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Abstract

Interpretability represents the most important driving
force behind the implementation of fuzzy logic-based sys-
tems. It can be directly related to the system’s knowl-
edge base, with reference to the human user’s easiness ex-
perienced while reading and understanding the embedded
pieces of information. In this paper, we present a pre-
liminary study on interpretability conditions for fuzzy rule-
based classifiers on the basis of an innovative approach that
relies on the concept of semantic cointesion. The approach
adopted in this study consists in analysing the components
of a fuzzy classifiers so that inference is carried out with the
respect of logical properties. As a result, we derive some
sufficient conditions and basic requirements to be verified
by a fuzzy classifier in order to be tagged as interpretable
in the semantic sense.

1. Introduction

The development of artificial intelligent systems can be
pursued by referring to a number of different paradigms,
each one characterised by some peculiar distinctive fea-
tures. Among them, fuzzy logic is commonly regarded as
a tool for providing the basic means to represent knowl-
edge in a comprehensible form, thus enabling intelligent
systems to express and manipulate information in agree-
ment with the natural language spoken by humans. There-
fore, interpretability represents the most important driving
force behind the implementation of fuzzy logic-based sys-
tems, which are centred on the compilation of fuzzy rule
bases.

Due to its subjective connotation, interpretability es-
capes a proper formal characterisation and the question of
interpretability evaluation appears to represent an ill-posed
problem. Roughly speaking, the concept of interpretability
can be directly related to a knowledge base, with reference
to the human user’s easiness experienced while reading and
understanding the embedded pieces of information. Set-

ting aside subjective judgement, research on interpretabil-
ity assessment is mainly focused on the design of automatic
mechanisms of evaluation. In this context, many common
attempts relies on a simplicity law (in according with the
“Occam’s razor” principle), so that simpler rule bases are
deemed to be more comprehensible than complicated ones
[2, 3, 4, 10]. On these bases, it is straightforward to derive
automatic evaluation of interpretability, provided that some
thresholds are established on the number of rules and con-
ditions to indicate the boundaries between different degrees
of interpretability. However, increased simplicity implies a
reduction of accuracy and this kind of approach has been
recently criticised, highlighting how interpretable but inac-
curate models are as useless as very accurate but incompre-
hensible models [9].

In [1] and [11] a different approach is proposed: inter-
pretability is ensured whenever a set of constraints is sat-
isfied, involving the model of the knowledge base (a recent
survey on this topic is reported in [8]). Even if this approach
leads to the development of automatic mechanisms of eval-
uation, the constraints to be imposed depends from the na-
ture of the problem at hand and human skills (and common
sense) are necessary to define a constraint set. Nonetheless,
it could be possible to determine a number of valid con-
straints applicable in most cases.

A quite different approach to interpretability assessment
has been recently defined on the basis of the “logical view”
concept [5]. In this case, the definition of co-intension [12]
and the propositional view of a fuzzy rule base are em-
ployed to evaluate interpretability. Particularly, the eval-
uation process relies on determining the co-intension de-
gree between the explicit semantics embedded into a fuzzy
rule base and the implicit semantics gathered in the user’s
mind while reading the rules. In practice, this approach im-
plements a minimisation of the original fuzzy rule base by
means of boolean truth-preserving operators. Such a min-
imisation should not modify the semantics of the rules (only
small distortions could be expected, due to the different na-
ture of boolean and fuzzy rules).

Since the logical view approach is grounded on the appli-
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cation of boolean operators to the propositional structure of
the rule base, a proper analysis of the involved operators is
needed. In this paper, we aim at evaluating the specific com-
ponents of fuzzy systems – including t-norms, t-conorms
and defuzzification functions – moving from the idea that
they must be compatible with the boolean logic semantics
in order to pave the way for a correct interpretability as-
sessment. Actually, the compatibility is verified by trans-
forming the fuzzy system into a boolean system and, conse-
quently, by choosing the suitable components in according
with the requirements necessary to perform the transforma-
tion.

The focus of our research has been set on fuzzy rule-
based classifiers (FRBCs), therefore in section 2 we are
going to present a mathematical formalisation of FRBCs.
Section 3 is devoted to illustrate the logical view approach,
while section 4 presents the process for transforming a
fuzzy system into a boolean one. Some conclusive remarks
are reported in section 5.

2. Fuzzy rule-based classifiers

Let us consider a classifier as a system computing a func-
tion of the following type:

f : X −→ Λ, (1)

where X ⊆ Rn is an n-dimensional input space, and Λ =
{λ1, λ2, . . . , λc} is a set of class labels.

A fuzzy rule-based classifier (FRBC) is a system that
carries out classification (1) through inference on a knowl-
edge base. The knowledge base includes the definition of
a linguistic variable for each input. Thus, for each j =
1, 2, . . . , n, linguistic variables are defined as:

Vj = (vj ,Xj , Qj , Sj , Ij), (2)

being:

• vj the name of the variable;

• Xj the domain of the variable (it is assumed that X =
X1 × X2 × · · · × Xn);

• Qj = {qj1, qj2, . . . , qjmj
, ANY} is a set of labels de-

noting linguistic values for the variable (e.g. SMALL,
MEDIUM, LARGE);

• Sj = {sj1, sj2, . . . , sjmj+1} is a set of fuzzy sets on
Xj , sjk : Xj → [0, 1];

• Ij associates each linguistic value qjk to a fuzzy set
sjk. We will assume that Ij(qjk) = sjk.

We assume that each linguistic variable contains the linguis-
tic value “ANY” associated to a special fuzzy set s ∈ Sj

such that s(x) = 1, ∀x ∈ Xj .

The knowledge base of a FRBC is defined by a set of R
rules. Each rule can be represented by the schema:

IF v1 IS [NOT] q
(r)
1 AND · · · AND vn IS [NOT] q

(r)
n

THEN λ(r),
(3)

being q
(r)
j ∈ Qj and λ(r) ∈ Λ. Symbol NOT is optional for

each linguistic value. If for some j, q
(r)
j = ANY, then the

corresponding atom “vj IS ANY” can be removed from the
representation of the rule.1

Inference is carried out as follows. When an input
x = (x1, x2, . . . , xn) is available, the strength of each rule
is calculated as:

μr(x) = s
(r)
1 (x1) ⊗ s

(r)
2 (x2) ⊗ · · · ⊗ s(r)

n (xn), (4)

being s
(r)
j = ν

(r)
j (Ij(q

(r)
j )), with j = 1, 2, . . . , n, r =

1, 2, . . . , R. Function ν
(r)
j (t) is 1 − t if NOT occurs before

q
(r)
j , otherwise it is defined as t. The operator ⊗ : [0, 1]2 →

[0, 1] is usually a t-norm, such as minimum or product.
A defuzzification process is necessary to evaluate the

membership of input x to class λi. A number of defuzzi-
fication methods have been proposed in literature, among
them the Centre of Gravity (COG) method can be approx-
imated by the Weighted Average (WA) method, which is
performed by means of the following formula:

μλi
(x) =

∑R
r=1 μr(x)χ(λi, λ

(r))∑R
r=1 μr(x)

, (5)

being χ(a, b) = 1 iff a = b and 0 otherwise. Another option
for the defuzzification process is given by the maximum cri-
teria, which can be expressed by the formula:

μλi
(x) = max μr(x)χ(λi, λ

(r)). (6)

After defuzzification, since just one class label has to be
assigned to the input x, the FRBC assigns the class label
with highest membership (ties are solved randomly):

fFRBC(x) = λ ⇔ μλ(x) = max
i=1,2,...,c

μλi
(x). (7)

3. Logical View Approach

The logical view approach, relying on the formal struc-
ture of FRBCs, has been recently introduced in some pre-
vious papers of ours [6, 7]. The rationale behind this ap-
proach comes from the observation that the rule base is the
linguistic interface of the FRBC to the user. For an inter-
pretable knowledge base, the user should be able to under-
stand the classification rules by simply observing their lin-
guistic representation. All the semantic information (fuzzy

1The sequence NOT ANY is not allowed.
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sets attached to linguistic values, t-norm used for conjunc-
tion, etc.) should be hidden to the user because - this is the
key point of interpretability - the semantics of FRBC knowl-
edge should be co-intensive with the user’s knowledge, re-
called by the linguistic terms.

To assess interpretability, the cognitive structures shared
by human users and FRBCs are sought and explored. In
particular, a strict affinity can be recognised between the
rule base of a FRBC and the logical propositions. Actually,
rules are constructed in order to resemble propositions, so
that they can be understood by users. As a consequence,
the propositional view of rules stands as the cognitive struc-
ture shared by users and FRBCs, and the logical view can
be exploited as the common ground to analyse both the ex-
plicit semantics embedded into the rule base and the im-
plicit semantics conveyed to the reader. By doing so, we
are able to translate the interpretability evaluation problem
into a formal process: being like propositions, rules can be
modified by truth-preserving operators and the consequent
distortion of their fuzzy semantics can be prefigured to a
reduced amount, due to the shared propositional view be-
tween the FRBC and the user.

The core of the logical view approach is the following:
given a rule base of a FRBC, it is represented as a collection
of logical propositions which, in turn, can be modified by
applying truth-preserving operators. In this way, a new set
of propositions is obtained constituting a rule base different
from the original one. Then the rule bases are compared
on the basis of their classification performance: if they do
not differ too much, we recognise that the logical view of
the original FRBC (which is shared with the human user)
is in agreement with the explicit semantics exhibited by the
fuzzy rules. In other words, co-intension with the user’s
knowledge is verified and the FRBC can be deemed inter-
pretable. On the other hand, if the two rule bases are charac-
terised by notably different accuracy values, then the logical
view of the FRBC is not compatible with the explicit se-
mantics of fuzzy rules, therefore the knowledge base is not
co-intensive with user’s knowledge and it can be deemed as
not interpretable. This means that any attempt at reading
the linguistic labels would be misleading and the classifi-
cation capability of the original FRBC only relies on the
mathematical configuration of its parameters (without any
engagement of comprehensible information).

The choice of the truth-preserving operators to be ap-
plied on the logical propositions deserves a special mention.
Actually, several modifications can be conceived to convert
the original fuzzy rule base, among them the one minimis-
ing the number of the involved linguistic terms appears to
be mostly suitable. In fact, this choice produces two kinds
of benefits. First, by eliminating as many terms as possible,
it is possible to verify the preservation of the logical view
in the specific condition where only the minimum required

information is available. Second, if assessment leads to pos-
itive results, the simplified rule base can be retained in place
of the original one (it should be preferred by reason of its
increased compactness).

4. Interpretability evaluation

One of the major issues in fuzzy modelling concerns the
appropriate choice for the fuzzy system parameters, includ-
ing the definition of membership functions, t-norms and t-
conorms, defuzzification methods, etc. Different choices in
the combination of the involved parameters obviously de-
termines the realisation of different systems, each one char-
acterised by a specific working engine. As previously as-
serted, the logical view method for interpretability assess-
ment is based on boolean logic and the minimisation pro-
cess performed over the original rule base is expected to
introduce negligible modifications in the semantics of the
rules. However, the adoption of boolean operators in the
minimisation process could be questionable since the fuzzy
inference performed over the knowledge base is different in
its nature.

Moving from the above considerations, we resolve to fol-
low up the steps for transforming a FRBC into a boolean
classification system in order to identify the operators which
should be adopted to keep equivalence between the two sys-
tems (the equivalence is intended as obtaining the same out-
put from both systems starting from the same input values).
Once a set of operators enabling such a transformation is
detected, we can assume that the underlying semantics of
both systems is identical and, therefore, the minimisation
process performed over the original FRBC does not carry
out any kind of modification in the involved semantics.

The basic difference between boolean and fuzzy logic is
in the range of the admitted values. While boolean logic
relies on a couple of values {0,1}, fuzzy logic refers to
an extended range [0,1], where all the in-between values
are admissible. To move from a fuzzy perspective to the
boolean dichotomy we need to transform fuzzy sets into
crisp counterparts. This can be achieved through α-cuts,
but the choice of the parameter α is crucial to transform a
FRBC into an equivalent boolean classifier.

In the following sections we are going to track the trans-
formation process of a FRBC into a boolean classifier. To
this aim, various steps will be considered, from the inves-
tigation of the single clauses composing the fuzzy rules to
the analysis of the defuzzification method.

4.1. Step 1: Clauses

The general format of a fuzzy rule (as expressed in (3))
comprises an antecedent and a consequent part. Focus-
ing attention over the antecedent (delimited by the “IF”-
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“THEN” keywords), we notice how it is composed by a
number of clauses connected by the “AND” conjunction. In
order to express each single clause (vj IS qj) of a fuzzy rule
in a propositional form, we must refer to the α-cuts evalu-
ated over the involved fuzzy sets. Particularly, the following
formula has to be applied for all x ∈ Xj :

(vj IS qjk) =

{
1 sjk(x) ≥ α,

0 sjk(x) < α.
(8)

By means of (8) it is possible to express boolean conditions
over the range of input values for which the fuzzy sets sjk

corresponding to each clause is activated with a member-
ship degree greater than α. For example, if according to
equation (8) a clause (vj IS qj) is equal to one for all in-
put values ranging between 1 and 5, then the corresponding
boolean form can be expressed as (x ≥ 1 ∧ x ≤ 5). Ob-
viously, combinations of ranges can be considered for in-
put values in order to derive a boolean condition: in such
cases the logical operator OR is to be employed. For exam-
ple, if the input values range inside [1, 2] and [3, 4], then the
boolean form can be expressed as ((x ≥ 1∧ x ≤ 2)∨ (x ≥
3 ∧ x ≤ 4)).

It is important to underline that the choice of the pa-
rameter α should be made so as to guarantee that for each
linguistic variable vj and for each input x ∈ Xj only
one fuzzy set sjk (with the exclusion of the fuzzy set la-
belled ANY) is such that sjk(x) ≥ α. This property is
called “α-distinguishability” and it is commonly preserved
in interpretability-oriented fuzzy models.

4.2. Step 2: t-norm and t-conorm

Once a propositional form has been derived for each sin-
gle clause, we should turn to consider the entire antecedent
part of the fuzzy rule. Clauses are combined by the “AND”
connective which finds a direct counterpart in the logical
conjuction (∧) of boolean logic. In the context of fuzzy
logic, a number of mathematical functions can be employed
to translate the “AND” connective, all of them falling under
the general family of the t-norm operators. For our pur-
poses, we should seek for the most appropriate t-norm oper-
ator ensuring the equivalence between a fuzzy and a boolean
system. To this aim, we can consider the truth table of the
“AND” operator (as it can be derived by employing the log-
ical ∧ conjuction): a conjunctive proposition is true if and
only if all its composing clauses are true. With reference to
the antecedent part of a fuzzy rules, the previous condition
holds whenever each composing clause is assigned value 1
by means of equation (8). Since we determined to adopt α-
cuts for deriving the crisp counterparts of fuzzy sets, a spe-
cific fuzzy value should be considered true when its mem-
bership degree is greater than α: that is the condition to

verify while choosing a suitable t-norm for the “AND” con-
nective. Now, we observe that if all the membership de-
grees of conjunctive clauses in a fuzzy rule are greater than
α the same holds for the minimum among them. There-
fore, the minimum function shares the same semantics of
the logical conjunction (∧), thus being the best candidate
for our choice of the t-norm operator (it is straightforward
to observe that a different t-norm choice, such as the product
function, would not be suitable since, from being a, b ≥ α,
condition a ∗ b ≥ α is not guaranteed).

Analogously, the “OR” connective, correlating all the
rules in the fuzzy rule base in disjunctive form, should be
associated to a specific mathematical function to be cho-
sen among the family of t-conorm operators. Actually, the
“OR” connective has a counterpart in the logical disjunction
(∨) of the boolean logic, whose truth table assigns true value
to any disjunctive proposition where at least one clause is
true. If at least one membership degree of the fuzzy rules
composing the rule base in a disjunctive form is greater
than α, then the same holds for the maximum among them.
Therefore, the maximum function shares the same seman-
tics of the logical disjunction (∨), thus being the best candi-
date for our choice of the t-conorm operator.

Summing up, we identified in the minimum and max-
imum functions the suitable modelling choices for imple-
menting respectively the t-norm and t-conorm operators in a
FRBC. As concerning translation of connectives, this stands
as a sufficient condition for ensuring equivalence between
fuzzy and boolean systems.

4.3. Step 3: Rules

The antecedent of a fuzzy rule is correlated with the con-
sequent by means of an implication identified by the label
“THEN” appearing in (3). However, this kind of implica-
tion can not be directly related with classical logical impli-
cation. In fact, the latter is characterised by a true value
whenever the antecedent is false, while the rule implication
should not adhere to such a condition. Therefore, we can
not refer to the truth table of the logical implication to anal-
yse the structure of the fuzzy rule: we should turn to con-
sider how classification is performed by a boolean system,
instead.

Boolean classification assumes the antecedent part of
rule as a condition which, when it is verified, must be re-
lated with a specific class. In this sense, the implication is
more properly translated into an assignment process: when
an input vector enables true conditions, then it can be as-
signed to the corresponding class indicated by the conse-
quent part of the rule. A problem arises with fuzzy rule
bases where a number of rules relate the same consequent
to different antecedents (which is mostly the case): in such
situations the boolean classifier would not be able to assign
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a single condition to each class. This kind of problem can
be discovered in the following rule base example:

R1: IF TEMPERATURE IS LOW AND HUMIDITY IS LOW

THEN NORMAL

R2: IF TEMPERATURE IS HIGH AND HUMIDITY IS LOW

THEN NORMAL

R3: IF TEMPERATURE IS HIGH AND HUMIDITY IS HIGH

THEN WARNING

R4: IF TEMPERATURE IS LOW AND HUMIDITY IS HIGH

THEN WARNING

R5: IF TEMPERATURE IS MEDIUM AND HUMIDITY IS HIGH

THEN WARNING

Semantics of rules is not distorted while rewriting the rule
base as follows:

R1 : IF (TEMPERATURE IS LOW OR TEMPERATURE IS HIGH)

AND HUMIDITY IS LOW THEN NORMAL

R2 : IF (TEMPERATURE IS HIGH OR TEMPERATURE IS LOW

OR TEMPERATURE IS MEDIUM) AND HUMIDITY IS HIGH

THEN WARNING

In this way, rules with the same consequent part are aggre-
gated using the “OR” connective, whose corresponding t-
conorm has been assessed in the previous section.

4.4. Step 4: Defuzzification

Defuzzification is a crucial step in fuzzy modelling, since
it determines the single output value to be assigned to each
input instance starting from the analysis of the aggregated
activation strengths of the rules. This represents a main dif-
ference with respect to boolean systems, where each rule
must express a crisp output value for every input instance.
In order to derive a boolean classifier that is equivalent to
the FRBC, we need to constraint the fuzzy classifier so that
two rules do not overlap too much. Formally this is achieved
by imposing:

∀r′
r , r = r′ : Mα

r ∩ Mα
r′ = ∅, (9)

where Mα
r = {x ∈ X : μr(x) ≥ α}. The usefulness of such

a constraint is straightforward. In fact, by means of (9) the
input space is partitioned in such a way that only a single
classification rule is activated with a strength degree greater
than the α value when each input is presented, thus avoid-
ing situations where multiple classes would be assigned to
the same input instance (which is implausible for boolean
classification).

The constraint expressed by (9) represents a necessary
condition for keeping equivalence between a fuzzy and a
boolean classifier, but a further analysis must be performed
for choosing a defuzzification method among those avail-
able in literature. Particularly, we are going to empirically

show how the adoption of different defuzzification func-
tions strongly influences the final output of a classification
system and in some cases compromises the equivalence we
are pursuing.

Let us consider the 5 illustrative rules introduced in the
previous section and the following membership degrees per-
taining to a specific input instance:

− TEMPERATURE IS LOW: 0.3
− TEMPERATURE IS MEDIUM: 0.5
− TEMPERATURE IS HIGH: 0.7
− HUMIDITY IS LOW: 0.6
− HUMIDITY IS HIGH: 0.4

The corresponding activation strengths of the rules are as
follows:

R1 : NORMAL = 0.3 AND 0.6 = 0.3
R2 : NORMAL = 0.7 AND 0.6 = 0.6
R5 : WARNING = 0.7 AND 0.4 = 0.4
R3 : WARNING = 0.3 AND 0.4 = 0.3
R4 : WARNING = 0.5 AND 0.4 = 0.4

By assuming α = 0.5, it can be observed that the constraint
expressed by (9) is verified: only the second rule is activated
with a degree greater than the α value and class “NORMAL”
would be assigned to the input instance by a boolean classi-
fier. However, if the WA defuzzification method expressed
in (5) is applied to perform fuzzy inference, the following
results can be obtained by the FRBC:

normal =
μr1 + μr2

μr1 + μr2 + μr3 + μr4 + μr5

=
0.3 + 0.6

0.3 + 0.6 + 0.3 + 0.4 + 0.4

=
0.9
2

= 0.45

warning =
μr3 + μr4 + μr5

μr1 + μr2 + μr3 + μr4 + μr5

=
0.3 + 0.4 + 0.4

0.3 + 0.6 + 0.3 + 0.4 + 0.4

=
1.1
2

= 0.55

The “WARNING” class would be assigned to the input in-
stance, which is not in agreement with the boolean classifi-
cation results. This means that the modelling choice to be
applied for implementing the defuzzification process must
be related to the maximum criteria expressed by (6). By do-
ing so, the equivalence between the FRBC and the boolean
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classifier can be preserved, since the maximum criteria al-
lows the choice of the rule characterised by the maximum
activation strength, which is the same rule determined by
the boolean classifier.

5. Conclusions

Interpretability of fuzzy models is a topical issue, as it
motivates the preference of these models over black-box
models. However, defining and assessing interpretability
is difficult, because of its blurry nature that eludes any for-
malization. In this paper we embrace the cointension-based
approach for dealing with interpretability, and we use the
logical-view as a formal basis to analyse fuzzy rule-based
classifiers. In this context, we emprically derive some suf-
ficient properties and basic requirements to be verified by a
FRBC in order to adhere to the logical view. We show that
the choice of minimum as t-norm, maximum as t-conorm
and maximum for defuzzification is sufficient to adehere to
the logical view, provided that the fuzzy sets in each linguis-
tic variables, as well as all rules of the classifers, are distin-
guishable. This results can be used as an aid for designing
interpretable FRBC, although they should be considered as
a starting point to the study of the semantic properties of
fuzzy models to actually achieve interpretability.
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