
Optimizing allocation in floor storage systems for the shoe industry
by Constraint Logic Programming

Antonella Meneghetti
DiEM – Dipartimento di Energetica e Macchine,

University of Udine
33100 Udine, Italy

meneghetti@uniud.it

Abstract— Floor storage systems are used in the shoe industry
to store fashion products of seasonal collections with low
quantity and high variety. Since space is precious and order
picking must be sped up, stacking of shoe boxes should be
optimized. The problem is modeled by assigning an integer
code to each box basing on shoe characteristics (model,
material, color, and size) and trying to force similar boxes into
near locations to improve pickers’ ability of fast order
retrieval. The model is encoded in Constraint Logic
Programming and solved comparing different strategies, also
using Large Neighborhood Search.

Keywords – Allocation; Floor storage systems; Shoe
industry; Constraint Logic Programming; Large Neighborhood
Search.

I. INTRODUCTION
Floor storage systems allow very flexible configurations

within a warehouse [1], since no additional structure other
than pallets is needed to stack stock keeping units (skus).
Thus, space can be quickly made available for different skus
and adapted to their characteristics in terms of size, inventory
quantity and picking frequency, reconfiguring the stocking
area to optimize operations. Here the reason why these
simple systems are suitable for industries characterized by
seasonal productive campaigns. Furthermore, floor storage
systems can be used as a temporary solution to face volume
increase avoiding other costs, while waiting the construction
of more sophisticated structures.

In one of the most famous Italian shoe company, floor
storage systems are adopted to manage reorders of
collections by retail points during each season. Every shoe
model (M) proposed within a seasonal collection can be
offered in different materials (T) (leather, tissue, etc.) and
colors (C). Production plants all over the world send cartoons
containing up to 15 shoe boxes of same MTC and eventually
different sizes (S) to satisfy reorders during any fashion
season. When these cartoons are broken but only partially
used to satisfy client orders during a working period, they
produce a certain number of “free pairs”. Free pairs enter the
floor storage system, where they are stacked until used to
satisfy another retail point demand. While more classical
products can rely on a significant predictable quantity of
reorders per MTC and therefore managed by a proper
dedicated storage [2], the so-called “fashion products”,
which are proposed only in a given collection and usually

with a great variety of MTC combinations, lead to very little
quantities per MTC that become free pairs. Thus, the floor
storage system devolved to fashion free pairs must manage a
great variety of skus with very small quantity and hardly
predictable arrivals/retrievals during each seasonal
collection. Since storage space is precious, optimizing
stacking of different shoe boxes becomes important in order
to enhance fast order retrieval.

This problem can be formalized as a Constraint
Satisfaction Problem (CSP), where values representing shoe
boxes to be stored are assigned to available locations
(variables), subject to a set of constraints [3]. A cost function
can be associated with variable assignments, so that the
minimum cost solution can be identified, leading to a
Constraint Optimization Problem (COP). Constraint
Programming (CP) is a programming methodology that
allows to encode and solve CSPs and COPs. CP splits
problem encoding into two parts: the modeling phase and the
solving one. In the former, the problem is modeled using
constraints, which are not limited to linear functions as in LP
or MIP; non linear cost functions can also be used. In the
latter, the programmer can rely on a constraint solver to find
solutions. The constraint solver systematically explores the
whole solution space alternating assignment steps, where a
variable is selected and assigned to a value of its domain, to
constraint propagation ones, where not assignable values are
removed from domains. The programmer can improve the
performance of this phase adding heuristics for variable
choice, value choice selection, etc to the built-in solver.
Among the various systems for CP, Constraint Logic
Programming (CLP) is the more mature constraint
programming methodology (the first definition can be traced
back to [4]). CLP languages allow a declarative easy
encoding, where the focus is on describing properties the
desired solution should have, rather than on establishing a
procedure to find it. Various families of efficient constraint
solvers are then available. Moreover, there are either free and
commercial CLP systems that are easy to be installed and
used in all the platforms and allow code portability from one
system to another. CLP has been successfully used in several
industrial applications since nineties [5], while more recent
research fields embrace alerting system location [6] and
bioinformatics [7].

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.116

467

II. THE MODEL
The warehouse system is made by sequences of floor

pallets, organized into aisles. One side of each pallet is
associated with a given aisle, the other side belongs to the
previous/following aisle. Given standard sizes of both pallets
and shoe boxes, each pallet can contain up to maxcol columns
of shoe boxes on both sides, stacked up to maxbox units
(maxbox ≤ 10 to assure stability), for a maximum of
maxcol×maxbox boxes per pallet side.

Pallets are set in U shape and numbered progressively.
Thus, all available locations (the variables) in our storage
system are uniquely identified by a tuple (a, p, i, j) of
integers describing the number of the aisle, the number of the
pallet within the given aisle ([1..maxpal]), the number of the
column occupied in the pallet ([1..maxcol]) and the slot
([1..maxbox]) into the analyzed column, respectively.
Furthermore, when long aisles should be preferred basing on
warehouse floor size, storage quantities and available
operators, then aisles could be split into their two fronts and
assigned to two consecutive aisle indexes, if different
behaviors or operators for any long front are desirable.

Each stock keeping unit (sku) is represented by a shoe
box, which is characterized by an integer code ranging from
1000 to 99999. Thousand digits represent the model of shoes
and given the high variety required by fashion products, 99
different models are considered in the current case. The
model codes should be assigned consecutively to similar
models. Every shoe model can be realized in different
materials coded by the hundred digit, thus allowing 10
different combination (numbered 0-9) per model. Each
model-material combination can be proposed to customers in
different colors, represented by the decade digit, thus
considering 10 alternatives. Finally, shoes are characterized
by their size, described in our code by the unit digit, thus
considering 10 different sizes per shoe model, taking into
account the different measures required by men, women,
juniors, and babies. Therefore, to each shoe box an integer
code of 4 to 5 digits of the type MTCS is assigned (Model 1-
99, material Type 0-9, Color 0-9, Size 0-9). If more
models/parts/colors/sizes are needed to match with actual
cases, the number of related digits can be properly increased,
moving to greater integers. When a location is assigned to a
shoe box, the related variable is set to its MTCS code,
otherwise is set to zero.

A. Constraints

Constraints are imposed so that symmetries of solutions
are broken: columns are filled in a bottom-up way
resembling actual stacking of shoe boxes during storage
operations and each pallet is filled from the first to the last
column without empty stacks in the middle.

To force similar shoes to be stacked together, boxes
assigned to a column must belong at least to the same shoe
model, i.e. thousand digits must be the same for a given
column (1). Furthermore, boxes into a pallet must be
characterized by similar models, thus allowing a range of
only 2·maxmod consecutive models to be assigned to a given
pallet (2). Maxmod should be selected basing on the number of

models to be storage in the planning horizon (i.e. models of a
seasonal collection for fashion industries) and available
columns. When very few space is available in the
warehousing system, this constraint should be removed and
great model variability within a pallet allowed.

 int(xa,p,s,i /1000) = int(xa,p,s,j/1000) ∀ (a,p,s) (1)

 |int(xa,p,1,_/1000) - int(xa,p,i,_/1000)| ≤ maxmod ∀(a,p,i) (2)

Finally, the number of non zero variables (i.e. the
locations to be occupied) should be exactly equal to the
number of new entering boxes and their values must be
chosen among their integer codes.

When multiple aisles are managed and a class-based
allocation [2] should be preserved in order to limit variety of
models within an aisle and enhance pickers’ capability of
fast retrievals, constraints linking models belonging to the
same class (e.g. woman, man, junior, or baby shoes) to a
given aisle should be added.

B. The cost function

To speed up manual retrieval operations, workers should
rely on a logical scheme of shoes distribution along aisles, so
that similar shoes (i.e. characterized by consecutive integers)
are stacked as close as possible.

The cost function Ctot to be minimized is made up by 5
different contributions, which resemble the need of
proximity of similar shoe boxes, as shown below (3):

Ctot= ∑ ൫Ccol
i +Ce_col

i +Cprox
i ൯+ ∑ ൫Cpal

s +Ce_pal
s ൯ si (3)

We would like to store shoes differing only by their size
in the same column, so that workers can easily retrieve them
basing on client reorders. To force boxes with similar
characteristics (i.e. with near integer codes) to enter the same
stack, a column cost Ccol is calculated for every column i
with a new entering box, as the sum of the difference
between each in-box code and the codes of shoe boxes
already stacked, plus the code difference between every
combination (without repetition) of any two entering boxes
assigned to that column. If R is the set of locations within a
column already filled with shoe boxes during past
replenishments and V is the set of empty locations, then:

Ccol = ∑ ∑ หxa,p,s,i - xa,p,s,kหkאRiאV + ∑ หxa,p,s,i - xa,p,s,jหሺi,j)אV ሺa,p,s) (4)

In order to minimize the number of different shoe codes
within a column, the cost contribution is set to zero for a new
box with a code already present into the stack and new boxes
with the same code are counted only once for a given
column.

We would like to store shoes differing only by their size
in the same column, so that workers can easily retrieve them
basing on client reorders. To force boxes with the same
model, type and color (MTC) in the same stack, a cost to fill
a new column Ce_col is introduced, in order to discourage
splitting of boxes differing only by their unit digit. Since
shoes with same MTC are expected to be stacked into the

468

same column if possible, we set Ce_col equal to the column
cost Ccol in the worst desirable case, when new entering
boxes are characterized by same MTC but all different
sequential sizes. If codes are sorted in decreasing order, any
box code differs from the successive ones for a quantity
growing from 1 to its unit value. Basing on (4), Ccol can be
evaluated as:

 Ccol = ∑ nሺn+1)/2maxbox-1
n=1 (5)

Ce_col should be greater than Ccol to discourage a new
column occupation when boxes are characterized by same
MTC. Thus, we set Ce_col equal to the nearest integer multiple
of 5.

Eventually, boxes with near integer codes, but differing
for more than their size, can present the same cost Ccol and
could be forced into the same column (e.g. boxes 1009 and
1011 differ for 2 units as boxes 1007 and 1009, but have
different colors). Thus, a weight equal to Ce_col is added to (4)
to distinguish these particular cases, so that filling another
column is allowed, when enough space is available in the
warehouse.

Within a given pallet, we would like to have the most
similar shoes, so comparisons between all the boxes in that
pallet are performed, by calculating a pallet cost Cpal very
similar to the column one, but encompassing all the
(maxbox×maxcol) possible allocations, considered as a unique
column of maxbox×maxcol elements. Therefore, the same rules
for column cost calculation (4) are applied to the pallet
component, without adding any weight.

As in the column case, we would like to encourage very
similar shoes to occupy the same pallet in order to enable
fast picking. In the worst of desirable cases, boxes in each
column differ only by size (the unit digit) and different
columns differ from each other only by their shoe colors (i.e.
progressive decade digits are considered). In such a situation,
the pallet cost component will be equal to Cpal , as shown in
(6).

 Cpal = ∑ nሺn+1)/2maxcol×maxbox-1
n=1 (6)

We introduce a little greater empty pallet cost Ce_pal, equal to
the nearest integer multiple of 10, to avoid splitting of same
size and color boxes among many pallets.

Finally, a proximity cost is introduced to force similar
shoes to occupy adjacent pallets. This cost component is
calculated by the average sum of difference between the
model code of any new column ݏҧ (see constraints in par.
II.A) and model codes of non-empty stacks (in total Nഥ)
occupying the previous and the following pallet, as shown in
the following (7).

Cprox= 1
Nഥ [∑ ቚint ቂxa,p,sҧ,_

1000
ቃ - int ቂxa,p-1,j,_

1000
ቃቚmaxcol

j=1 + ∑ ቚint ቂxa,p,sҧ,_
1000

ቃ -int ቂxa,p+1,j,_

1000
ቃቚmaxcol

j=1 (7) (a,p,sҧ) [

Since cost components have different magnitude because
of the different number of pair-wise comparison involved,
weights are introduced in order to counterbalance them. In
particular, Cpal is divided by a weight based on the ratio
Ce_pal/(Ce_col×maxcol).

III. CLP OPTIMIZATION
A program was created in SICStus Prolog

(www.sics.se/sicstus) to solve the problem, encompassing
the three typical steps of CLP approach: (1) define the
domain of each variable; (2) declare problem constraints; (3)
search for a good feasible solution or find an optimal one
exploring the whole search tree by branch and bound
techniques.

An example of constraint encoding is shown in Figure 1,
where boxes stacked into the same column are forced to have
the same shoe model (constraint (1)). The storage system is
encoded as a list of lists (the columns), which are themselves
lists of 4-5 digit (MTCS) integers (the box codes).

Given the first two CLP steps, both the searching
strategies (optimization and backtracking) were applied, as
described in par. III.A and par. III.B, respectively. Two
heuristics are proposed to be used while exploring the search
tree, in order to reach good solutions faster than built-in
procedures provided by the CLP over finite domains
(CLP(FD)) solver of SICStus Prolog. The variable choice
heuristic and the value choice heuristic are described in par.
III.B.

A. The CLP minimize approach
The CLP(FD) solver of SICStus Prolog [8] provides a

branch and bound algorithm for optimization, with different
options for variables and values choice selection.

As regards the choice of the next variable to be assigned,
with the leftmost option, the leftmost variable is chosen,
while with first fail the leftmost variable with the smallest
domain is selected. Finally the most constrained (Ffc) option
is tested: a variable with the smallest domain is selected,
breaking ties by (a) selecting the variable that has the most
constraints suspended on it and (b) selecting the leftmost
one.

Concerning the way in which values are assigned to the
selected variable, if the step option is selected, one value per
time of the finite domain is tested and the domain is explored
in increasing or decreasing order based on up and down
option respectively. With the bisect option domains are split
into two parts by their middle point, exploring the
lower/upper part of domains first depending on up or down
option respectively.

Finally, the above options were replaced by the search
heuristics described in the following par. III.B, trying to
speed up the search process.

Figure 1. Encoding of column constraint (1).

constr_col([]).
constr_col([[_,_,_,COL]|R]) :-
 same_model(COL),
 constr_col(R).

same_model([]).
same_model([_]).
same_model([A,B|R]):-
 A #> 0 #/\ B #> 0 #=> A/1000 #= B/1000,
 same_model([B|R]).

469

B. The search heuristics
The variable choice heuristic controls the order in which

the next variable is selected for assignment. Empty locations
on partially occupied columns are selected as the first
variables to be assigned, then empty columns in partially
occupied pallets are considered, while empty pallets are
selected in the end. This selection should force new in-boxes
similar to already stored skus to be stacked near them,
whenever possible. To enhance the ability of fast finding
good solutions, random permutation within the two groups of
empty columns is performed.

In the value choice heuristic, instead, a hierarchical
procedure is proposed to identify alternative values to be
assigned to a given variable, when a branch fail occurs. The
following hierarchy of choice is adopted:
1. The value assigned to the previous selected variable, if

different from zero;
2. A feasible value with same MTC of the last assigned

variable, if different from zero, in increasing order;
3. A feasible value with same MT of the last assigned

variable if different from zero, in increasing order;
4. A feasible value with same M (model) of the last

assigned variable if different from zero, in increasing
order;

5. A feasible value with characteristics different from the
last assigned one, if different from zero, in increasing
order;

6. If the last assigned value was zero, then choose a
feasible positive value in increasing order;

7. Eventually, set the variable to zero, thus leaving empty
the related location.

The reference value for the first variable is set to the lowest
entering box code. The position of step 7 within the above
hierarchy of choice is made dynamic basing on the
percentage of space available in the floor storage system.
When the warehouse has less than 20% of locations already
occupied, enough space is available to storage boxes
preserving their MTC characteristics, i.e. stacking into the
same column boxes differing only by their size. In this case
step 7 is shifted soon after step 2 and the selected variable is
set to zero immediately after failing step 2. As the number of
available locations becomes lower and lower, stacking boxes
with different characteristics in the same or near column
becomes more probable and therefore step 7 is progressively
moved after each following step every 20% increase of
occupied space, becoming the last possible choice if more
than 60% of locations are already occupied.

C. Searching solutions by CP and LNS
Adopting a feasible solution strategy by backtracking

search instead of an optimal one, the labeling predicate of
SICStus Prolog is powered by the variable choice heuristic
for assignment order selection and the value choice heuristic
for domain exploration, previously described in par. III.B.
An iterative procedure moving towards lower and lower cost
values was implemented, in order to find the best feasible
solution available when the time-out condition is eventually
reached. Its performances are compared to minimize
procedure’s ones, when the number of available locations in

the floor storage systems (variables) and the number of in-
boxes are progressively increased.

To further improve the capability of obtaining a near
optimal/optimal solution with lower and lower
computational times, a local search procedure is added after
obtaining a good solution by the above mentioned heuristics.
In particular a Large Neighborhood Search (LNS) is adopted
[9]. A LNS algorithm is an iterative process that destroys at
each iteration a part of the current solution using a chosen
neighborhood definition procedure and reoptimizes it,
hoping to find a better solution. The neighborhood procedure
selects the subset of variables, the so-called “free variables”
(FV), that should be reassigned, while maintaining the others
unchanged wrt the current solution. The constraint structure
of the model is preserved, in order to find only feasible
solutions. In our case, top positions of the good solution are
randomly made variable again and reassigned in order to
lower the cost function. In particular, two kind of moves are
allowed for a given solution: two boxes on the top of related
columns can be switched or a box can be removed from the
top of its column and stacked on the top of another column.
Thus, the first empty location of each column and the top
location occupied by an entering box are selected to become
FV and be reassigned. Furthermore, the number of FV to be
managed by a LNS run is kept low by randomly extracting
among the selected top locations (2max_stack×max_pals in
the worst case), starting with a narrow group of variables and
increasing its size if no improved solutions can be found. FV
are then reassigned by using the CLP leftmost step up
strategy, with minimizing or iterative backtracking approach
depending on problem size.

Since LNS is itself based on a random extraction of
variables, random permutation within the 3 groups of
variables in the variable choice heuristic (par. III.B) is
removed. In this way, we capitalize on the sorting process
provided by the CP heuristics to obtain a good starting
solution and leave shifting of boxes to LNS ability of
improving a given configuration faster.

IV. RESULTS
Experiments were run on a Windows Vista laptop Intel

Core 2 Duo, 2.6 GHz, 3 GB.
Any input configuration can be described by 3 different

parameters: the number of in-boxes to be stored, the size of
the floor storage system (i.e. number of locations), and the
percentage of locations already occupied. The last two
parameters are related to the number of variables to be
assigned and therefore to the size of the problem. The former
is associated to the number of non-zero variables to be
assigned.

A first group of experiments were performed involving 3
pallets and 5 boxes per stack, for a maximum of 75 available
locations when the floor storage system is empty, i.e. at the
beginning of reorders for a seasonal collection. This relative
small instance allowed to compare all the minimize labeling
options described in par. III.A. All the options require very
similar run times (about 7 s), excepted for the Ffc variable
choice option, which leads to worse run times with different
M in-boxes. Generally, when entering boxes are more

470

similar (e.g. same M, MT or even MTC) run times increase
(see column 2 in Table I) and the Ffc option gets the best
performance, since more constraints are involved. The
variable choice and value choice heuristics don’t improve the
minimize approach performance and this is because all the
solutions must be generated in order to identify the optimal
one.

Relative performances of labeling options remain even
when a partially filled storage system is adopted (20%, 40%,
60% and 80% of already filled locations were considered),
but run times become lower and lower.

The capability of the heuristics to find the best solution
faster than the built-in procedures, however, results when not
all the solutions should be generated, but it is required to find
the assignment related to the minimum cost. In Table II, run
times of the leftmost step up procedure are compared to the
proposed heuristics ones, when the best solution is already
known. Heuristics lead to dramatically lower run times (from
a minimum of 52 times for consecutive M to 3890 times for
boxes with same MTC).

When the size of the floor storage system is increased in
terms of locations to be assigned and consequently the size
of the problem (i.e. the number of variables) grows, run
times of the minimize approach become unacceptable. With
10 pallet per aisle, several hours are required to reach the
optimum, even when only 5 boxes per column are
considered (i.e. 250 variables, see Table I). If 10 boxes are
allowed to be stacked into the same column (the extreme
situation in real applications), run times for some instances
exceed one day of computation. Furthermore, increasing the
number of entering boxes to be located (i.e. the number of
non-zero variables to be assigned) dramatically rises run
times. For 10 boxes with very different models and 75
available locations, run time is 4 hours (versus 7.2 seconds
for 5 in boxes).

By the backtracking approach, floor storage system size
and entering boxes can be increased obtaining good solutions
in more reasonable times. Heuristics prove their force in
managing similar entering boxes, which obtained the worst
run times with the minimize approach (see Table I).

TABLE I. RUN TIMES OF LEFTMOST STEP UP MINIMIZE [MIN].

In Boxes 75 vars 250 vars 500 vars
5 different M 0.12 47.58 271.90
5 consecutive M 0.78 173.41 708.63
5 same MTCS 0.05 4.22 17.62
5 same MTC 5.19 455.74 > 1500.00
5 same MT 6.78 549.13 > 1500.00
5 same M 6.87 554.85 > 1500.00

TABLE II. RUN TIMES [S] WHEN THE MINIMUM COST IS IMPOSED
AND 75 AVAILABLE LOCATIONS CONSIDERED.

In Boxes Leftmost [s] Heuristics [s]
5 same MTCS 2.761 0.016
5 different M 2.012 0.063
5 consecutive M 12.303 0.234
5 same MTC 120.619 0.031
5 same MT 114.751 0.062
5 same M 117.016 0.062

For 5 same MT entering boxes we obtained the optimal
solution in 1 iteration in 0.079 s, 0.25 s and 0.749 s for 75,
250, 500 available locations in an empty system respectively,
which are dramatically lower than the related times in row 5
of Table I. For 5 different M boxes, run time is 0.063 s.

To simulate actual situation in shoe industry, experiments
were run taking into account from 10 up to 40 entering boxes
and a floor storage system of 10 pallets in one aisle (multiple
aisles are managed by a class-based allocation policy and
therefore it is imagined to run heuristics for each aisle/class
separately, especially if a zone-picking is adopted and
workers have their specific aisles to serve [2]). A 60%
available storage capacity is considered: for a 5 boxes per
column configuration, 100 filled locations and 150 empty
ones are taken into account. With 10 very different M in-
boxes, the minimize approach requires about 1 day of
computational time; while heuristic based CLP search is able
to reach a solution 7% far from the optimal one in 1 hour and
half (see Table III). Even if run time has been drastically
reduced, it is still too much longer for real applications.

Table III highlights how heuristics are able to reach a
solution 15% far from the optimal one in a very low time
(100 s), but further improvements are quite time expensive.
This is the reason why a local search approach was
introduced. After obtaining a good solution in a relative
small time (total time out at 100 s), the iterative LNS
procedure (see par. III.C) is added with a global time-out of
100 s, in order to make the improvement phase faster.
Results are shown in the last row of Table III: only 132 s are
needed on average to reach the optimal solution.
The number of entering boxes was then increased to 20, 30
and 40 with 10 different models, thus introducing a certain
degree of similarity (for 40 boxes, 2 same MTCS + 2 same
MT boxes per model), as the actual “free pairs” generation
process suggests. Number of runs for the CLP heuristic
phase and maximum number of runs and time-out per run for
the LNS phase had to be identified by trials and errors to find
a proper balance. Since heuristics (H) are more time
expensive, the mixed approach consists of 1 iterative
heuristic based procedure and 2 iterative LNS procedures in
turn, starting from the same initial good solution (LNS
solutions are compared and the worst discharged). Results
are shown in Table IV.

TABLE III. RUNTIMES FOR A 250 LOCATION SYSTEM, 60% AVAILABLE
CAPACITY AND 10 VERY DIFFERENT M IN-BOXES.

Strategy Cost Δ% min Runtime
[min]

Minimize 2415 0% 1473.3
Heuristics 2775 15% 1.7

2595 7% 92.8
CP + LNS 2415 0% 2.2

TABLE IV. RESULTS FOR MIXED HEURISTICS (H) + LNS APPROACH.

In
boxes

Runs
H

Time
Tot

H [s]

Max
runs
LNS

Tout
LNS
[s]

Best
cost

Mean
cost

20 7 27 150 2 5156 5174
30 5 96 150 4 8779 8951
40 3 20 150 5 14177 14869

471

V. CONCLUSIONS

Floor storage systems represent a high flexible low-cost
solution for a temporary inventory or a seasonal business.
When a great variety of products in very small quantities
should be managed in the short term, the effort of combining
space savings and fast picking operations leads to the need of
rational allocation of items along aisles and within pallets.

In the shoe industry, where different fashion products are
proposed collection after collection, a picker should rely on a
logical stacking of shoe boxes, basing on their characteristics
in terms of model, material, color and size, so that similar
products are likely stored in near positions and their
identification could be faster even in the absence of
sophisticated recognition systems.

Mixing CP and LNS revealed a powerful methodology
for solving such allocation problems in floor storage
systems. Computational time for very good solutions are
reasonable low to make the proposed methodology being
applied in real warehousing of seasonal low quantity high
variety products. A case study of one of the world-wide
known Italian shoe company highlighted how allocations of
fashion shoe boxes are generally performed twice per day in
the floor storage system. Therefore, run times provided by
CP+LNS solving methodology (roughly 5 min for 40 in-
boxes) looks adequate to such a planning period, even when
a high number of product classes and aisles should be
considered to efficiently manage order picking. Given the
complexity of the problem even with a small number of
entering shoe boxes, such timely results could hardly be
reached by traditional optimizing approaches.

Furthermore, the declarative nature of CLP allows the
programmer to easily describe what properties are required
to the desired solution. Requirements can be modified, added
or deleted to adhere to a dynamic industrial environment
without changing the basic model, but only declaring new
constraints, making it adaptable and transferrable to different
industrial realities. In the analyzed decision making contest,
such CLP flexibility is precious to develop a warehousing
tool effectively usable collection after collection. Shoe
collections, in facts, differ from one another for seasonal and
fashion characteristics, thus affecting stacking requirements.
Moreover, different clients’ behaviors can impact on picking
strategy and therefore on properties storage solutions should
have to speed up operations and offer quick response to
clients, as fashion market requires. The proposed CLP based
methodology presents the required capability of customizing
solution properties still maintaining the basic conceptual
model.

ACKNOWLEDGMENTS
I’m grateful to Agostino Dovier for his precious support

in Constraint Logic Programming.

REFERENCES
[1] J. J. Bartholdi III and S.T. Hackman, Warehouse &

Distribution Science, Georgia Institute of Technology, 2008,
available at http://www.warehouse-science.com;

[2] G. P. Sharp, “Warehouse Management”, Handbook of
Industrial Engineering, G. Salvendy Ed., Wiley Interscience,
2001;

[3] F. Rossi, P. van Beek, and T. Walsh, Handbook of
Constraint Programming, Elsevier, NY, USA, 2006;

[4] J. Jaffar and J. L. Lassez, “Constraint Logic Programming”,
Proceedings of POPL 1987, 111-119;

[5] J. Jaffar and M. J. Maher, “Constraint Logic Programming:
A Survey”, Journal of Logic Programming, 19/20: 503-581,
1994

[6] F. Avanzini, D. Rocchesso, A. Belussi, A. Dal Palù, and A.
Dovier, “Designing an Urban-Scale Auditory Alert System”,
IEEE Computer 37(9): 55-61, 2004;

[7] A. Dal Palù, A. Dovier, and F. Fogolari, “Constraint Logic
Programming approach to protein structure prediction”, BMC
Bioinformatics, 5:186, 2004;

[8] Carlsson M., Ottosson G., and B. Carlson, “An Open-Ended
Finite Domain Constraint Solver”, Proc. Programming
Languages: Implementations, Logics, and Programs, 1997;

[9] P. Shaw,“Using constraint programming and local search
methods to solve vehicle routing problems”, Proc. of CP ’98,
417–431, Springer-Verlag, 1998.

472

