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Abstract—We argue that a critical component of designing 
comprehensible intelligent systems is finding the right 
applications for intelligence and designing intelligent solutions 
toward those applications.  While we do not refute the value of 
good attention to later stages of human-centered design such as 
the application of human interface design principles and 
usability testing as methods for improving comprehensibility, 
there must also be significant attention to understanding 
problems in the context of use and how intelligence systems can 
best address those problems.  In light of supporting 
naturalistic decision-making, we present a review of task 
analytic and qualitative research techniques that may be useful 
for better understanding problems in context that will support 
the design of more comprehensible intelligent systems. 
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I.  HUMANS AS PROBLEM SOLVERS 
Researchers studying humans in true work environments 

support a model of naturalistic decision-making in which the 
focus of the worker is not on comparing alternatives and 
choosing the best course of action, but is instead on the 
recognition of familiar situations and the generation of a 
workable plan for addressing the situation [1].  The 
recognition-primed decision model was developed by Gary 
Klein following 25 years reviewing critical incidents and 
interviewing experts in a wide variety of dynamic, safety-
critical roles such as firefighters, military leaders, nuclear 
power plant operators, and nurses [1].  In the recognition-
primed decision model, a decision-maker begins with a 
situation requiring action in a dynamic or a changing context. 
Based on the assessment of that situation, the decision-maker 
makes a judgment as to whether or not the situation is typical 
or familiar.  For example, if an anesthesia provider notes 
mild hypertension and tachycardia at incision, she may 
immediately recognize this as insufficient depth of 
anesthesia.  Based on this typical situation, she will assess 
her goals, important informational cues, and expectancies.  
For example, her goals may be to keep the patient 
comfortable, pain-free, and unaware.  Important cues may 
include the relationship of current values of blood pressure 
and heart rate to baseline or expected values.  She would 
expect the blood pressure and heart rate to return to baseline 
or expected values upon administration of more anesthetic 
agent.  She will then act in a typical manner and increase the 
delivery of anesthetic agent.  If the situation is not 

recognized as typical, the anesthesia provider will have to 
work a little harder at diagnosing the situation.  She may 
seek out further information to identify features she can 
recognize or build a story that might fit the situation.  She 
will then evaluate whether or not expectancies based on that 
assessment are met.  For example, if the hypertension and 
tachycardia did not resolve with more anesthetic agent, she 
might examine the depth of anesthesia using a brain function 
monitor to determine whether the patient was unusually 
“resistant” to anesthesia and act appropriately. 

Klein notes that when poor decisions are made in 
naturalistic environments, it is not the result of decision 
biases, but rather inadequate expertise or inadequate 
knowledge [1].  Successful and comprehensible intelligent 
systems will be those that are designed to complement rather 
than replace the exceptional contextual awareness, pattern 
recognition, and creative generalization capabilities of 
human workers.  As technology advances, we become 
increasingly capable of designing systems that are more 
intelligent and context aware.  However, research has shown 
that automation of high-level decisions and/or unreliable 
automation can lead to problems in human-system 
performance [2-4]. Unless the system can reliably replace 
any human involvement, human-system performance is best 
served when intelligence is used to enhance information 
presentation.  The human operator can then take into account 
additional contextual information not available to the 
intelligent system and make an appropriate judgment or 
decision.  Intelligence can be used to manipulate information 
salience in a number of ways.  Examples include sorting the 
highest likelihood solutions to the top of a list or 
graying/fading unlikely options or old, unreliable 
information.  Providing access to additional information such 
as the rationale to support different alternatives or the degree 
to which evidence supports each option allows the human 
user to then consider that information in light of additional 
information available. 

 

II. HUMAN-CENTERED DESIGN APPROACH 
The process of determining when, where, and how to use 

intelligence to enhance information presentation can be hard 
work. Human-centered design is an approach in which 
systems are designed around the needs and capabilities of the 
users, as opposed to being driven by the available 
technology. Design efforts that have incorporated a human- 
centered design approach have shown significant human-
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system performance improvements in aviation, military 
systems, and health care environments [5, 6].   

Variations of human or user centered design processes 
have been adopted by successful consumer product designers 
and system designers, with specific human factors methods 
integrated at appropriate points in the design process [7] (see 
Figure 1).  These processes generally involve initial steps 
that include gathering information about potential users and 
the requirements of the users, followed by conceptual design, 
and then detailed design and prototyping.  Throughout the 
process, human factors methods designed to gather 
information about user needs and human-system 
performance are used to optimize the human-system design 
and reduce the potential for errors from early conceptual 
design through final design details.  Ultimately, system 
evaluation is completed within environments that incorporate 
critical contextual details that can influence the success or 
failure of system design.  

This model places an emphasis on including users in a 
variety of steps in the design process.  This does not mean 
that design should follow user preferences.  A typical 
example would elicit input from users regarding functional 
requirements of a system, feedback from users on 
preliminary design, and users as participants who are 
observed in laboratory and field studies.  Subjective 
feedback from users is important, but generally more 
important are the qualitative observations and objective 
measures or outcomes that are observed during task 
performance or system evaluation.  While some companies 
may have fairly formal processes for user-centered design, it 
is generally flexible as a design method.  Relevant human 
factors methods (e.g., a variety of knowledge elicitation, task 
analytic, and evaluative techniques) will be chosen based on 
the specific goals of the product or process design. 

 

 
Figure 1.  Human centered design process and example human factors 

methods 

 
 

 Although human-centered design places an important 
emphasis on early data collection and analysis of the work 
domain, human-system goals, or functional requirements, 
this important phase is frequently skipped or shortchanged in 
system or product design and development.  It is uncertain 
whether this is because these techniques are not well known, 
are difficult to apply, or their benefits are under-appreciated.  
Without a clear understanding of information needs and 
appropriate applications for intelligence system design, 
researchers and designers can spend significant effort on 
applications that, for complex socio-technical systems, will 
have no practical application or comprehensibility.   

Expert systems designers have historically used 
knowledge elicitation methods for acquiring and 
representing domain expertise that can then be translated into 
expert system rules or logic [8].  These methods include 
techniques such as interviews, protocol analysis, and 
observations.  Expert system researchers have also 
developed and explored more automated methods of 
attaining knowledge, for example through the use of 
knowledge base tools, machine learning induction, and data 
mining [9, 10].  Integration of techniques such as interviews 
and data mining provide the advantage of combining higher 
levels of abstraction and intelligence associated with human 
operators with precise and explicit knowledge from data [9].  

In this paper, we present approaches toward knowledge 
acquisition for the purposes of targeting where and when 
expert systems are most likely to be beneficial (as opposed to 
knowledge acquisition for the development of detailed rules 
or algorithms).  These methods are intended to provide initial 
insight into the work environment and to identify promising 
areas in which to pursue more detailed expert system design. 
This is particularly important in the development of expert 
systems for complex problems such as intensive care and 
anesthesia decision support.  In the following sections, we 
present two formal design processes that place significant 
attention on early attention to system goals and user 
requirements: ecological interface design and designing for 
situation awareness.  We conclude with a third alternative:  
using a variety of human factors techniques for collecting 
rich data in context and analysis of this data using qualitative 
methods such as grounded theory or content analysis. 

A. Ecological Interface Design  
Perhaps the most commonly referenced formal human-

centered design method is ecological interface design (EID) 
[5, 11, 12].  EID is a theoretical framework for the design of 
interfaces for complex human-machine systems [13].  An 
“ecological” approach to design is focused generally on the 
relationship between humans and the environment.  The goal 
of EID, however, is more specific and is intended for the 
specific problem of designing human-computer interfaces for 
complex sociotechnical systems [13, 14].  The main purpose 
of EID was to support the “knowledge worker”, whose 
primary function is to engage in intellectual work that 
requires discretionary decision-making, in adapting to 
change and novelty.  EID was formulated originally for 
application in power plant process control. 
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EID draws on the theoretical concept of an abstraction 
hierarchy [15] that is used to represent constraints on the 
work domain. An abstraction hierarchy is intended to 
provide a hierarchical representation of the work domain or 
the work environment that provides several (usually around 
five) different levels that describe the work domain in a 
unique way.  For example, Hajdukiewicz et al. present 
examples for the human body and cardiovascular system that 
map five levels of abstraction: purposes, balances, processes, 
physiology, and anatomy [12].  Each level is a different way 
of describing the same system.  In addition, each level of the 
hierarchy places constraints on lower level functions.  That 
is, there is a means-end relation between adjacent levels of 
the tree.  EID emphasizes that the abstraction hierarchy is 
derived from a work domain analysis rather than a task based 
analysis and is independent of any particular worker, 
automation, event, task, goal, or interface.  

Following the development of an abstraction hierarchy, 
EID then applies Rasmussen’s skills, rules, and knowledge 
taxonomy [16] in communicating to the user the constraints 
defined by the work domain abstraction hierarchy.  These 
concepts are used to guide system analysis and interface 
design using three general principles that support the three 
different levels of cognitive control [13, 14]. 

• To support skill-based behavior, users should be able 
to directly manipulate or act directly on the interface.  
Where operators must provide control, design the 
perceptual motor control aspect of the interface so 
that it maps to the intended action with minimal 
transformation. 

• To support rule-based behavior, the interface should 
provide a consistent one-to-one mapping between 
work domain constraints and perceptual information. 
Object displays that integrate several directly 
measurable variables into a single, more meaningful 
(i.e., goal-relevant) variable are an example.  A goal 
of this principle is to minimize situations where the 
interface mis-represents the true state of the system 
due to unknown interpretations or transformations 
between the system and the information presented. 

• To support knowledge-based behavior, the work 
domain should be represented in the form of an 
abstraction hierarchy that would serve as an external 
mental model. 

In general, the interface design should encourage use of 
the lower levels of cognitive control (skill- and rule-based 
behavior) since they involve fast, effortless processing that is 
less error prone, while supporting knowledge-based behavior 
that is crucial for novice users and for managing unexpected 
problems [13]. 

B. Designing for Situation Awareness 
Situation awareness (SA) refers to an individual’s 

awareness and understanding of the information available in 
his or her environment.  Endsley has formally defined SA as 
“the perception of the elements in the environment within a 
volume of time and space, the comprehension of their 
meaning and the projection of their status in the near future” 
[17].  In Endsley’s theoretical model, SA is a construct that 

is distinct from and proceeds decision making and the 
performance of actions [17].  SA as defined in this model 
includes only that portion of a person’s knowledge that 
pertains to the state of a dynamic environment.  Background 
knowledge, experiences, and established rules are static 
knowledge sources that fall outside of the definition of SA, 
though they may influence the SA development.  Another 
key detail is that SA is continuously changing as the 
environment changes, either due to the decisions and actions 
of the individual or due to other outside influences. 

Endsley, Bolte, and Jones [18] present an approach to 
human-centered design that focuses on designing for SA.  
Like EID, this approach includes design methods and design 
principles.  Similar to EID, designing for SA starts with an 
analysis of the work environment.  However, the focus in 
this analysis is on determining SA requirements.  SA 
requirements are the operator’s dynamic information needs 
with respect to attaining their goals.  Endsley et al. promote a 
method known as goal directed task analysis [18].  A goal 
directed task analysis focuses on identifying the basic goals 
of the operators, the decisions required to accomplish those 
goals, and the information necessary (or SA requirements) 
for each decision.  The focus of a goal directed task analysis 
is independent of current system technologies or capabilities.  
A goal directed task analysis is generally completed using a 
series of interviews in which multiple operators are queried 
to obtain a hierarchy of goals, sub-goals, decisions, and 
information requirements (for example, see Figure 2). 

 
Figure 2.  Sample portion of a goal directed task analysis for a nurse 

anesthetist 
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Following the goal directed task analysis, designing for 
SA then requires attention to SA-oriented design principles 
in the design, followed by evaluation using SA measures.  
Like other human-centered design approaches, the process is 
iterative, with the results of the evaluation informing re-
design. Endsley et al. [18] provide 50 design principles 
intended to support the development and maintenance of SA, 
some paralleling the principles of EID.  For example, SA 
design principles include: (1) directly support comprehension 
and (2) organize information around goals.  In EID, direct 
mapping to work domain constraints is intended to support 
comprehension and goals.  Other design principles that 
derive directly from a model of SA include: (1) design 
systems to support SA rather than decisions, (2) provide 
support for projection (e.g., trend displays), and (3) make 
both the known and the unknown apparent.  

Methods of evaluating the design are focused toward 
measuring SA.  Indirect measures of SA are similar to other 
measures used for evaluation in human-centered design and 
can include subjective measures, observation, verbal protocol 
analysis (asking participants to speak out loud their actions), 
and performance measures.  Direct measures of SA include 
subjective rating measures and objective methods that 
involve querying operators regarding their current 
perception, comprehension, and projection of the state of the 
system.  Queries may be completed after a session is 
complete, during “freezes” in a simulated session, or real-
time in either field or laboratory environments [18, 19]. 

 

III. QUALITATIVE RESEARCH AND GROUNDED THEORY IN 
HUMAN CENTERED DESIGN 

We have found that work domain analysis and goal-
directed task analysis may be difficult to apply for the 
purposes of intelligent system design.  Development of an 
abstraction hierarchy, originally intended for a complex 
physical system, is difficult to apply in industries such as 
health care where constraints are less easily defined [11, 14].  
In applying goal directed task analysis, it can be difficult to 
elicit articulation of goals or to achieve consensus on goals 
(as opposed to articulating tasks or describing events in 
sequence).  Other task analytic methods such as verbal 
protocol analysis [20], structured interviews or focus groups, 
and critical decision methods [21] may be easier to 
implement but may also provide less of a direct link between 
results and design.  As a means of analyzing these data 
toward design purposes, we suggest an approach in which 
grounded theory or other content analysis techniques are 
applied to data collected through a wide variety of methods 
such as focus groups and observation.  Using these 
techniques allows researchers and designers to select the data 
collection method (or methods) that is most appropriate to 
the specific application and work environment. 

Grounded theory emerged from the work of Barney 
Glaser and Anselm Strauss in studying the social 
organization and temporal order of dying [22].  They shared 
their methods with a goal toward developing systematic 
methodological strategies, comparable in rigor to 
quantitative methods, that social scientists could adopt for 

studying other topics [23]. We contend that identifying 
applications for intelligent system design to support human-
system performance is well suited to grounded theory 
methods.  These methods provide an approach for analyzing 
qualitative data from a variety of sources such as interviews 
and observations and identifying emerging themes, concepts, 
or theories that will direct efforts in intelligent system 
design.   

Grounded theory is founded on several key research 
principles [23, 24].  First, constant comparison refers to the 
ongoing analysis of data as it is collected.  Data is compared 
to data as the data is collected.  The benefit of this method 
for the purposes of generating theory is that early data can 
drive decisions about where and how to look for further data.  
This is particularly useful in the context of studying human-
machine systems as it is often unclear where intelligent 
systems or other new tools will be most beneficial. Second, 
saturation refers to the situation that is achieved when 
continued data collection reveals no new information 
regarding the environment or application under study.  While 
the concept of saturation can make it difficult to predict how 
much time and effort may be required to study a particular 
problem, in the absence of statistical methods, it is important 
for providing evidence that a problem has been studied to 
sufficient depth.  The specifics of coding and analysis based 
on grounded theory techniques are described in section B 
below. 

A. Collecting Rich Data  
Whether following grounded theory in detail or using 

other qualitative analysis techniques, there are a variety of 
methods for collecting qualitative data to identify appropriate 
applications and implementations for intelligent system 
design.  Examples include: (1) structured interviews, (2) 
critical decision interviews (experts recall a specific incident 
that was non-routine, challenging, or difficult), (3) 
observation of task performance in the field, in simulation, or 
on video, (4) retrospection, and (5) verbal protocol analysis 
of ongoing, recorded, or simulated task performance [21, 
25]. Focus group interviews provide the advantage of 
accessing the input of multiple participants at the same time.  
In addition, focus group interviews can create a synergy 
among participants that leads to a rich discussion of issues 
that may not be apparent in single person interviews [26]. 
Data collection methods are generally observational and the 
type of information that is collected varies depending on 
researcher goals.  Because there are advantages and 
disadvantages to the different techniques, multiple 
techniques may be used to meet specific goals. 

While interviews of various types can provide rich 
qualitative data, they may fail to yield an understanding 
regarding passive use behaviors or critical contextual details 
that may be needed for developing computer algorithms for 
intelligent system applications.  In contrast, observations and 
computer-recorded use data may provide a contextual 
understanding of the information users access, but provide 
no insight into why information is accessed.  For example, is 
data of interest to users because it is important, or perhaps, 
because it is inaccurate?  One means of combining the rich 
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contextual data provided through observation of use and the 
rich qualitative data provided through interviews is to record 
use behavior then replay that recording for the provider, 
asking them to describe and rationalize their behaviors [27].  
Ultimately, the quality of the data collected should be 
assessed for comprehensiveness regarding relevant 
individuals and contexts, range of views and actions, and 
temporal changes [23].   

B. Qualitative Data Coding 
Grounded theory methods use coding techniques known 

as open coding and axial coding.  Generally, analysis of 
qualitative data using grounded theory involves the coding of 
text-based transcriptions of interview or observation data.  In 
open coding, incidents or issues with similarities are grouped 
together into themes or categories, which are named 
according to meaning.  Through constant comparison, 
themes are renamed, reorganized, and redefined through an 
ongoing process of refinement.  Using the themes identified 
through open coding, axial coding is a process in which 
analysts explore and define relationships between categories.   

Other methods of coding qualitative data may be 
described as content analysis [28].  In conventional content 
analysis, codes are defined during data analysis and are 
derived from data as described in grounded theory methods.  
Directed content analysis is a method in which codes are 
defined before and during data analysis.  These codes may be 
defined from theory or from relevant research findings.  
Directed content analysis may be appropriate for studies in 
which specific pre-conceived ideas are of interest.  In some 
cases intelligent system designers and researchers may 
choose an approach that combines quantitative and 
qualitative data collection and analysis [29].     

As is true with quantitative research, qualitative research 
methods must be evaluated for the degree to which 
researchers are exposing “truth” [26, 30].  Examples of steps 
can be taken to promote reliability, exhaustiveness and 
trustworthiness include:  

• Collecting data from a variety of different 
individuals and in different settings 

• Collecting data to saturation 
• Using at least two independent coders    
• Coders create, adhere to, and record rules regarding 

concepts and categories.   
• Feeding back data interpretations to a subset of 

participants for agreement or disagreement, seeking 
dissenting opinions.   

• Detailed documentation of all processes for 
collecting and coding data. 

Example applications of grounded theory methods for 
studying health care work environments that may ultimately 
have applications for expert system design include 
observations of emergency room status board use [31] and 
clinical oversight of medical trainees [32].  While we have 
only begun to apply the combination of verbal protocol use-
based data collection with grounded theory qualitative 
analysis in our lab, our experiences with a variety of 
interview, observation, task analytic, and qualitative research 
methods suggest great promise for this approach. 

IV. CONCLUSIONS 
Designing comprehensible intelligent systems requires a 

focus on the individuals who are expected to use and 
understand those systems throughout the entire design 
process.  While many designers and developers focus on the 
evaluation and refinement of designs after initial prototypes 
have been designed, we propose that it is critically important 
to study intended users and use contexts early in the 
conceptual design of systems.  Formal human-centered 
design methods have been successfully applied for these 
purposes.  In addition, formal qualitative research analysis 
techniques can be applied to data collected in a variety of 
ways to study the needs of workers in target work 
environments.   
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