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Abstract— Floor storage systems are used in the shoe industry 
to store fashion products of seasonal collections with low 
quantity and high variety. Since space is precious and order 
picking must be sped up, stacking of shoe boxes should be 
optimized. The problem is modeled by assigning an integer 
code to each box basing on shoe characteristics (model, 
material, color, and size) and trying to force similar boxes into 
near locations to improve pickers’ ability of fast order 
retrieval. The model is encoded in Constraint Logic 
Programming and solved comparing different strategies, also 
using Large Neighborhood Search.  

Keywords – Allocation; Floor storage systems; Shoe 
industry; Constraint Logic Programming; Large Neighborhood 
Search. 

I.  INTRODUCTION 
Floor storage systems allow very flexible configurations 

within a warehouse [1], since no additional structure other 
than pallets is needed to stack stock keeping units (skus). 
Thus, space can be quickly made available for different skus 
and adapted to their characteristics in terms of size, inventory 
quantity and picking frequency, reconfiguring the stocking 
area to optimize operations. Here the reason why these 
simple systems are suitable for industries characterized by 
seasonal productive campaigns. Furthermore, floor storage 
systems can be used as a temporary solution to face volume 
increase avoiding other costs, while waiting the construction 
of more sophisticated structures. 

In one of the most famous Italian shoe company, floor 
storage systems are adopted to manage reorders of 
collections by retail points during each season. Every shoe 
model (M) proposed within a seasonal collection can be 
offered in different materials (T) (leather, tissue, etc.) and 
colors (C). Production plants all over the world send cartoons 
containing up to 15 shoe boxes of same MTC and eventually 
different sizes (S) to satisfy reorders during any fashion 
season. When these cartoons are broken but only partially 
used to satisfy client orders during a working period, they 
produce a certain number of “free pairs”. Free pairs enter the 
floor storage system, where they are stacked until used to 
satisfy another retail point demand. While more classical 
products can rely on a significant predictable quantity of 
reorders per MTC and therefore managed by a proper 
dedicated storage [2], the so-called “fashion products”, 
which are proposed only in a given collection and usually 

with a great variety of MTC combinations, lead to very little 
quantities per MTC that become free pairs. Thus, the floor 
storage system devolved to fashion free pairs must manage a 
great variety of skus with very small quantity and hardly 
predictable arrivals/retrievals during each seasonal 
collection. Since storage space is precious, optimizing 
stacking of different shoe boxes becomes important in order 
to enhance fast order retrieval. 

This problem can be formalized as a Constraint 
Satisfaction Problem (CSP), where values representing shoe 
boxes to be stored are assigned to available locations 
(variables), subject to a set of constraints [3]. A cost function 
can be associated with variable assignments, so that the 
minimum cost solution can be identified, leading to a 
Constraint Optimization Problem (COP). Constraint 
Programming (CP) is a programming methodology that 
allows to encode and solve CSPs and COPs. CP splits 
problem encoding into two parts: the modeling phase and the 
solving one. In the former, the problem is modeled using 
constraints, which are not limited to linear functions as in LP 
or MIP; non linear cost functions can also be used. In the 
latter, the programmer can rely on a constraint solver to find 
solutions. The constraint solver systematically explores the 
whole solution space alternating assignment steps, where a 
variable is selected and assigned to a value of its domain, to 
constraint propagation ones, where not assignable values are 
removed from domains. The programmer can improve the 
performance of this phase adding heuristics for variable 
choice, value choice selection, etc to the built-in solver. 
Among the various systems for CP, Constraint Logic 
Programming (CLP) is the more mature constraint 
programming methodology (the first definition can be traced 
back to [4]). CLP languages allow a declarative easy 
encoding, where the focus is on describing properties the 
desired solution should have, rather than on establishing a 
procedure to find it. Various families of efficient constraint 
solvers are then available. Moreover, there are either free and 
commercial CLP systems that are easy to be installed and 
used in all the platforms and allow code portability from one 
system to another. CLP has been successfully used in several 
industrial applications since nineties [5], while more recent 
research fields embrace alerting system location [6] and 
bioinformatics [7]. 
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II. THE MODEL 
The warehouse system is made by sequences of floor 

pallets, organized into aisles. One side of each pallet is 
associated with a given aisle, the other side belongs to the 
previous/following aisle. Given standard sizes of both pallets 
and shoe boxes, each pallet can contain up to maxcol columns 
of shoe boxes on both sides, stacked up to maxbox units 
(maxbox ≤ 10 to assure stability), for a maximum of 
maxcol×maxbox boxes per pallet side.  

Pallets are set in U shape and numbered progressively. 
Thus, all available locations (the variables) in our storage 
system are uniquely identified by a tuple (a, p, i, j) of 
integers describing the number of the aisle, the number of the 
pallet within the given aisle ([1..maxpal]), the number of the 
column occupied in the pallet ([1..maxcol]) and the slot 
([1..maxbox]) into the analyzed column, respectively. 
Furthermore, when long aisles should be preferred basing on 
warehouse floor size, storage quantities and available 
operators, then aisles could be split into their two fronts and 
assigned to two consecutive aisle indexes, if different 
behaviors or operators for any long front are desirable. 

Each stock keeping unit (sku) is represented by a shoe 
box, which is characterized by an integer code ranging from 
1000 to 99999. Thousand digits represent the model of shoes 
and given the high variety required by fashion products, 99 
different models are considered in the current case. The 
model codes should be assigned consecutively to similar 
models. Every shoe model can be realized in different 
materials coded by the hundred digit, thus allowing 10 
different combination (numbered 0-9) per model. Each 
model-material combination can be proposed to customers in 
different colors, represented by the decade digit, thus 
considering 10 alternatives. Finally, shoes are characterized 
by their size, described in our code by the unit digit, thus 
considering 10 different sizes per shoe model, taking into 
account the different measures required by men, women, 
juniors, and babies. Therefore, to each shoe box an integer 
code of 4 to 5 digits of the type MTCS is assigned (Model 1-
99, material Type 0-9, Color 0-9, Size 0-9). If more 
models/parts/colors/sizes are needed to match with actual 
cases, the number of related digits can be properly increased, 
moving to greater integers. When a location is assigned to a 
shoe box, the related variable is set to its MTCS code, 
otherwise is set to zero. 

A. Constraints 

Constraints are imposed so that symmetries of solutions 
are broken: columns are filled in a bottom-up way 
resembling actual stacking of shoe boxes during storage 
operations and each pallet is filled from the first to the last 
column without empty stacks in the middle. 

To force similar shoes to be stacked together, boxes 
assigned to a column must belong at least to the same shoe 
model, i.e. thousand digits must be the same for a given 
column (1). Furthermore, boxes into a pallet must be 
characterized by similar models, thus allowing a range of 
only 2·maxmod consecutive models to be assigned to a given 
pallet (2). Maxmod should be selected basing on the number of 

models to be storage in the planning horizon (i.e. models of a 
seasonal collection for fashion industries) and available 
columns. When very few space is available in the  
warehousing system, this constraint should be removed and 
great model variability within a pallet allowed. 

 int(xa,p,s,i /1000) = int(xa,p,s,j/1000)  ∀ (a,p,s) (1) 

 |int(xa,p,1,_/1000) - int(xa,p,i,_/1000)| ≤ maxmod  ∀(a,p,i) (2) 

Finally, the number of non zero variables (i.e. the 
locations to be occupied) should be exactly equal to the 
number of new entering boxes and their values must be 
chosen among their integer codes. 

When multiple aisles are managed and a class-based 
allocation [2] should be preserved in order to limit variety of 
models within an aisle and enhance pickers’ capability of 
fast retrievals, constraints linking models belonging to the 
same class (e.g. woman, man, junior, or baby shoes) to a 
given aisle should be added. 

B. The cost function 

To speed up manual retrieval operations, workers should 
rely on a logical scheme of shoes distribution along aisles, so 
that similar shoes (i.e. characterized by consecutive integers) 
are stacked as close as possible.  

The cost function Ctot to be minimized is made up by 5 
different contributions, which resemble the need of 
proximity of similar shoe boxes, as shown below (3): 

Ctot= ∑ ൫Ccol
i +Ce_col

i +Cprox
i ൯+ ∑ ൫Cpal

s +Ce_pal
s ൯ si  (3) 

We would like to store shoes differing only by their size 
in the same column, so that workers can easily retrieve them 
basing on client reorders. To force boxes with similar 
characteristics (i.e. with near integer codes) to enter the same 
stack, a column cost Ccol is calculated for every column i 
with a new entering box, as the sum of the difference 
between each in-box code and the codes of shoe boxes 
already stacked, plus the code difference between every 
combination (without repetition) of any two entering boxes 
assigned to that column. If R is the set of locations within a 
column already filled with shoe boxes during past 
replenishments and V is the set of empty locations, then: 

Ccol  = ∑ ∑ หxa,p,s,i - xa,p,s,kหkאRiאV    +               ∑ หxa,p,s,i - xa,p,s,jหሺi,j)אV  ሺa,p,s)                   (4)     

In order to minimize the number of different shoe codes 
within a column, the cost contribution is set to zero for a new 
box with a code already present into the stack and new boxes 
with the same code are counted only once for a given 
column. 

We would like to store shoes differing only by their size 
in the same column, so that workers can easily retrieve them 
basing on client reorders. To force boxes with the same 
model, type and color (MTC) in the same stack, a cost to fill 
a new column Ce_col is introduced, in order to discourage 
splitting of boxes differing only by their unit digit. Since 
shoes with same MTC are expected to be stacked into the 
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same column if possible, we set Ce_col equal to the column 
cost Ccol  in the worst desirable case, when new entering 
boxes are characterized by same MTC but all different 
sequential sizes. If codes are sorted in decreasing order, any 
box code differs from the successive ones for a quantity 
growing from 1 to its unit value. Basing on (4), Ccol  can be 
evaluated as: 

 Ccol = ∑  nሺn+1)/2maxbox-1
n=1   (5) 

Ce_col should be greater than Ccol   to discourage a new 
column occupation when boxes are characterized by same 
MTC. Thus, we set Ce_col equal to the nearest integer multiple 
of 5. 

Eventually, boxes with near integer codes, but differing 
for more than their size, can present the same cost Ccol and 
could be forced into the same column (e.g. boxes 1009 and 
1011 differ for 2 units as boxes 1007 and 1009, but have 
different colors). Thus, a weight equal to Ce_col is added to (4) 
to distinguish these particular cases, so that filling another 
column is allowed, when enough space is available in the 
warehouse. 

Within a given pallet, we would like to have the most 
similar shoes, so comparisons between all the boxes in that 
pallet are performed, by calculating a pallet cost Cpal very 
similar to the column one, but encompassing all the 
(maxbox×maxcol) possible allocations, considered as a unique 
column of maxbox×maxcol elements. Therefore, the same rules 
for column cost calculation (4) are applied to the pallet 
component, without adding any weight. 

As in the column case, we would like to encourage very 
similar shoes to occupy the same pallet in order to enable 
fast picking. In the worst of desirable cases, boxes in each 
column differ only by size (the unit digit) and different 
columns differ from each other only by their shoe colors (i.e. 
progressive decade digits are considered). In such a situation, 
the pallet cost component will be equal to Cpal , as shown in 
(6).  

 Cpal = ∑  nሺn+1)/2maxcol×maxbox-1
n=1   (6) 

We introduce a little greater empty pallet cost Ce_pal, equal to 
the nearest integer multiple of 10, to avoid splitting of same 
size and color boxes among many pallets. 

Finally, a proximity cost is introduced to force similar 
shoes to occupy adjacent pallets. This cost component is 
calculated by the average sum of difference between the 
model code of any new column ݏҧ (see constraints in par. 
II.A) and model codes of non-empty stacks ( in total Nഥ ) 
occupying the previous and the following pallet, as shown in 
the following (7). 

Cprox= 1
Nഥ [ ∑ ቚint ቂxa,p,sҧ,_

1000
ቃ - int ቂxa,p-1,j,_

1000
ቃቚmaxcol

j=1 +                     ∑ ቚint ቂxa,p,sҧ,_
1000

ቃ -int ቂxa,p+1,j,_

1000
ቃቚmaxcol

j=1  (7)      (a,p,sҧ)     [ 

Since cost components have different magnitude because 
of the different number of pair-wise comparison involved, 
weights are introduced in order to counterbalance them. In 
particular, Cpal is divided by a weight based on the ratio 
Ce_pal/(Ce_col×maxcol). 

III. CLP OPTIMIZATION 
A program was created in SICStus Prolog 

(www.sics.se/sicstus) to solve the problem, encompassing 
the three typical steps of CLP approach: (1) define the 
domain of each variable; (2) declare problem constraints; (3) 
search for a good feasible solution or find an optimal one 
exploring the whole search tree by branch and bound 
techniques. 

An example of constraint encoding is shown in Figure 1, 
where boxes stacked into the same column are forced to have 
the same shoe model (constraint (1)). The storage system is 
encoded as a list of lists (the columns), which are themselves 
lists of 4-5 digit (MTCS) integers (the box codes). 

Given the first two CLP steps, both the searching 
strategies (optimization and backtracking) were applied, as 
described in par. III.A and par. III.B, respectively. Two 
heuristics are proposed to be used while exploring the search 
tree, in order to reach good solutions faster than built-in 
procedures provided by the CLP over finite domains 
(CLP(FD)) solver of SICStus Prolog. The variable choice 
heuristic and the value choice heuristic are described in par. 
III.B. 

A. The CLP minimize approach 
The CLP(FD) solver of SICStus Prolog [8] provides a 

branch and bound algorithm for optimization, with different 
options for variables and values choice selection.  

As regards the choice of the next variable to be assigned, 
with the leftmost option, the leftmost variable is chosen, 
while with first fail the leftmost variable with the smallest 
domain is selected. Finally the most constrained (Ffc) option 
is tested: a variable with the smallest domain is selected, 
breaking ties by (a) selecting the variable that has the most 
constraints suspended on it and (b) selecting the leftmost 
one. 

Concerning the way in which values are assigned to the 
selected variable, if the step option is selected, one value per 
time of the finite domain is tested and the domain is explored 
in increasing or decreasing order based on up and down 
option respectively. With the bisect option domains are split 
into two parts by their middle point, exploring the 
lower/upper part of domains first depending on up or down 
option respectively. 

Finally, the above options were replaced by the search 
heuristics described in the following par. III.B, trying to 
speed up the search process. 

 

Figure 1.  Encoding of column constraint (1). 

constr_col([]). 
constr_col([[_,_,_,COL]|R]) :- 
  same_model(COL), 
  constr_col(R). 
 
same_model([]). 
same_model([_]). 
same_model([A,B|R]):- 
  A #> 0 #/\ B #> 0 #=> A/1000 #= B/1000, 
  same_model([B|R]). 
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B. The search heuristics 
The variable choice heuristic controls the order in which 

the next variable is selected for assignment. Empty locations 
on partially occupied columns are selected as the first 
variables to be assigned, then empty columns in partially 
occupied pallets are considered, while empty pallets are 
selected in the end. This selection should force new in-boxes 
similar to already stored skus to be stacked near them, 
whenever possible. To enhance the ability of fast finding 
good solutions, random permutation within the two groups of 
empty columns is performed. 

In the value choice heuristic, instead, a hierarchical 
procedure is proposed to identify alternative values to be 
assigned to a given variable, when a branch fail occurs. The 
following hierarchy of choice is adopted: 
1. The value assigned to the previous selected variable, if 

different from zero; 
2. A feasible value with same MTC of the last assigned 

variable, if different from zero, in increasing order; 
3. A feasible value with same MT of the last assigned 

variable if different from zero, in increasing order; 
4. A feasible value with same M (model) of the last 

assigned variable if different from zero, in increasing 
order; 

5. A feasible value with characteristics different from the 
last assigned one, if different from zero, in increasing 
order; 

6. If the last assigned value was zero, then choose a 
feasible positive value in increasing order; 

7. Eventually, set the variable to zero, thus leaving empty 
the related location. 

The reference value for the first variable is set to the lowest 
entering box code. The position of step 7 within the above 
hierarchy of choice is made dynamic basing on the 
percentage of space available in the floor storage system. 
When the warehouse has less than 20% of locations already 
occupied, enough space is available to storage boxes 
preserving their MTC characteristics, i.e. stacking into the 
same column boxes differing only by their size. In this case 
step 7 is shifted soon after step 2 and the selected variable is 
set to zero immediately after failing step 2. As the number of 
available locations becomes lower and lower, stacking boxes 
with different characteristics in the same or near column 
becomes more probable and therefore step 7 is progressively 
moved after each following step every 20% increase of 
occupied space, becoming the last possible choice if more 
than 60% of locations are already occupied. 

C. Searching solutions by CP and LNS 
Adopting a feasible solution strategy by backtracking 

search instead of an optimal one, the labeling predicate of 
SICStus Prolog is powered by the variable choice heuristic 
for assignment order selection and the value choice heuristic 
for domain exploration, previously described in par. III.B. 
An iterative procedure moving towards lower and lower cost 
values was implemented, in order to find the best feasible 
solution available when the time-out condition is eventually 
reached. Its performances are compared to minimize 
procedure’s ones, when the number of available locations in 

the floor storage systems (variables) and the number of in-
boxes are progressively increased. 

To further improve the capability of obtaining a near 
optimal/optimal solution with lower and lower 
computational times, a local search procedure is added after 
obtaining a good solution by the above mentioned heuristics. 
In particular a Large Neighborhood Search (LNS) is adopted 
[9]. A LNS algorithm is an iterative process that destroys at 
each iteration a part of the current solution using a chosen 
neighborhood definition procedure and reoptimizes it, 
hoping to find a better solution. The neighborhood procedure 
selects the subset of variables, the so-called “free variables” 
(FV), that should be reassigned, while maintaining the others 
unchanged wrt the current solution. The constraint structure 
of the model is preserved, in order to find only feasible 
solutions. In our case, top positions of the good solution are 
randomly made variable again and reassigned in order to 
lower the cost function. In particular, two kind of moves are 
allowed for a given solution: two boxes on the top of related 
columns can be switched or a box can be removed from the 
top of its column and stacked on the top of another column. 
Thus, the first empty location of each column and the top 
location occupied by an entering box are selected to become 
FV and be reassigned. Furthermore, the number of FV to be 
managed by a LNS run is kept low by randomly extracting 
among the selected top locations (2max_stack×max_pals in 
the worst case), starting with a narrow group of variables and 
increasing its size if no improved solutions can be found. FV 
are then reassigned by using the CLP leftmost step up 
strategy, with minimizing or iterative backtracking approach 
depending on problem size. 

Since LNS is itself based on a random extraction of 
variables, random permutation within the 3 groups of 
variables in the variable choice heuristic (par. III.B) is 
removed. In this way, we capitalize on the sorting process 
provided by the CP heuristics to obtain a good starting 
solution and leave shifting of boxes to LNS ability of 
improving a given configuration faster. 

IV. RESULTS 
Experiments were run on a Windows Vista laptop Intel 

Core 2 Duo, 2.6 GHz, 3 GB.  
Any input configuration can be described by 3 different 

parameters: the number of in-boxes to be stored, the size of 
the floor storage system (i.e. number of locations), and the 
percentage of locations already occupied. The last two 
parameters are related to the number of variables to be 
assigned and therefore to the size of the problem. The former 
is associated to the number of non-zero variables to be 
assigned. 

A first group of experiments were performed involving 3 
pallets and 5 boxes per stack, for a maximum of 75 available 
locations when the floor storage system is empty, i.e. at the 
beginning of reorders for a seasonal collection. This relative 
small instance allowed to compare all the minimize labeling 
options described in par. III.A. All the options require very 
similar run times (about 7 s), excepted for the Ffc variable 
choice option, which leads to worse run times with different 
M in-boxes. Generally, when entering boxes are more 
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similar (e.g. same M, MT or even MTC) run times increase 
(see column 2 in Table I) and the Ffc option gets the best 
performance, since more constraints are involved. The 
variable choice and value choice heuristics don’t improve the 
minimize approach performance and this is because all the 
solutions must be generated in order to identify the optimal 
one.  

Relative performances of labeling options remain even 
when a partially filled storage system is adopted (20%, 40%, 
60% and 80% of already filled locations were considered), 
but run times become lower and lower. 

The capability of the heuristics to find the best solution 
faster than the built-in procedures, however, results when not 
all the solutions should be generated, but it is required to find 
the assignment related to the minimum cost. In Table II, run 
times of the leftmost step up procedure are compared to the 
proposed heuristics ones, when the best solution is already 
known. Heuristics lead to dramatically lower run times (from 
a minimum of 52 times for consecutive M to 3890 times for 
boxes with same MTC). 

When the size of the floor storage system is increased in 
terms of locations to be assigned and consequently the size 
of the problem (i.e. the number of variables) grows, run 
times of the minimize approach become unacceptable. With 
10 pallet per aisle, several hours are required to reach the 
optimum, even when only 5 boxes per column are 
considered (i.e. 250 variables, see Table I). If 10 boxes are 
allowed to be stacked into the same column (the extreme 
situation in real applications), run times for some instances 
exceed one day of computation. Furthermore, increasing the 
number of entering boxes to be located (i.e. the number of 
non-zero variables to be assigned) dramatically rises run 
times. For 10 boxes with very different models and 75 
available locations, run time is 4 hours (versus 7.2 seconds 
for 5 in boxes).  

By the backtracking approach, floor storage system size 
and entering boxes can be increased obtaining good solutions 
in more reasonable times. Heuristics prove their force in 
managing similar entering boxes, which obtained the worst 
run times with the minimize approach (see Table I). 

TABLE I.  RUN TIMES OF LEFTMOST STEP UP MINIMIZE [MIN]. 

In Boxes 75 vars 250 vars 500 vars 
5 different M 0.12 47.58 271.90 
5 consecutive M 0.78 173.41 708.63 
5 same MTCS 0.05 4.22 17.62 
5 same MTC 5.19 455.74  > 1500.00 
5 same MT 6.78 549.13  > 1500.00 
5 same M 6.87 554.85  > 1500.00 

TABLE II.  RUN TIMES [S] WHEN THE MINIMUM COST IS IMPOSED 
AND 75 AVAILABLE LOCATIONS CONSIDERED. 

In Boxes Leftmost [s] Heuristics [s] 
5 same MTCS 2.761 0.016 
5 different M 2.012 0.063 
5 consecutive M 12.303 0.234 
5 same MTC 120.619 0.031 
5 same MT 114.751 0.062 
5 same M 117.016 0.062 

For 5 same MT entering boxes we obtained the optimal 
solution in 1 iteration in 0.079 s, 0.25 s and 0.749 s for 75, 
250, 500 available locations in an empty system respectively, 
which are dramatically lower than the related times in row 5 
of Table I. For 5 different M boxes, run time is 0.063 s. 

To simulate actual situation in shoe industry, experiments 
were run taking into account from 10 up to 40 entering boxes 
and a floor storage system of 10 pallets in one aisle (multiple 
aisles are managed by a class-based allocation policy and 
therefore it is imagined to run heuristics for each aisle/class 
separately, especially if a zone-picking is adopted and 
workers have their specific aisles to serve [2]). A 60% 
available storage capacity is considered: for a 5 boxes per 
column configuration, 100 filled locations and 150 empty 
ones are taken into account. With 10 very different M in-
boxes, the minimize approach requires about 1 day of 
computational time; while heuristic based CLP search is able 
to reach a solution 7% far from the optimal one in 1 hour and 
half (see Table III). Even if run time has been drastically 
reduced, it is still too much longer for real applications.  

Table III highlights how heuristics are able to reach a 
solution 15% far from the optimal one in a very low time 
(100 s), but further improvements are quite time expensive. 
This is the reason why a local search approach was 
introduced. After obtaining a good solution in a relative 
small time (total time out at 100 s), the iterative LNS 
procedure (see par. III.C) is added with a global time-out of 
100 s, in order to make the improvement phase faster. 
Results are shown in the last row of Table III: only 132 s are 
needed on average to reach the optimal solution. 
The number of entering boxes was then increased to 20, 30 
and 40 with 10 different models, thus introducing a certain 
degree of similarity (for 40 boxes, 2 same MTCS + 2 same 
MT boxes per model), as the actual “free pairs” generation 
process suggests. Number of runs for the CLP heuristic 
phase and maximum number of runs and time-out per run for 
the LNS phase had to be identified by trials and errors to find 
a proper balance. Since heuristics (H) are more time 
expensive, the mixed approach consists of 1 iterative 
heuristic based procedure and 2 iterative LNS procedures in 
turn, starting from the same initial good solution (LNS 
solutions are compared and the worst discharged). Results 
are shown in Table IV. 

TABLE III.  RUNTIMES FOR A 250 LOCATION SYSTEM, 60% AVAILABLE 
CAPACITY AND 10 VERY DIFFERENT M IN-BOXES.  

Strategy Cost Δ% min Runtime 
[min] 

Minimize 2415 0% 1473.3 
Heuristics 2775 15% 1.7 

2595 7% 92.8 
CP + LNS 2415 0% 2.2 

TABLE IV.  RESULTS FOR MIXED HEURISTICS (H) + LNS APPROACH. 

In 
boxes 

Runs 
H 

Time 
Tot 

H [s] 

Max 
runs 
LNS 

Tout 
LNS 
[s] 

Best  
cost 

Mean 
cost 

20 7 27 150 2 5156 5174 
30 5 96 150 4 8779 8951 
40 3 20 150 5 14177 14869 
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V. CONCLUSIONS 

Floor storage systems represent a high flexible low-cost 
solution for a temporary inventory or a seasonal business. 
When a great variety of products in very small quantities 
should be managed in the short term, the effort of combining 
space savings and fast picking operations leads to the need of 
rational allocation of items along aisles and within pallets. 

In the shoe industry, where different fashion products are 
proposed collection after collection, a picker should rely on a 
logical stacking of shoe boxes, basing on their characteristics 
in terms of model, material, color and size, so that similar 
products are likely stored in near positions and their 
identification could be faster even in the absence of 
sophisticated recognition systems.  

Mixing CP and LNS revealed a powerful methodology 
for solving such allocation problems in floor storage 
systems. Computational time for very good solutions are 
reasonable low to make the proposed methodology being 
applied in real warehousing of seasonal low quantity high 
variety products. A case study of one of the world-wide 
known Italian shoe company highlighted how allocations of 
fashion shoe boxes are generally performed twice per day in 
the floor storage system. Therefore, run times provided by 
CP+LNS solving methodology (roughly 5 min for 40 in-
boxes) looks adequate to such a planning period, even when 
a high number of product classes and aisles should be 
considered to efficiently manage order picking. Given the 
complexity of the problem even with a small number of 
entering shoe boxes, such timely results could hardly be 
reached by traditional optimizing approaches.  

Furthermore, the declarative nature of CLP allows the 
programmer to easily describe what properties are required 
to the desired solution. Requirements can be modified, added 
or deleted to adhere to a dynamic industrial environment 
without changing the basic model, but only declaring new 
constraints, making it adaptable and transferrable to different 
industrial realities. In the analyzed decision making contest, 
such CLP flexibility is precious to develop a warehousing 
tool effectively usable collection after collection. Shoe 
collections, in facts, differ from one another for seasonal and 
fashion characteristics, thus affecting stacking requirements. 
Moreover, different clients’ behaviors can impact on picking 
strategy and therefore on properties storage solutions should 
have to speed up operations and offer quick response to 
clients, as fashion market requires. The proposed CLP based 
methodology presents the required capability of customizing 
solution properties still maintaining the basic conceptual 
model. 
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