphical representation
and understanding. Once the algorithm was fully devel-
oped, its performance was tested over actual data set form
the UCI repository [9]. Table 1 shows a summary of the
characteristic of the chosen domains. These were chosen to
create a diverse set of databases with respect to the num-
ber of attributes and classes as well as to have balanced and
not balanced databases with respect to the frequency of the
classes.
The databases in Table 1 were first normalised and

cleared off from unknown attribute values and then ran-
domly ordered and separated into two sub-sets, one of them
containing the 90% of the instances of the original database
for training purposes, and the other with the remaining 10%
for validation of the algorithm performance over unknown
instance values. The training set was used by the classi-
fier and the genetic algorithm to create the models and the

493

Table 1. Actual domains from the UCI reposi-
tory to be used in the experiments.

validation set was only used to validate the accuracy of the
model which has never seen the instances within the valida-
tion set.

4. Experiments

Several experiments were carried out to validate the ac-
curacy of the method. These consisted in two main parts.
First a simple nearest prototype classifier that uses the eu-
clidean distance as metric was generated as described in
Section 2.1. The accuracy of this initial classifier was
tested over the training and validation sets for the databases
shown in Table 1. Then, each initial prototype classifier was
evolved as described in Section 2.2 in order to re-distribute
the prototypes within the euclidean space.
The initial population of the genetic algorithm consisted

in 100 individuals, one of them was an exact copy of the
prototype set generated by the classifier in the previous
stage, 49 individuals were created from this prototype set
through a process of mutation with a mutation rate of 5%
at every gene, the remaining 50 individuals were generated
at random to explore the search space. The fitness of an
individual, or set of prototypes, was evaluated as the num-
ber of instances that it classifies with no error. The selection
mechanism that selects parents for reproduction used fitness
proportional probabilities. The genetic algorithm followed
an elitist replacement strategy keeping the 10 best individu-
als of each generation. To create the 80% of the remaining
90 individuals, i.e. 72 individuals, one point crossover was
performed, whereas the rest, i.e. 18 individuals, came from
mutation of their parents. The mutation mechanism added
a random number from a zero mean Gaussian distribution
to each entry of the parent vector. The amount of mutation,
which was proportional to the standard deviation of the dis-
tribution, was decreased at each new generation. This stan-
dard deviation started at one with the first generation and
decreased to zero at the final step.
The evolution process for each database shown in Table

1 is presented in Figures 4 to 7. In the figures, the continu-
ous line represents the fitness of the best individual at every
generation whereas the dashed line represents the mean fit-
ness of all individuals at every generation. It can be easily

Figure 4. Evolution of prototypes for the Bal-
ance Scale database.

Figure 5. Evolution of prototypes for the
Glass database.

494

Figure 6. Evolution of prototypes for the Thy-
roid database.

Figure 7. Evolution of prototypes for the Wis-
consin database.

Table 2. Classification accuracy rates of the
algorithm over training and validation sets of
the databases shown in Table 1.

seen an improvement in the percentage of instances that the
classifier is able to sort correctly as the generations go on.
Note that some of the experiments terminated before reach-
ing the maximum number of generations which was set to
100. The algorithm may stop if no further improvement
is registered, there are a stall time limit, a stall generation
limit and a fitness function tolerance limit that allow the al-
gorithm to stop before reaching the maximum number of
generations.

Table 2 shows the classification accuracy percentages of
the proposed algorithm for each of the databases in Table 1
over the training and validation sets. For illustration, it also
shows percentages of accuracy before and after the evolu-
tion stage of the algorithm. This is linked with Figures 4 to
7, the initial and final values of the best fitness plot match
up with the accuracy rate values before and after the evo-
lution stage over the training set. The results shown in Ta-
ble 2 demonstrate that the initial set of prototypes is much
less accurate than the evolved version of it over the valida-
tion set of the different databases, therefore, it can be said
that in general the hybrid technique performs better than the
classifier on its own. For instance the classifier itself has an
accuracy rate of 41.94%when classifying the Balance Scale
database, after the hybridisation the accuracy of the method
has increased up to 83.87%, which is the most significant
increase. It is worth mentioning the high accuracy rates of
95.24% and 97.14% obtained with this method when clas-
sifying the Thyroid and Wisconsin databases respectively.

The performance of different classification methods over
the four databases uses in this work is summarised in Table
3. It can be seen that the results obtained with the proposed
method of evolved prototypes outperforms the classification
accuracy rates of most traditional methods. Also, when no
improvement was observed with respect to these methods
the accuracy of the evolved prototypes was still quite high.

495

Table 3. Comparative results of different clas-
sification methods over the databases shown
in Table 1.

5. Conclusion

In many real classification problems it is usual to find
domains that may be described by a few prototypes instead
of using the whole set of instances. This results in a quicker
classification as the classification task requires a smaller
number of comparisons. In this paper a new method that
combines nearest prototype classification and genetics has
been presented. At a first stage, the nearest prototype clas-
sifier generates the prototypes whose spatial location will
be evolved at a second stage through the use of a genetic
algorithm. A number of experiments were carried out over
artificial and real domains in order to validate the algorithm.
From the results of the experiments, it has been proved ef-
fective to use genetics in order to improve the classification
accuracy of the initial set of prototypes. The classification
accuracy has been improved in all of the actual domains. In
two domains the accuracy of this method is over 95% and in
a third one it is almost 84% which demonstrates the ability
of the algorithm to classify real data.
One of the disadvantages of this method is that the num-

ber of prototypes is fixed by the classifier at the initial stage
and it does not evolve with the second stage, the genetic
algorithm. Allowing the genetic algorithm to increase the
number of prototypes may improve the classification accu-
racy. Thus, this is considered by the authors as the main
future line of research in this topic.

References

[1] J. C. Bezdek and L. I. Kuncheva. Nearest neighbour
classifier designs: An experimental study. Int. J. Intell.
Syst., 16:1445–1473, 2001.

[2] L. I. Kuncheva and J. C. Bezdek. Nearest prototype
classification: Clustering, genetic algorithms, or ran-
dom search? IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev., 28:160–164, 1998.

[3] T. Kohonen. Self-organization and associative memory.
Springer-Verlag. Berlin, Germany, 3rd edition, 1989.

[4] S. Seo and K. Obermayer. Soft learning vector quanti-
zation. Neural Comput., 15:1589–1604, 2003.

[5] F. Fernandez and P. Isasi. Local feature weighting
in nearest prototype classification. Neural Networks,
IEEE Transactions on, 19:40–53, 2008.

[6] D. Aha and R. Goldstone. Concept learning and flexible
learning. Proc. 14th Annu. Conf. Cogn. Sci. Soc., pages
534–539, 1992.

[7] F. Fernandez and P. Isasi. Evolutionary design of near-
est prototype classifiers. J. Heuristics, 10:431–454,
2004.

[8] C. Chou, C. Lin, Y. Liu, and F. Chang. A prototype
classification method and its use in a hybrid solution for
multiclass pattern recognition. J. Pattern Recognition,
39:624–634, 2006.

[9] A. Asuncion and D Newman. UCI machine learning
repository. 2007.

496

