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Abstract: The use of Bayesian Network Classifiers 

(BCs) combined with the Fuzzy rule model to explain the 
learned BCs have been previously presented as the 
BayesFuzzy approach. This paper follows along BayesFuzzy 
lines of investigation aiming at improving the 
comprehensibility of a BC model and enhancing BayesFuzzy 
results by combining new pruning methods. In order to 
improve BayesFuzzy performance, in addition to the Markov 
Blanket-based pruning idea used by BayesFuzzy, two other 
pruning methods are proposed, implemented and empirically 
evaluated. The first pruning method is based on the 
conditional probability estimates given by the BC and the 
second one is the well-known post-rule pruning approach, 
usually used to prune rules extracted from decision trees. 
Also, three different Bayesian Networks induction 
algorithms, namely IC, K2 and Naïve-Bayes, as well as, the 
C4.5 Decision Tree induction algorithms are employed in the 
empirical comparative analysis performed in the 
experiments. The obtained results reveal that BayesFuzzy 
combined with the new pruning methods can bring 
comprehensibility enhancements. 

I. INTRODUCTION 
Bayesian Networks (BNs) are graphical 

representations of the joint probability distribution of a set 
of variables and have been successfully used as classifiers 
in many application domains. When concerning 
interpretability, however, the knowledge encoded by a BN 
is not as comprehensible as some other classification 
models, such as rule-based and/or Fuzzy classifiers.  

Fuzzy Classification Systems (FCS), also known as 
Fuzzy classifiers, are based on Fuzzy classification rules 
and are designed to perform a classification task that 
requires the attribute domains to be granulated by means 
of fuzzy partitions. Fuzzy classifiers are ideally suited to 
provide good classification accuracy and comprehensible 
solutions to users, since they handle imprecise data and 
perform classification based on a set of rules which are 
interpretable, i.e. the semantic structure provides insight 
into the classifier structure and decision making process. 

In areas such as Data mining and Decision Support 
Systems, interpretability can play an important role. In 
those areas, it is important to have the data characteristics 
represented as symbolic rules or any other form of 
knowledge representation that promotes understandability. 
Following along these lines, some previous works 
proposed and discussed some methods to translate BNs 
into sets of crisp [10] [18] and Fuzzy classification rules 
[1][9]. Doing so, one can achieve a Bayes/Fuzzy hybrid 
system taking advantage of the capability of Bayesian 

Networks to identify relevant relationships among 
variables and its usually high accuracy in classification 
tasks allied to the high comprehensibility of rule base 
Fuzzy Systems.  

In spite of understanding the importance and being 
in agreement with the validity of the aforementioned 
hybrid methods, a deep analysis of them reveals that it is 
worth to further investigate such previous proposed 
Bayes/Fuzzy collaborations in order to try to answer some 
important questions regarding the accuracy and 
interpretability of such approaches as:  

i) can a pruning strategy help improving the 
comprehensibility of the model while maintaining its 
classification accuracy?  

ii) What is the influence of specific data 
characteristics (e.g. redundant and irrelevant variables) on 
the classification accuracy and interpretability?  

iii) Which BC learning algorithm is most 
appropriate to the specific Bayes/Fuzzy hybrid system 
BayesFuzzy? 

 
Therefore, in this work pruning methodologies 

(applied to the BayesFuzzy method described in [9]) is 
proposed, implemented and discussed. In addition, an 
empirical evaluation of specific data characteristics is 
conducted and the results are analyzed considering 
classification accuracy and interpretability of the 
classification models. 

The sequence of this document is organized as 
follows: Section 2 gives a brief overview of some related 
works. Section 3 reviews the BayesFuzzy algorithm, 
describes the pruning strategy designed to optimize the 
classifier interpretability and shows how to perform the 
pruning before executing the classification. Section 4 
starts describing the particular experimental scenarios we 
created to the empirical evaluation of the method and then, 
shows the results of the application of the proposed 
pruning strategy in different datasets having different 
characteristics. Finally, Section 5 brings the conclusions 
and points out some future works. 

 
II. BAYESFUZZY AND ITS PRUNED VERSION 
The Pruned BayesFuzzy (PBF), is a variation of the 

BayesFuzzy (BF) defined in [9]. The main difference 
between the two methods is that PBF explores pruning 
strategies to select attributes and rules from the set of 
Fuzzy classification rules generated by BF. A brief BF 
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overview is given in the next subsection (2.1). 
 

A. BayesFuzzy 
As showed in [9], BayesFuzzy is an algorithm 

suitable to be used in situations when a BN Classifier 
(BNC) needs to be built from data (D) to be used as input 
to a Rule Based Fuzzy System (RBFS), and the 
classification model must be comprehensible to human 
beings. BF algorithm can be summarized in four basic 
steps: 

1) “Discretize” the dataset D using a fuzzyfication 
process, generating a qualitative dataset D’; 

2) Learn a Bayesian Classifier (BC) using D’; 
3) Extract rules from the BC generated in Step 2; 
4) Use the fuzzy rule base generated in Step 3 in a 

fuzzy classification system. 
 
Considering the above four steps, some very 

interesting research questions can be drawn: i) Which BC 
learning algorithm is most appropriate to BF? ii) How to 
optimize the interpretability and precision of the set of 
rules extracted form the BC? iii) What is the influence of 
specific data characteristics (e.g. redundant and irrelevant 
variables) on the classification accuracy and 
interpretability? iv) which fuzzyfication function is most 
suitable to BF?  

 
In this work, however, we are mainly focused in 

trying to answer the first, the second and the third 
questions regarding the optimization of the rule set. 

 
B. Pruned BayesFuzzy 

As stated in the literature, there are many rule 
interestingness metrics such as support, confidence, lift, 
correlation, collective strength, etc. Such metrics are often 
used to determine the more relevant rules from a rule set 
in a pruning strategy. Many of these measures, however, 
provide conflicting information about the interestingness 
of a pattern. Therefore, the best metric to use for a given 
application domain is hard to define. See [16] for a more 
detailed description of properties of some of the most 
commonly used rule interestingness measures. 

In the Pruned BayesFuzzy algorithm described in 
this paper, two pruning strategies are performed (in 
addition to the Markov Blanket-based pruning and the 
“RemoveSuperfluousRules” performed by the original 
BayesFuzzy).  

The first one is based on the rule probability 
estimate given by the BC. It is a very simple idea and is 
mainly motivated by the fact that it can be applied without 
any extra computation effort. Considering the rule set 
given by the original BayesFuzzy as an ordered list of 
rules (ordered based on the probability estimates), the 
pruning can be done by only taking into account the rules 
having probability estimates higher than a predefined 
threshold. This measure (the rule probability estimate) can 
be seen as a confidence measure and has three interesting 
properties: 

1. It monotonically increases with P(A,B) when P(A) 

and P(B) remain the same. 
2. When it is symmetrized by taking 

max(P(A|B);P(B|A)), the measure is Symmetry under 
variable permutation; 

3. It presents null invariance, which is useful for 
domains having sparse data sets, where co-presence of 
items is more important than co-absence. 

Even knowing that such properties are important for a 
good interestingness measure [16], we are not claiming 
that it is the best measure to be used in a rule set pruning 
task. As aforementioned, different measures have 
different intrinsic properties. Thus, it is important to 
notice that, some of these properties may be desirable 
for certain applications but not for others. Therefore, in 
order to find the most suitable measure, one must match 
the desired properties of an application against the 
properties of the existing measures. As our PBF is not 
designed for a specific application domain, we don’t 
want to state which pruning method is the best. We are 
interested, instead, in find a pruning strategy suitable for 
helping to consistently reduce the number of Fuzzy rules 
extracted from a Bayesian Classifier in a broad range of 
domains. 

The second pruning strategy used in PBF is a Rule 
Post-Pruning strategy similar to the one used when 
learning decision Trees from data [15]. It can be 
summarized in the following steps: 

1. Receive a rule base R; 
2. For each rule ri in R; 
3. Simplify ri by greedily deleting antecedents in order 

to minimize the rule's estimated classification error 
rate. 

4. Store the simplified version of ri in the pruned rule 
set R’.  

5. Define a default class based on the MAP (Maximum 
a Posteriori) [12] criterion. 
 

III. EXPERIMENTS AND RESULTS 
This section initially describes the adopted 

experimental setting and then, the results obtained for the 
assessed algorithms are presented and analyzed. 

 
A. Experimental Setting 

Our experimental setting is based on the desire to 
evaluate the relative performance of the algorithms being 
studied under controlled conditions. With this purpose in 
mind, we have conceived some particular experimental 
scenarios. In brief, for each scenario we have built 
hypothetical domains of interest which were then used to 
generate synthetic datasets (SDs). From this standpoint, 
each of these datasets can be viewed as a particular 
realization of a given specific situation to be analyzed. 
Doing so, true characteristics are a priori known for each 
dataset used in the experiments, allowing us to derive 
interesting analyses regarding the relative performance of 
the algorithms under investigation. 

We have designed seven different specific situations 
and for each situation we’ve generated 4 datasets 
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containing 1000, 10000, 30000 and 50000 instances each, 
resulting in 28 datasets. Then, each dataset was used to 
perform a supervised learning task to induce a Bayesian 
Network. Next, BayesFuzzy and Pruned BayesFuzzy were 
applied to each induced Bayesian Network and the 
obtained Rule Sets.  

To better understand how the experiments here 
described were defined is important to remember that our 
claim, in this paper, is that it is possible to take advantage 
of the causal knowledge representation (which is possible 
in a BN or BC) and the usually good accuracy of Bayesian 
classifiers to have a set of Fuzzy classification rules 
(extracted from the BC) as a knowledge base. Even 
knowing, however, that the main idea of the conducted 
experiments is not to show that the BF and PBF are better 
predictors than traditional classifiers or rule extraction 
methods, this section also brings results of the use of the 
C4.5 algorithm (as implemented in the J48 method in 
WEKA [17]) to extract classification rules from the 
datasets generated for each one of the 7 experimental 
scenarios. 

To generate the datasets for each scenario we used a 
data generator based on rules that describe the desired 
domain characteristics1. The seven experimental scenarios 
can be described as follows: 
1. Baseline: In this domain, we simulate a situation in 

which all variables are relevant to the classification 
task and there is no redundant rule. In this sense, 
there is no noisy data. The generated dataset has 3 
continuous and 3 discrete variables. In addition, the 
class is well balanced. The purpose of this database is 
to become the base of comparison for other databases. 

2. Irrelevant Variables (IV): As happens in the Baseline 
domain, this (IV) domain also has 6 variables. Instead, 
however, of having all variables being relevant to the 
classification task, the IV domain has 4 irrelevant 
variables and 2 relevant ones. The purpose of this 
domain is to simulate a situation where there is 
irrelevant information in the dataset. 

3. Repeated Pattern (RP): This domain also has 6 variables, 
there are, however, 2 redundant rules out of the 8 
rules used to describe the dataset. The purpose of this 
domain is to simulate a situation where one of the 
data pattern (rule) is stronger than the other ones. 

4. More Generalized Pattern (MGP): Equal to the Baseline, 
except that part of a data pattern is stronger then 
another. In other words, part of the antecedent of 
more than one rule is the same. The purpose of this 
domain is to simulate the situation where there only a 
small part of a pattern (rule antecedent) can define the 
class value through BC. 

5. Noisy Data (ND): Similar to the Baseline, except that in 
this domain up to 4 variables can be considered noisy 
data, i.e., don’t have a pattern associated with the 
class variable. The purpose of this domain is to 
simulate a situation where noisy data is present. 

                                                 
1 To see the set of rules used to generate each dataset for all domains go 

to http://www.cs.cmu.edu/~estevam/isda2009.html 

6. Uncertainty: Similar to Baseline, except that there are 
uncertain information, i.e., the same data pattern 
doesn’t necessary have the same class value. The 
purpose of this domain is to simulate a situation 
where uncertain information is present. 

7. Unbalanced: Similar to Baseline, except that the dataset 
is unbalanced. The obvious purpose of this domain is 
to simulate a situation where the database is 
unbalanced; 

 
The first interesting discussion about the performed 

experimental analysis is related to the Probability 
Estimate-based pruning. In all 7 domains, the use of that 
pruning strategy brought no relevant results and was not 
able to generated differences in the classification accuracy, 
neither in the number of rules generated by BF and PBF. 
Taking it into account, and also considering the lack of 
space, no results related to that pruning approach is 
reported here. Considering, however, that the Probability 
Estimate-based pruning technique was successfully 
employed in the specific domain of “risk of weed 
infestation” [1], more investigation is necessary before 
stating that the technique is not valid to BayesFuzzy. And 
such results reinforce the idea (presented in section 2) that 
some pruning techniques might be suitable to specific 
domains and not for other ones. 

Nevertheless, one interesting aspect of these results 
is that in [1], the BCs’ structures were generated by a 
human expert and only the numerical parameters of the 
probabilistic models were induced from data. In contrast, 
all the BCs’ structures used in the experiments described 
in this section were induced from data. Thus, one 
plausible hypothesis is the following:  

Hypothesis 1: Based on the three properties 
described in section 2.2, the Probability Estimate can be 
seen as a rule interestingness metric very similar to 
confidence. Thus, when a BC structure is induced from 
data, the co-presence of items (in the training dataset) will 
be already used in the BC structure definition and will 
have less impact in the pruning. 

In spite of arguing in favor of the plausibility of 
Hypothesis 1, we don’t have yet enough empirical (nor 
theoretical) evidence that it is true. Thus, we leave the 
investigation of the validity of Hypothesis 1 as a future 
work. 

The sequel of this section presents the results 
obtained using the Post-Pruning rule pruning approach. In 
all the classification tasks performed, the Average Correct 
Classification Rate (ACCR), the average number of rules 
(#Rules), the average number of antecedents in the rules 
(#Ant.), as well as, the proximity (P) to the original rules 
were used as features to our comparative analysis. It is 
worth to mention that the original rules (OR) are the rules 
used to generate each dataset and, in this sense, it is 
considered our golden set of rules. In other words, the OR 
represent the real patterns present in the data, thus, the 
closer the results gotten using algorithm A are to the 
results obtained using OR, the better algorithm A 
performance is. 

The graphics depicted in Fig. 1, Fig. 2 and Fig. 3 
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show (see the bars) the ACCR, the #Rules and #Ant. 
respectively. The circles in the graphics represent the 
proximity of the obtained rule sets when compared with 
the OR, in this sense, the higher the proximity value, the 
better the results. The proximity circles are exactly the 
same in all three graphics. In spite of representing the 
same information in all graphics they are replicated in 
order to help cross-results analysis. 

Considering that we are also interested in starting to 
investigate which BC learning algorithm is most 
appropriate to BF, for each dataset, 3 different BC 
induction algorithms were applied (IC [13], K2 [4] and 
NaiveBayes (NB) [6]) thus 3 different BC as well as 3 
different set of rules were built. In addition, in the three 
graphics below, for each domain, the results for J48 
Decision Tree induction algorithm and for the use of the 
original rules (OR) are showed. 

All the results reported in Fig. 1, Fig. 2 and Fig.3 
were obtained through a modified 10 Fold 
Cross-Validation strategy. The modified Cross-Validation 
was adopted in order to allow us to perform the 
Post-Pruning approach and it works as follows: we use 
80% of the data as training set (used to induce BC), 10 % 
of the data as the pruning set (used by Post-Pruning) and 
10% of the data as the test set. 

During the results analysis we’ve verified that the 
number of instances in a dataset did not have relevant 
influence in the classification rates neither in the 
interpretability of the obtained rule sets. Thus, we are 
reporting only the results obtained when using the 7 
datasets (one for each scenario) containing 10000 
instances.  

The analysis of the 3 graphics can help us to derive 
some discussions regarding the 3 questions we want to 
answer (see section 2.1). 

Considering the most appropriate BC induction 
algorithm to BF, the IC algorithm presented better results 
than K2 and NB. IC provided ACCRs very close the OR 
ACCRs in 4 out of the 7 datasets (see Fig. 1) and also 
produced number of rules very close to OR (see Fig. 2). 
The IC drawback is related to the number of antecedents 
(see Fig. 3) that tends to be lower than the antecedents in 
OR. Depending, however, on the main goal of the rule 
extraction, this low number of antecedents can be seen as 
a good characteristic because it can help to improve 
comprehensibility. 

Another interesting result we got regarding IC is 
that in addition to generating similar number of rules, 
when compared to OR, it was the algorithm which 
generated the rule sets most similar (based a basic 
similarity function results) to OR (with or without 
pruning) . In the IV domain, for instance, IC generate 
exactly the same rules present in OR. The J48 presented 
the worst results regarding similarity to OR.  

Regarding interpretability, the results in the 
performed experiments revealed that the Post-Pruning 
strategy can be considered a good approach to be applied 
to BF. The use of the pruning helped reducing the number 
of rules and antecedents in most of the performed 
experiments. Obviously, the pruning tended to reduce the 

ACCRs, this is, however, not a surprise. The main 
motivation to incorporate a new pruning approach to BF 
was to help enhancing the comprehensibility of the 
generated rule set and not to improve the classification 
accuracy. In this sense, having the Post-Pruning as part of 
BF can allow the user to use the not pruned model to 
classification purposes and the pruned one to help 
understanding the problem and having insights about the 
classification process. 

When concerning on the influence of specific data 
characteristics (e.g. redundant and irrelevant variables and 
patterns) on the classification accuracy and interpretability, 
the results did not present any significant tendency to be 
considered. 

In spite of not being part of our initial research 
questions, the behavior of the J48 Decision Tree learning 
algorithm deserves some comments. This algorithm 
presented the closest ACCRs to OR in the uncertainty and 
unbalanced domains. In addition, J48 got nice ACCRs on 
RP. The main drawback of this algorithm is the number of 
rules it tend to generate, thus, mainly when 
comprehensibility (number of rules) is crucial, using BF 
should be preferred. 

IV. RELATED WORK 
The idea of explaining a BN has been explored in 

some previous works using crisp rules [10][17], fuzzy 
rules [9] and graphic representations [7]. Our work is 
focused in describing a Bayesian Classifier in terms of 
Fuzzy rules mainly because of two critical issues:  

• Fuzzy Set Theory can be used to transform quantitative 
data into qualitative data; in this sense, the 
discretization method (required by the traditional 
Bayesian Classifiers) can be performed by a 
Fuzzyfication Process (FP). The discretization of 
the data using a FP generates linguistic-valued 
attributes and, therefore, the model interpretability 
and comprehensibility may be enhanced.  

• The use of linguistic variables and their linguistic 
values, that are defined by context-dependent fuzzy 
sets, can enhance the interpretability of the 
knowledge represented in rule sets [5]. 
 
There are other pieces of research in the literature 

focusing on BN rules explanation as we do. In [9] and [10] 
a set of Fuzzy rules and a set of Crisp rules are extracted 
from a Bayesian Classifier respectively. In none of those 
methods, however, the pruning idea is explored. Another 
relevant related work is presented in the method by Yap et 
al. [17] called EBI. In a nutshell, EBI can be described as 
follows: first, the complexity of a previously given BN is 
reduced considering only the Markov Blanket of the class 
node, then an Arc Reversal procedure on the Markov 
Blanket is applied in order to prepare it for the generation 
of a Decision Tree (DT) for each possible class value 
based on Context-Specific Independencies. Afterward, 
rules are extracted from the DTs. A treatment for missing 
value and erroneous input data is applied. Different from 
the BF and PBF (see sSection 3), EBI offers an 
explanation of a given input and not of the whole BN 
Classifier. So EBI is classified as predictive explanation as 
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defined in [3].  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. ACCR and Proximity measures in all 7 domains for the 3 BC induction algorithms, for J48 Decision Tree induction algorithm 

and for the Original Rules set. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. #Rules and Proximity measures in all 7 domains for the 3 BC induction algorithms, for J48 Decision Tree induction algorithm 

and for the Original Rules set. 

 
 

 

 

 

 

 

 

 

 

 
Fig. 3. #Ant. and Proximity measurements in all 7 domains for the 3 BC induction algorithms, for J48 Decision Tree induction 

algorithm and for the Original Rules set. 
 
Some classic methods deal with the rule extraction 

problem, like the C4.5 algorithm [15] which can be used 
to induce a DT from data. The DT can be easily translated 
into a set of classification rules. In addition, the Reduced 
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Error Pruning [15] can be used to improve the 
classification rate and reduce the complexity and amount 
of the rules. A practical version of the Reduced Error 
Pruning, Rule Post-Pruning can be applied as well. As 
showed in our experiments, however, this methodology 
can generate a high number of rules. 

 
V. CONCLUSION AND FUTURE WORK 

In this paper we investigated BayesFuzzy algorithm 
focusing in three main research questions: i) can a pruning 
strategy help improving the comprehensibility of the 
model while maintaining its classification accuracy? ii) 
What is the influence of specific data characteristics (e.g. 
redundant and irrelevant variables and patterns) on the 
classification accuracy and interpretability? iii) Which BC 
learning algorithm is most appropriate to the specific 
Bayes/Fuzzy hybrid system BayesFuzzy? 

The obtained results allowed us to draw solid 
conclusions regarding the specific domains (and datasets) 
used in our experimental analysis, as well as, to draw 
some very relevant and interesting general interpretations 
which helped to clearly identify important future work 
directions. 

In a nutshell, for all the experiments using the 7 
domains, Post-Pruning approach was able to help 
improving the comprehensibility of the model in a 
satisfactory way. The influence of specific data 
characteristics on the classification accuracy and 
interpretability could not be very well established. And the 
IC Bayesian Network learning algorithm presented a very 
nice balance of accuracy and comprehensibility. 

Some interesting future work are the further 
investigation of: i) BayesFuzzy and Post-Pruning in 
bigger and real domains. ii) other conditional 
independency Bayesian Networks learning algorithms. 
And iii) automatic fuzzyfication techniques to be used as 
discretization function to BayesFuzzy. 
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