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Abstract 
 

We present a new aggregation operator that uses 
the probability and the weighted average in the same 
formulation. Moreover, we consider a situation where 
the information is uncertain and can be represented 
with fuzzy numbers. We call this new aggregation 
operator the fuzzy probabilistic weighted average 
(FPWA) operator. We study some of its main 
properties. We also study its applicability and we focus 
on a business decision making problem about the 
selection of monetary policies.  
 
1. Introduction 
 

The weighted average (WA) is one of the most 
common aggregation operators found in the literature. 
It can be used in a wide range of different problems 
including statistics, economics, engineering, etc. 
Another aggregation process very common in the 
literature is the use of probabilistic information in the 
aggregation. Both models are very useful for solving a 
wide range of problems. For further reading on these 
and other aggregation operators, see for example [1-
2,5-6,8-12,14-16]. 

Usually, when using these approaches it is 
considered that the available information are exact 
numbers. However, this may not be the real situation 
found in the specific problem considered. Sometimes, 
the available information is vague or imprecise and it is 
not possible to analyze it with exact numbers. Then, it 
is necessary to use another approach that is able to 
assess the uncertainty such as the use of fuzzy numbers 
(FNs). In order to develop the fuzzy approach, we will 
follow the ideas of [3-4,7-9,13,17-18]. Note that in the 
literature, there are a lot of studies dealing with 
uncertain information represented in the form of FNs 
in different problems such as [4,7-9]. 

Recently [9], Merigó has suggested a new approach 
that unifies the probability and the WA in the same 

formulation. He called it the probabilistic weighted 
averaging (PWA) operator. This unification permits to 
include both concepts in the aggregation and 
considering the degree of importance that they have in 
the problem. Thus, for the extreme cases, we also find 
the probability and the WA as particular cases of this 
approach. Therefore, as it was explained in [9], all the 
previous studies developed with probabilities or with 
WAs can be extended with this new formulation. 

In this paper, we suggest a new approach of the 
PWA operator for uncertain situations that cannot be 
assessed with exact numbers but it is possible to use 
FNs. We introduce the fuzzy probabilistic weighted 
average (FPWA) operator. It is an aggregation function 
that unifies the probability and the WA in the same 
formulation in an environment where the available 
information is given in the form of FNs. We study 
some of the main properties of the FPWA operator and 
different particular cases.  

We also study the applicability of the FPWA 
operator and it has been explained before for the PWA, 
it is applicable in a wide range of problems. More 
specifically, it is applicable in all the studies where it is 
possible to use probabilities or WAs under an uncertain 
environment represented with FNs. Note that it 
generalizes all the situations included in the PWA with 
exact numbers because the exact number is a particular 
case of the FN. Moreover, all the situations that can be 
represented with interval numbers are also included in 
this formulation. 

We develop an application in a decision making 
problem about political management where a 
government is looking for the optimal monetary policy 
for the next period. 

This paper is organized as follows. In Section 2, we 
briefly describe the FNs, the probabilistic aggregation 
operators and the weighted aggregation operators. 
Section 3 presents the FPWA operator. Section 4 
analyzes some particular cases and Section 5 develops 
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an application of the new approach. Finally, we 
summarize the main conclusions in Section 6. 
 
 
2. Preliminaries 
 

In this Section we briefly review the FNs, the 
probabilistic and the weighted aggregation operators. 
 
2.1. Fuzzy Numbers 

A FN A is defined as a fuzzy subset of a universe of 
discourse that is both convex (i.e., μA(λx1 + (1 − λ)x2 ≥ 
min(μA(x1), μA(x2)); for ∀x1, x2 ∈ R and λ ∈ [0, 1]) and 
normal (i.e., supx∈R μA(x) = 1).  

Note that the FN may be considered as a 
generalization of the interval number although it is not 
strictly the same because the interval numbers may 
have different meanings. In the literature, we find a 
wide range of FNs [4,7-9] such as the Triangular FN 
(TFN), the Trapezoidal FN (TpFN), the Interval-
Valued FN (IVFN), the Generalized FN (GFN), etc.  

For example, a TpFN A of a universe of discourse R 
can be characterized by a trapezoidal membership 
function (α−cut representation) ),( aaA =  such that 
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where α ∈ [0, 1] and parameterized by (a1, a2, a3, a4) 
where a1 ≤ a2 ≤ a3 ≤ a4, are real values. Note that if a1 
= a2 = a3 = a4, then, the FN is a crisp value and if a2 = 
a3, the FN is represented by a TFN. Note that the TFN 
can be parameterized by (a1, a2, a4). 

In the following, we are going to review some basic 
FN arithmetic operations as follows. Let A and B be 
two TFNs, where A = (a1, a2, a3) and B = (b1, b2, b3). 

 
1. A + B = (a1 + b1, a2 + b2, a3 + b3) 
2. A − B = (a1 − b3, a2 − b2, a3 − b1) 
3. A × k = (k × a1, k × a2, k × a3); for k > 0. 

 
Note that other operations could be studied but in 

this paper we will focus on these ones. For more 
complete information and overviews about FNs, see 
for example [4,7,9]. 
 
2.2. Probabilistic Aggregation Functions 

 
Probabilistic aggregation functions (or operators) 

are those functions that use probabilistic information in 
the aggregation process. Some examples are the 
aggregation with simple probabilities, the aggregation 

with belief structures [9], the concept of immediate 
probabilities [5,8] and the probabilistic OWA operator 
[9,11]. The immediate probability is an approach that 
uses OWAs and probabilities in the same formulation. 
It can be defined as follows.  
 
Definition 1. An IPOWA operator of dimension n is a 
mapping IPOWA: Rn → R that has an associated 
weighting vector W of dimension n such that wj ∈ [0, 
1] and ∑ ==

n
j jw1 1, according to the following 

formula:  
 

IPOWA (a1, …, an) = ∑
=

n

j
jjbv

1
ˆ                     (2) 

 
where bj is the jth largest of the ai, each argument ai 
has a probability vi with 11 =∑ =

n
i iv  and vi ∈ [0, 1],  

∑= =
n
j jjjjj vwvwv 1 )/(ˆ  and vj is the probability vi 

ordered according to bj, that is, according to the jth 
largest of the ai. 

Note that the IPOWA operator is a good approach 
for unifying probabilities and OWAs in some particular 
situations. But it is not always useful, especially in 
situations where we want to give more importance to 
the probabilities or to the OWA operators. In order to 
see why this unification does not seem to be a final 
model is considering other ways of representing jv̂ . 
For example, we could also use 

∑ ++= =
n
j jjjjj vwvwv 1 )](/[ˆ  or other similar 

approaches. 
Another approach for unifying probabilities and 

OWAs in the same formulation is the probabilistic 
OWA (POWA) operator [11]. Its main advantage is 
that it is able to include both concepts considering the 
degree of importance of each case in the problem. It is 
defined as follows. 
 
Definition 2. A POWA operator of dimension n is a 
mapping POWA: Rn → R that has an associated 
weighting vector W of dimension n such that wj ∈ [0, 
1] and ∑ ==

n
j jw1 1 , according to the following formula:  

 

POWA (a1, …, an) = ∑
=

n

j
jjbp

1
ˆ                     (3) 

 
where bj is the jth largest of the ai, each argument ai 
has an associated probability pi with 11 =∑ =

n
i ip  and pi 

∈ [0, 1], jjj pwp )1(ˆ ββ −+=  with β ∈ [0, 1] and pj 
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is the probability pi ordered according to the jth largest 
of the ai. 
 
2.3. Weighted Aggregation Functions 

 
Weighted aggregation functions are those functions 

that weight the aggregation process by using the 
weighted average. Some examples are the aggregation 
with the weighted average, with belief structures that 
use the weighted average [9] and with the weighted 
OWA (WOWA) operator [14]. The weighted average 
can be defined as follows. 
 
Definition 3. A WA operator of dimension n is a 
mapping WA: Rn → R that has an associated weighting 
vector W, with wi ∈ [0, 1] and 11 =∑ =

n
i iw , such that  

 

WA(a1, …, an) = ∑
=

n

i
ii aw

1
                     (4) 

 
where ai represents the ith argument variable. 

Other extensions of the weighted average are those 
that use it with the OWA operator such as the WOWA 
operator and the hybrid averaging (HA) operator [15]. 
Recently [10], Merigó suggested another approach 
called the OWA weighted average (OWAWA) 
operator. Its main advantage against the WOWA and 
the HA is that it includes the OWA and the WA 
considering the degree of importance that each concept 
have in the aggregation. It can be defined as follows. 
 
Definition 4. An OWAWA operator of dimension n is 
a mapping OWAWA: Rn → R that has an associated 
weighting vector W of dimension n such that wj ∈ [0, 
1] and ∑ ==

n
j jw1 1, according to the following 

formula:  
 

OWAWA (a1, …, an) = ∑
=

n

j
jjbv

1
ˆ                (5) 

 
where bj is the jth largest of the ai, each argument ai 
has an associated weight (WA) vi with ∑ =

n
i iv1  = 1 and 

vi ∈ [0, 1], jjj vwv )1(ˆ ββ −+=  with β ∈ [0, 1] and vj 
is the weight (WA) vi ordered according to bj, that is, 
according to the jth largest of the ai. 

Note that other approaches for unifying the OWA 
and the WA are possible as it was suggested in [9] such 
as a similar approach than the immediate probability. 
Thus, in the WA we get the immediate weighted OWA 
(IWOWA) operator that could be defined, for example, 

by using ∑= =
n
j jjjjj vwvwv 1 )/(ˆ  or by using 

∑ ++= =
n
j jjjjj vwvwv 1 )](/[ˆ . 

Note that in the literature we find a lot of extensions 
of weighted aggregation functions such as those that 
use uncertain information represented in the form of 
interval numbers, FNs or linguistic variables [2,9]. 

 
 

3. The Fuzzy Probabilistic Weighted 
Averaging Operator 
 

The fuzzy probabilistic weighted averaging 
(FPWA) operator is an aggregation operator that 
unifies the probability and the weighted average in the 
same formulation considering the degree of importance 
that each concept has in the aggregation process. 
Moreover, it is also able to deal with uncertain 
environments that can be assessed with different types 
of FNs. It is defined as follows. 
 
Definition 5. Let Ψ  be the set of FNs. A FPWA 
operator of dimension n is a mapping FPWA: Ψn → Ψ 
such that:  

 

FPWA (ã1, …, ãn) = ∑
=

n

j
ii av

1

~ˆ                      (6) 

 
where the ãi are the argument variables represented in 
the form of FNs, each argument ãi has an associated 
weight (FWA) vi with 11 =∑ =

n
i iv  and vi ∈ [0, 1], and a 

probabilistic weight pi with 11 =∑ =
n
i pi  and pi ∈ [0, 1], 

iii vpv )1(ˆ ββ −+=  with β ∈ [0, 1] and iv̂  is the 
weight that unifies probabilities and WAs in the same 
formulation. 

Note that it is also possible to formulate the FPWA 
operator separating the part that strictly affects the 
probabilistic information and the part that affects the 
FWAs. This representation is useful to see both models 
in the same formulation but it does not seem to be as a 
unique equation that unifies both models.  
 
Definition 6. Let Ψ  be the set of FNs. A FPWA 
operator is a mapping FPWA: Ψn → Ψ of dimension n, 
if it has an associated probabilistic vector P, with 

11 =∑ =
n
i ip  and pi ∈ [0, 1] and a weighting vector V 

that affects the FWA, with ∑ =
n
i iv1  = 1 and vi ∈ [0, 1], 

such that:  
 

487



f (ã1, …, ãn) = ∑−+∑
==

n

i
ii

n

j
ii avap

11

~)1(~ ββ        (7) 

 
where the ãi are the argument variables represented in 
the form of FNs and β ∈ [0, 1].  

Note that sometimes, it is not clear how to reorder 
the arguments. Then, it is necessary to establish a 
criterion for comparing FNs. For simplicity, we 
recommend the following method. Select the FN with 
the highest value in its highest membership level, 
usually, when α = 1. Note that if the membership level 
α = 1 is an interval, then, we will calculate the average 
of the interval. If there is still a tie, then, we 
recommend the use of the average or a weighted 
average of the FN according to the interests of the 
decision maker. 

Note that if the weighting vector of probabilities or 
WAs is not normalized, i.e., ∑ ≠= =

n
i ipP 1 1, or 

∑ ≠= =
n
i ivV 1 1, then, the FPWA operator can be 

expressed as: 
 

f (ã1, …, ãn) = ∑
−

+∑
==

n

i
ii

n

j
ii av

V
ap

P 11

~)1(~ ββ      (8) 

 
The FPWA is monotonic, commutative, bounded 

and idempotent. It is monotonic because if ãi ≥ ui, for 
all ãi, then, FPWA(ã1, …, ãn) ≥ FPWA(u1, u2…, un). It 
is commutative because any permutation of the 
arguments has the same evaluation. That is, FPWA(ã1, 
…, ãn) = FPWA(u1, u2,…, un), where (u1, u2,…, un) is 
any permutation of the arguments (ã1, …, ãn). It is 
bounded because the FPWA aggregation is delimitated 
by the fuzzy minimum and the fuzzy maximum. That 
is, Min{ãi} ≤ FPWA(ã1, …, ãn) ≤ Max{ãi}. It is 
idempotent because if ãi = a, for all ãi, then, FPWA(ã1, 
…, ãn) = a. 
 
 
4     Families of FPWA Operators 
 
Different families of FPWA operators are found by 
using a different manifestation in the weighting vectors 
of the probabilistic information and the weighted 
aggregation. 
 

Remark 1. If β = 0, we get the fuzzy weighted average 
(FWA). 
 
Remark 2. If β = 1, we get the fuzzy probabilistic 
approach. 
 
Remark 3. If pi = 1/n and vi = 1/n, for all i, then, we 
get the fuzzy average (FA). Note that the FA is also 
found if β = 1 and pi = 1/n, for all i, and if β = 0 and vi 
= 1/n, for all i. 
 
Remark 4. If vi = 1/n, for all i, then, we get the fuzzy 
probabilistic average. 
 
Remark 5. If pi = 1/n, for all i, then, we get the FWA 
with a probabilistic arithmetic mean. 
 
Theorem 1. If the FNs are reduced to the usual exact 
numbers, then, the FPWA operator becomes the PWA 
operator [9].  
 
Proof. Assume a TpFN = (a1, a2, a3, a4). If a1 = a2 = a3 
= a4, then (a1, a2, a3, a4) = a, thus, we get the PWA 
operator.  
 
Remark 6. In a similar way, we could develop the 
same proof for all the other types of FNs available in 
the literature [9]. 
 
Theorem 2. If the FNs are reduced to the interval 
numbers, then, the FPWA operator becomes the 
uncertain PWA (UPWA) operator [9]. 
 
Proof. Assume a TpFN = (a1, a2, a3, a4). If we only 
consider the points (a1, a2, a3, a4), then, the FN 
becomes an interval number (a quadruplet). Therefore, 
the FPWA operator becomes the UPWA operator. 
 
Remark 7. In a similar way, we could develop the 
same proof for all the other types of FNs. 
 
Remark 8. Note that similar analysis could be 
developed for considering situations when the FNs are 
representing linguistic variables, etc. 

 
 

Table 1. Fuzzy payoff matrix. 
 S1 S2 S3 S4 S5 

A1 (20,30,40) (70,80,90) (70,80,90) (60,70,80) (30,40,50) 
A2 (50,60,70) (60,70,80) (40,50,60) (60,70,80) (50,60,70) 
A3 (50,60,70) (70,80,90) (40,50,60) (70,80,90) (50,60,70) 
A4 (70,80,90) (60,70,80) (70,80,90) (10,20,30) (60,70,80) 
A5 (60,70,80) (40,50,60) (60,70,80) (60,70,80) (40,50,60) 
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Table 3. Fuzzy aggregated results. 

 FA FProb. FWA FPWA PWA 
A1 (50,60,70) (49,59,69) (53,63,73) (51.4,61.4,71.4) 61.4 
A2 (52,62,72) (52,62,72) (53,63,73) (52.6,62.6,72.6) 62.6 
A3 (56,66,76) (56,66,76) (58,68,78) (57.2,67.2,77.2) 67.2 
A4 (54,64,74) (55,65,75) (49,59,69) (51.4,61.4,71.4) 61.4 
A5 (52,62,72) (54,64,74) (54,64,74) (54,64,74) 64 

 
 

5. Application in Decision Making 
 

In the following, we present a numerical example of 
the new approach in a decision making problem about 
selection of monetary policies.  

Note that similar problems could be developed in 
the selection of other policies such as fiscal and 
commercial policies. We analyze an economic problem 
about the monetary policy of a country. Assume the 
government of a country has to decide on the type of 
monetary policy to use the next year. They consider 
five alternatives: 

 
• A1 = Develop a strong expansive monetary policy. 
• A2 = Develop an expansive monetary policy. 
• A3 = Do not develop any change in the monetary 

policy. 
• A4 = Develop a contractive monetary policy. 
• A5 = Develop a strong contractive monetary policy. 

 
In order to evaluate these policies, the government 

has brought together a group of experts. This group 
considers that the key factor is the economic situation 
of the world economy for the next period. They 
consider 5 possible states of nature that could happen 
in the future:  

 
• S1 = Very bad economic situation. 
• S2 = Bad economic situation. 
• S3 = Regular economic situation. 
• S4 = Good economic situation. 
• S5 = Very good economic situation.  

 
The results of the available policies, depending on 

the state of nature Si and the alternative Ak that the 
decision maker chooses, are shown in Table 1. Note 
that the results are FNs representing the benefits 
obtained by using each policy. The main advantage of 
using FNs with the FPWA operator is that we can 
represent the information in a more complete way 
because we can consider the minimum, the maximum 
and the most possible result. 

In this problem, the experts assume the following 
probabilities representing the probability of occurrence 

of each state of nature: P = (0.3, 0.2, 0.2, 0.2, 0.1). 
They assume that the WA, that represents the degree of 
importance of each state of nature, is: V = (0.2, 0.2, 
0.2, 0.3, 0.1). Note that the probabilistic information 
has an importance of 40% and the FWA an importance 
of 60%. For doing so, we will use Eq. (6) to calculate 
the FPWA aggregation. The results are shown in Table 
2. 

 
Table 2: FPWA weights 

 1v̂  2v̂  3v̂  4v̂  5v̂  
V* 0.24 0.2 0.2 0.26 0.1 

 
With this information, we can aggregate the 

expected results for each state of nature in order to 
make a decision. In Table 3, we present different 
results obtained by using different types of FPWA 
operators. Note that we also present the results 
obtained with the classical framework about using 
probabilities or WAs. 

Note that we can also obtain these results by using 
Eq. (7). As we can see, in this example, the optimal 
choice is A3. 
 
 
6. Conclusions 
 

We have presented a new approach that unifies the 
probability and the weighted average in the same 
formulation. Moreover, we have seen that this model is 
able to deal with uncertain information represented 
with FNs. We have called it the fuzzy probabilistic 
weighted averaging (FPWA) operator. We have also 
studied similar formulations although we have seen 
that the most complete one is the FPWA because it is 
able to unify both concepts considering the degree of 
importance that each concept has in the aggregation. 
We have also developed an application of the new 
approach in a decision making problem. 

In future research, we expect to develop further 
extensions to this approach by using more general 
formulations and considering other characteristics in 
the problem. 
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