
Comprehensible model of a quasi-periodic signal

Alberto Alvarez
Cognitive Computing: Computing with Perceptions

European Centre for Soft Computing
Mieres, Spain

alberto.alvarez@softcomputing.es

Gracian Trivino
Cognitive Computing: Computing with Perceptions

European Centre for Soft Computing
Mieres, Spain

gracian.trivino@softcomputing.es

Abstract—In this paper we present a new method to analyze
quasi-periodic signals. This method consists of modeling these
signals using a Fuzzy Finite State Machine as a particular
case of a Linguistic Fuzzy Model of a dynamical system. This
model defines states and transitions using a priori knowledge
of the signal we want to analyze. The model is represented
using fuzzy rules that make it easily comprehensible. We
include a practical example analyzing quasi-periodic signals
of acceleration measured during the human gait cycle where
good results were achieved.
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I. INTRODUCTION

Quasi periodicity is a property of dynamical systems that
approximately retrace their paths through the state space.
A quasi-periodic signal is a signal that evolves in time
approximately repeating its shape and period. Quasi-periodic
signals are usually modeled using statistical methods, such
as Wavelet Transforms [1], Hidden Markov Models [2], [3];
or Soft Computing techniques like Neural Networks [4].

In this paper we present a Linguistic Fuzzy Model to
describe quasi-periodic signals.

Linguistic Fuzzy Models were originally proposed by
Zadeh [5] and further developed in subsequent papers by
other authors [6], [7], [8], [9].

These models describe the system by means of a set of
IF-THEN rules with vague predicates; the rule set takes the
place of the usual set of equations used to characterize a
dynamical system. The linguistic model is a knowledge-
based system that incorporates fuzzy knowledge about a
phenomenon in the real world.

As a particular case of the Linguistic Fuzzy Model we use
a Fuzzy Finite State Machine where each state and transition
is established using our a priori knowledge of the temporal
evolution of the dynamical system we want to analyze.

II. LINGUISTIC MODELS OF DYNAMICAL SYSTEMS

A deterministic dynamical system is described by the set
of state equations:{

x[t + 1] = f(x[t], u[t])
y[t] = g(x[t], u[t])

where:
• x[t] = (x1, x2, ..., xd) is the vector of state variables at

time t, being d the dimension of the state space.
• y[t] is the system’s output.
• u[t] is the system’s input.
• f(x[t], u[t]) and g(x[t], u[t]) are mappings that describe

analytically the relationships between state, input, and
output variables. These functions are built using knowl-
edge from the application domain.

We say that the model described by these equations is a
Linguistic Fuzzy Model when at least one of the variables
is fuzzy [10]. In the general case the variables are linguistic
variables expressed by fuzzy sets [11], and f(x[t], u[t]) and
g(x[t], u[t]) are replaced by logical rules operating with
these linguistic variables.

A. Fuzzy Finite State Machine

In a preliminary research we have learnt that Fuzzy Finite
State Machines (FFSM) are suitable tools for modeling
signals which evolve following an approximately repetitive
pattern [12], [13]. In this paper we refine the way of defining
the FFSM and we explore its application to model the human
gait signal. We will show that Finite State Machines provide
an interesting paradigm to design the sets of fuzzy rules
that allow us to implement the mappings f(x[t], u[t]) and
g(x[t], u[t]) for modeling this type of signals.

We propose a type of FFSM as a particular case of a
Linguistic Fuzzy Model of a dynamical system. We define
a FFSM as a tuple:

{x,Q, S, U, f, Y, g, S0}

where:
• x is a point in the original state space. Suppose that

we have a two-dimensional state space defined by the
state variables Temperature and Humidity (T,H) (see
fig. 1).

• Q is a set of fuzzy states {q1, ..., qi, ...., qj , ...}. A fuzzy
state qi is a fuzzy set of points x in the state space. For
example, we can define the fuzzy state “Comfort” (qC)
by defining the degree of membership of each point of
the state space (x) to the fuzzy state qC (see fig. 1).
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Figure 1. Degree of membership to the fuzzy state “Comfort” defined for
all points x in the state space.

When the system evolves in the original state space,
it could be simultaneously in several fuzzy states. The
degree with which the system is in state qi is called
degree of activation of the state qi.

• S is the state activation vector that stores, in each of
its components, the degree of activation of the different
states: S = (s1, s2, ..., sNstates

), being si[t] = qi(x[t])
and therefore si[t]ε[0, 1] ∀i. And assuming that the

system is always in a known state
Nstates∑

i=1

si[t] = 1.

• U is the input vector (u1, u2, ..., uNinputs
). In our case

U is a set where every variable ui is a numeric value
obtained from sensors.

• f is the state activation transition function S[t + 1] =
f(U [t], S[t]). It will be explained in detail in the next
section.

• Y is the output vector (y1, y2, ..., yNoutputs
). The output

provided by the FFSM when leaving a state qi can be
considered as a summary of relevant characteristics of
the system while remained in qi.

• g is the output function Y [t] = g(U [t], S[t]). When
a transition occurs, the values of the output variables
are typically obtained applying e.g. the average and the
standard deviation of the values of the input variables
while the signal remained in the considered state.

• S0 is the initial value of the state activation vector S[t =
0] = S0.

III. THE STATE ACTIVATION TRANSITION FUNCTION f

The degree of activation of the state qi is defined not only
defining constraints to interpret the value of the inputs but
defining constraints to interpret the duration and the order
the states occur.

The state activation transition function is implemented
using a set of Takagi-Sugeno-Kang (TSK) fuzzy rules [14].

The one-order TSK fuzzy model consists of a set of
fuzzy rules:

R1: IF I1 is B11 AND ... AND Is is B1s THEN
O1 = b10 + b11I1 + ... + b1sIs

ALSO
...
ALSO

Rr: IF I1 is Br1 AND ... AND Is is Brs THEN
Or = br0 + br1I1 + ... + brsIs

where Bkl, 1 ≤ k ≤ r, 1 ≤ l ≤ s are linguistic labels
and I1, I2, ..., Is are the values of input variables. Each of
the linear functions in the rule consequents can be regarded
as a linear model with crisp inputs I1, I2, ..., Is, crisp
outputs Ok and parameters bkl, 1 ≤ k ≤ r, 0 ≤ l ≤ s. The
crisp output O inferred by the fuzzy model under the TSK
method is defined by the weighted average of the crisp
outputs Ok of individual linear subsystems:

O =

r∑
k=1

ωk·Ok

r∑
k=1

ωk

where ωk is the degree of firing of the kth rule:
ωk = Bk1(I1) ∧ ... ∧Bks(Is).

When we apply the TSK fuzzy model to the state acti-
vation transition function f , we distinguish between rules
(Rii) to remain in a state qi and rules (Rij) to change from
the state qi to the state qj .

In order to define the state transition diagram we follow
a simple procedure: the allowed transitions have associated
fuzzy rules and simply the forbidden ones have not
associated fuzzy rules.

A generic rule (Rk
ii) to remain in a state qi can be

explained as follows:

IF (x[t] is qi) AND (U [t] is Cii) AND (di[t] is Tii)
THEN Sk[t + 1] = (0, ..., 1, ..., 0, ...).

This rule consists of a TSK fuzzy rule of zero-order
(where the linear function is reduced to be constant). In
this particular case we have the following vector constant
output: ski

[t + 1] = 1 and skj
[t + 1] = 0, ∀j 6= i. We have

three antecedents defined by:
• The function qi(x[t]) = si[t] that provides the degree

of activation of the state qi.
• The function Cii(U [t]) that provides the degree of

satisfaction of the system inputs of the conditions of
amplitude to remain in the state qi.

• The function Tii(di[t]), where di[t] is the duration of
the state qi (which is defined as the time that si[t] > 0),
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provides the maximum time that the signal is expected
to remain in the state qi. It is a trapezoidal membership
function which initially takes a value of 1 and loses
value until it reaches 0 after a certain amount of time
which is the maximum duration calculated for that state
(see in fig. 4 the continuous line membership function).

A generic rule (Rk
ij) to change from the state qi to the

state qj can be explained as follows:

IF (x[t] is qi) AND (U [t] is Cij) AND (di[t] is Tij)
THEN Sk[t + 1] = (0, ..., 0, ..., 1, ...).

If we consider this rule in the context of the TSK zero-
order fuzzy rules we can see that we have the vector constant
output: skj

[t + 1] = 1 and ski
[t + 1] = 0, ∀i 6= j, and the

following antecedents defined by:

• The function qi(x[t]) = si[t].
• The function Cij(U [t]) that provides the degree of

satisfaction of the system inputs of the conditions of
amplitude to change from the state qi to the state qj .

• The function Tij(di[t]) that provides the minimum time
that the signal is expected to remain in the state qi

before changing to the state qj . It is a trapezoidal
membership function which initially takes a value of 0
and raises value until it reaches 1 after a certain amount
of time which is the minimum duration calculated for
that state (see in fig. 4 the dotted line membership
function).

Once we have all the rules, we can calculate the
final output weighted average of the crisp outputs Sk of
individual linear subsystems:

S[t + 1] =

#Rules∑
k=1

ωk·Sk[t+1]

#Rules∑
k=1

ωk

where ωk is the degree of firing of the kth rule.

Note that this step produces automatically the normaliza-
tion of the state activation vector.

IV. A PRACTICAL EXAMPLE

As an application of the idea described above, we will
create a model of the quasi-periodic signals obtained when
measuring the accelerations during the human gait cycle.

The human gait is defined as the interval between two
similar events (usually heel contact) of the same foot. It is
characterized by a stance phase (60 % of the total gait cycle),
where at least one foot is in contact with the ground, and a
swing phase (40 % of the total gait cycle) during which one
limb swings through to the next heel contact [15].

Figure 2. Vertical and lateral acceleration during the four states of the
human gait cycle.

A. Defining the states

Fig. 2 shows the vertical and lateral acceleration and the
four states of the FFSM describing the evolution of the
human gait. The description of the states is:

• q1: Reference foot stance phase and opposite foot
stance phase (double limb support). This state covers a
10-15 % of the total period.

• q2: Reference foot stance phase and opposite foot swing
phase (reference limb single support). This state covers
a 35-40 % of the total period.

• q3: Reference foot stance phase and opposite foot
stance phase (double limb support but different of q1

because of the feet position). This state covers a 10-15
% of the total period.

• q4: Reference foot swing phase and opposite foot stance
phase (opposite limb single support). This state covers
a 35-40 % of the total period.

B. Defining the linguistic labels

We use a three-dimensional accelerometer in a belt,
centered at the back, that provides us the three orthogonal
accelerations. During a first analysis of data it was realized
that the vertical acceleration (ax) and the lateral acceleration
(ay) were indicative for the states we wanted to distinguish.

In order to make the system valid for any gait we have
normalized the signals. First we subtract the respective aver-
age values. Then we rescale the signals in the range given by
their standard deviations. We use three trapezoidal linguistic
labels for each acceleration (Negative, Zero, and Positive)
so we have six linguistic labels {Nx, Zx, Px}{Ny, Zy, Py},
each one covering a third of the total amplitude. Fig. 3 shows
an example of the vertical acceleration.

We have applied self-correlation analysis of the vertical
acceleration to obtain an approximation to the signal period
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Figure 3. Trapezoidal linguistic labels for the vertical acceleration.

Figure 4. Temporal constraints for the state q1 related with the signal
period T .

(T ). We assign for each state the percentage of the total
period that corresponds with the description of the typical
human gait cycle. The temporal constraints are based on the
linguistic labels Tii and Tij . In fig. 4 the temporal constraints
for the state q1 related with the total signal period are shown.

C. Defining the rules

Using the information shown in fig. 2 and our knowledge
about he human gait, we can deduce the conditions to
remain in a state or to change between states. Once we
have these conditions, we can define the 8 rules (4 to
remain in each state and 4 to change between states) with
their inputs, linguistic labels and outputs:

R1
11 : IF (x[t] is q1) AND (ax[t] is Px) AND (ay[t] is Py)

AND (d1[t] is T11) THEN S1[t + 1] = (1, 0, 0, 0).

R2
12 : IF (x[t] is q1) AND (ax[t] is Nx) AND (ay[t] is Zy)

AND (d1[t] is T12) THEN S2[t + 1] = (0, 1, 0, 0).

R3
22 : IF (x[t] is q2) AND (ax[t] is Nx) AND (ay[t] is Zy)

AND (d2[t] is T22) THEN S3[t + 1] = (0, 1, 0, 0).

R4
23 : IF (x[t] is q2) AND (ax[t] is Px) AND (ay[t] is Ny)

AND (d2[t] is T23) THEN S4[t + 1] = (0, 0, 1, 0).

R5
33 : IF (x[t] is q3) AND (ax[t] is Px) AND (ay[t] is Ny)

AND (d3[t] is T33) THEN S5[t + 1] = (0, 0, 1, 0).

R6
34 : IF (x[t] is q3) AND (ax[t] is Nx) AND (ay[t] is Zy)

AND (d3[t] is T34) THEN S6[t + 1] = (0, 0, 0, 1).

R7
44 : IF (x[t] is q4) AND (ax[t] is Nx) AND (ay[t] is Zy)

AND (d4[t] is T44) THEN S7[t + 1] = (0, 0, 0, 1).

R8
41 : IF (x[t] is q4) AND (ax[t] is Px) AND (ay[t] is Zy)

AND (d4[t] is T41) THEN S8[t + 1] = (1, 0, 0, 0).

The total output of the rules is the weighted average
of the crisp outputs Sk[t+1] of individual linear subsystems:

S[t + 1] =



8∑
k=1

ωk·Sk[t+1]

8∑
k=1

ωk

if
8∑

k=1

ωk 6= 0

S[t] if
8∑

k=1

ωk = 0

where the degree of firing for each rule (ωk) is calculated
using the minimum for the AND operator.

Fig. 2 shows how these rules model sharply the evolution
of the signal through the four states.

D. The output of the FFSM

Our aim is to build a summary of the human gait where
the relevant aspects should be remarked. Once the four
phases in the signal have been identified, we calculate the
average and the standard deviation of the values taken by
input variables while the signal remained in the considered
state. In this example, the output function g is implemented
as a set of equations that calculate these values:

• ti: Temporal “center of gravity” of the input u in the
state qi.

ti =

T∑
t=0

t·u[t]·si[t]

T∑
t=0

u[t]·si[t]

• ui: Average of the input u during state qi.

ui =

T∑
t=0

u[t]·si[t]

T∑
t=0

si[t]

• σti
: Standard deviation of the temporal distributions of

the input u in the state qi.
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Figure 5. The output of the FFSM.

σ2
ti

=

T∑
t=0

(t−ti)
2·u[t]·si[t]

T∑
t=0

u[t]·si[t]

• σui
: Standard deviation of the input u during the state

qi.

σ2
ui

=

T∑
t=0

(u[t]−ui)
2·si[t]

T∑
t=0

si[t]

where:

• u[t] is the input variable at the instant t.
• si[t] is the degree of activation of the state qi at the

instant t.
• T is the duration of a complete cycle.

With these values we built the output vector Y which is
calculated for each state in each cycle of the human gait:

Y = (t1, u1, σt1 , σu1 , t2, u2, σt2 , σu2 , t3, u3, σt3 , σu3 ,

t4, u4, σt4 , σu4)

Fig. 5 shows the graphical representation of the output
vector Y calculated being the input u[t] the vertical accel-
eration (ax) as it was obtained from the sensor.

E. Results

We have converted the signals evolving in time (the
vertical and the lateral accelerations) to a set of rectangles
obtained from the output vector. To calculate the output
vector we have used the vertical acceleration (ax) as the
input u[t]. These rectangles characterize the gait of each
person. We can say that the FFSM gives us a summary of
a stream of data captured using sensors.

For example, comparing the areas of the rectangles among
different states we can obtain parameters like the symmetry
(the degree of the movement of a limb is similar to the
other one) or the homogeneity (the degree with which the
gait profile repeats in time).

Figure 6. Calculating the degree of matching between two gaits (G1 and
G2).

Other result that we can obtain from the output vector
is the degree of matching between different gaits. First we
calculate the four rectangles representative of the gait of a
specific person. Then we can calculate the area intersected
by the rectangles defined by the points of the output vector
of two different gaits (Gl and Gm), and comparing them
with the area of the rectangles that we want to test. Let
Ii(l,m) be the intersection between the areas of rectangles
corresponding to different gaits (Gl and Gm) but the same
state qi, and let Ai(m) be the area of the rectangle corre-
sponding to the gait we want to test (Gm). The degree of
matching (DM(l,m)) of the gait (Gm) with the gait (Gl)
is defined by:

DM(l, m) =

4∑
i=1

Ii(l,m)

4∑
i=1

Ai(m)

In fig. 6 an example of two sets of rectangles used to
calculate the degree of matching between two gaits (G1 and
G2) can be seen.

Finally, table I shows the average degree of matching
among gaits of 10 different people. We used 5 samples to
learn the mean of the output vector of the gait of each person,
and 5 additional samples were used to calculate the average
degree of matching of the gait of each person with the others.
It can be seen that the degree of matching between gaits of
the same person (in bold) is almost always greater than the
degree of matching between gaits of different people.

V. CONCLUSIONS AND FUTURE WORKS

This paper contributes to the field of signal analysis
providing a new way of modeling quasi-periodic signals
using a FFSM.

The model has been presented formally as a particular
case of a Linguistic Fuzzy Model of a dynamical system.

Not only is this model comprehensible, but it also pro-
vides good results that demonstrate the usability of the
proposal.
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PERSON 1 2 3 4 5 6 7 8 9 10
1 0.95 0.67 0.29 0.29 0.53 0.67 0.49 0.55 0.53 0.57
2 0.81 0.95 0.47 0.32 0.66 0.71 0.62 0.50 0.60 0.64
3 0.42 0.49 0.83 0.57 0.55 0.41 0.74 0.33 0.42 0.49
4 0.32 0.25 0.35 0.83 0.33 0.26 0.37 0.26 0.33 0.33
5 0.74 0.76 0.54 0.40 0.89 0.66 0.80 0.59 0.79 0.84
6 0.87 0.78 0.41 0.34 0.69 0.93 0.64 0.78 0.63 0.66
7 0.56 0.56 0.71 0.48 0.70 0.49 0.88 0.47 0.61 0.65
8 0.79 0.64 0.37 0.37 0.66 0.75 0.59 0.91 0.67 0.67
9 0.83 0.63 0.36 0.38 0.73 0.65 0.64 0.74 0.90 0.86

10 0.62 0.50 0.32 0.34 0.53 0.49 0.53 0.49 0.61 0.91

Table I
DEGREE OF MATCHING AMONG GAITS OF 10 DIFFERENT PEOPLE

A comparison with other methods, where the comprehen-
sibility of the system is not important, e.g. Neural Networks
or Hidden Markov Models, will be considered in future
works.
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