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Abstract—This work presents a new process for build-
ing comprehensible fuzzy systems for classification problems.
Firstly, a feature selection procedure based on crisp decision
trees is carried out. Secondly, strong fuzzy partitions are
generated for all the selected inputs. Thirdly, a set of linguistic
rules are defined combining the previously generated linguistic
variables. Then, a linguistic simplification procedure guided
by a novel interpretability index is applied to get a more
compact and general set of rules without losing accuracy.
Finally, an efficient and simple local search strategy increases
the system accuracy while preserving the high interpretability.
Results obtained in several benchmark classification problems
are encouraging because they show the ability of the new
methodology for generating highly interpretable fuzzy rule-
based classifiers while yielding accuracy comparable to that
achieved by other methods like neural networks and C4.5.
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I. INTRODUCTION

Comprehensible intelligent systems are more and more
demanded for all kind of applications. However, inter-
pretability is really appreciated and it even becomes a strong
requirement when dealing with humanistic systems, defined
by Zadeh as those systems whose behavior is strongly
influenced by human judgment, perception or emotions [1].

This paper focuses on classification problems where com-
prehensibility is of prime concern. Of course, accuracy
can not be neglected because, at least at a given level,
it is a prerequisite since a system which is not able to
achieve a minimum accuracy is useless. Nevertheless, some
applications can tolerate a reasonable loss of accuracy if
it means getting a transparent and comprehensible model.
Sometimes, both criteria (accuracy and interpretability) can
be satisfied to a high degree, but usually it is not possible
because they represent conflicting goals. Thus, looking for
a good interpretability-accuracy trade-off is one of the most
difficult and challenging tasks in system modeling.

Fuzzy Logic (FL) was introduced by Zadeh (in 1965) and
nowadays interpretability is widely admitted to be the most
valuable property of fuzzy rule-based systems (FRBSs).
They are pointed out as gray-boxes against other techniques
such as neural networks which are viewed as black-boxes.
FL represents a useful tool to tackle with the problem of

building comprehensible systems. In addition, it is espe-
cially useful to handle the intrinsic uncertainty of real-world
problems where the available information is usually vague.
Notice that, the use of FL favors the comprehensibility of the
final model but it is not enough to guarantee it [2]. Two main
aspects must be taken into consideration when regarding
interpretability of FRBSs (Description and Explanation). On
the one hand, the system description has to be transparent
enough to present the system as a whole describing its global
behavior and trend. On the other hand, system explanation
must consider all possible individual situations, explaining
specific behaviors for specific events. Thus, comprehensi-
bility of a FRBS depends on all its components, i.e., it
depends on the knowledge base (including both variables
and rules) transparency but also on the inference mechanism
understanding.

Main aspects affecting to the readability of fuzzy systems
have been thoroughly analyzed [3]. In addition, a complete
study on the interpretability constraints most frequently
used in fuzzy modeling has been recently published [4].
Finally, in the fuzzy modeling literature there are two main
trends regarding the search of the optimum interpretability-
accuracy trade-off: (1) those first focused on interpretability
and then on accuracy [5]; (2) those who give priority to
accuracy and then try to improve interpretability [6].

This work proposes a new fuzzy modeling process with
the aim of getting a good interpretability-accuracy trade-
off when building FRBSs for classification tasks also called
fuzzy rule-based classifiers (FRBCs).

The rest of the paper is structured as follows. Section
II describes the proposed modeling process. Section III
explains the experiments made and the obtained results.
Finally, section IV draws some conclusions and future
works.

II. METHODOLOGY

The starting point is the HILK (Highly Interpretable
Linguistic Knowledge) fuzzy modeling methodology [7]
which focuses on making easier the design process of
interpretable FRBSs. It offers an integration framework for
combining both expert knowledge and knowledge extracted

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.24

432



Fuzzy Decision Trees

Wang and Mendel

Linguistic rules

If V1 is Low and V2 is High Then ClassA

Feature Selection

DATA

Fast Prototyping Algorithm

improvement

Rule base
learning

Partition Design

Linguistic Simplification

Partition Optimization

Linguistic variables

Low Medium High
Strong

Fuzzy

Partitions

Partition selection

Partition learning

(Regular, K−menas, HFP)

Rule ranking

Rule base reduction

Partition simplification

Partition tuning

Crisp Decision Trees (C4.5)

The most discriminative variables

Number of labels per variable

V1

V1

V3

V5

> a

<= b > b

<= d > d

C2

C2C3

<= c

C3

> c

C1

<= a

C1

Comprehensible
FRBC

Knowledge base

Figure 1. Scheme of the proposed fuzzy modeling process.

from data, which is likely to yield robust and compact
systems. This paper focuses on automatic learning from data
taking profit of the general framework provided by HILK
(strong fuzzy partitions, global semantics, Mamdani rules,
linguistic simplification, partition tuning, etc.) and adding
some new functionalities (feature selection, interpretability-
guided simplification, etc.) in order to get comprehensible
FRBCs. Figure I shows graphically the global scheme of
the proposed fuzzy modeling process. The whole process is
made up of four main steps (the most relevant components
will be detailed in the following sections):

• Feature selection. Finding out the most discriminative
variables and the most suitable number of labels.

• Partition design. The readability of fuzzy partition-

ing is a prerequisite to build interpretable FRBCs. It
includes automatic generation of fuzzy partitions from
data and partition selection.

• Rule base learning. Linguistic rules are automatically
extracted from data.

• Knowledge base improvement. Iterative refinement
process of both partitions and rules.

A. Feature selection

We have implemented a feature selection procedure based
on the popular C4.5 algorithm introduced by Quinlan in [8].
This algorithm lets us discover the most discriminative
variables. In addition, generated crisp decision trees can be
easily translated into rules reading them from the root to
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the leaves [9]. Moreover, the number of breaking values
per variable appearing in a tree gives an estimation of the
number of fuzzy labels needed for that variable. Figure II-A
shows a simple example.
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Figure 2. Crisp decision tree.

B. Partition learning and selection

Once selected the most influential variables and the num-
ber of fuzzy labels for each of them, the next step is gener-
ating the best fitted fuzzy partitions. The use of strong fuzzy
partitions (SFPs) satisfies semantic constraints demanded to
get comprehensible partitions. Three different partitions are
generated for each variable: (1) REG, uniformly distributed
partition on the universe of discourse; (2) KM, partition
defined by the centroids provided by the K-means algorithm
[10]; and (3) HFP, partition generated by a fuzzy method
guided by interpretability [11]. Then, generated partitions
are compared according to three quality criteria:

PE = − 1
n

{
n∑

k=1

M∑
i=1

[uik loga(uik)]

}
(1)

PC =

n∑
k=1

M∑
i=1

u2
ik

n
(2)

ChI =
1
n

n∑
k=1

max
i

uik

− 2
M(M − 1)

M−1∑
i=1

M∑
j=i+1

1
n

n∑
k=1

min(uik, ujk)

(3)

The notation is as follows: uik is the degree of member-
ship of the k-th element of the data set to the i-th element

of the fuzzy partition, M stands for the number of terms of
the fuzzy partition, and n represents the cardinality of the
data set. An absolute majority voting process is applied. The
partition winning at least two criteria is selected. A good
partition should minimize the partition entropy (PE) [12]
while maximizing both the partition coefficient (PC) [12]
and the Chen index (ChI) [13].

C. Rule base learning

After designing all the fuzzy partitions it is time to
describe the system behavior in the form of linguistic
rules [14]:

If Xa is Ai
a AND . . . AND Xz is Aj

z Then Y is Cn

where Xa is the name of the input variable a, while Ai
a

represents the label i of such variable. Cn represents the
output class. Note that we are imposing global semantics,
i.e., all the rules use the same linguistic terms defined by
the same fuzzy sets. Three different algorithms have been
selected to generate rules from data with the previously
defined fuzzy partitions:

• Wang and Mendel (WM) [15]. It starts by generating
one rule for each data pair of the training set but new
rules will compete with existing ones. As a result, WM
generates complete rules (considering all the available
variables) which are quite specific.

• Fuzzy Decision Tree (FDT) [16]. It generates a deci-
sion tree (directly from data) which is translated into
quite general incomplete rules (only a subset of input
variables is considered). In addition, inputs are sorted
according to their importance (minimizing the entropy).

• Fast Prototyping Algorithm (FPA) [17]. It generates
rules more general than the ones produced by WM, but
at the same time more specific than the ones generated
by FDT. It starts generating a grid with all possible
combinations of input labels and then, in an iterative
process, outputs are defined removing redundancies and
inconsistencies. If the number of inputs (and labels
defined per input) is high then FPA is quite inefficient.
Therefore it needs a previous feature selection process
in order to tackle with complex problems.

D. Linguistic simplification

With the aim of getting a more compact and general
rule base HILK offers a powerful and flexible simplification
procedure which affects to the whole knowledge base (KB)
including both rule base simplification and partition reduc-
tion. It starts looking for redundant elements (labels, inputs,
rules, etc.) that can be removed without altering the system
accuracy. Then, it tries to merge elements always used
together. Finally, it forces removing elements apparently
needed but not contributing too much to the final accuracy.

Thanks to the use of global semantics rule comparison can
be directly made at linguistic level. In addition, the process
is absolutely deterministic. As a result, it is human-oriented
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and quite intuitive. However, final results depend on the
rule ranking. Therefore we have upgraded the simplification
procedure of HILK adding a new rule ranking step previous
to each simplification task. Such ranking is based on a novel
interpretability index:

RBC =
NR∑
j=1

[
NI∏
a=1

(
1 − LT j

a

NLa

)]
(4)

A rule base (RB) is made up of a set of rules, so the total
rule base complexity (RBC) is given as the addition of all
the r-complexity indices measured for the NR rules. Each
rule involves a set of premises, so the complexity of a rule
is measured as the product of all the p-complexity indices
for the NI inputs used in the rule. A p-complexity index
evaluates the complexity of a premise and it is computed
regarding all the involved linguistic propositions of form
Xa is Ai

a where the linguistic term Ai
a assigned to variable

Xa can correspond to one of the NLa elementary terms
defined in the fuzzy partition of the input Xa, but it can
also be a convex hull of elementary terms corresponding to
OR and NOT combinations (only combinations of adjacent
elementary terms are allowed) which turn up as result of
the merging of rules and linguistic terms made by the sim-
plification procedure. LT j

a counts the number of elementary
terms in Ai

a:

• Zero when input Xa is not considered in the rule.
• One for elementary terms.
• Number of elementary terms combined with OR. For

instance, it is equals two for Low OR Medium.
• NLa minus one half for NOT composite terms what

penalizes NOT against OR composite terms involving
all the elementary terms minus one.

This new interpretability index is based on conclusions
derived from a web poll study devoted to discover the main
influential aspects when assessing interpretability of fuzzy
systems [18]. In short, people usually prefer rules free of
NOT composite terms. In addition, the increase of rule
complexity perceived by people is not linear with the number
of involved premises, so we have used product for combining
complexity of premises.

E. Local optimization

The last step in the whole fuzzy modeling process is
devoted to increase the system accuracy while preserving
the high interpretability previously achieved. It consists of
a membership function tuning constrained to keep the SFP
property. System inputs are ranked regarding their frequency
of use in the rule base. Thus, the optimization procedure
starts with the inputs most frequently used. The detailed
algorithm is described in [17]. To sum up, it is a hill climbing
method with memorization of the previous successes made
label by label and based on the classical local search strategy
proposed by Solis and Wetts [19]. It lets increase accuracy

in only a few iterations but it does not guarantee to find the
global optimum. The algorithm stops when the maximum
number of iterations is achieved, or the fitness function is
under a predefined threshold. After modifying one label, the
process comes back to the starting point.

III. EXPERIMENTS

The new proposal was evaluated with four benchmark
classification problems freely available from the UCI (Uni-
versity of California, Irvine) repository1. IRIS and WINE
are well-known general purpose classification problems,
while WBCD and NEWTHYROID are related to medical
applications. All of them correspond to problems where the
comprehensibility of the classifier is highly appreciated:

• IRIS. Database created by Fisher. It is likely to be
the most famous database in the pattern recognition
literature. The goal is to classify three varieties of the
iris plant (150 instances, 4 attributes, and 3 classes).

• WINE. Chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars
(178 instances, 13 attributes, and 3 classes).

• WBCD. Classification of two cancer states (benign or
malignant), obtained from the University of Wisconsin
Hospitals (683 instances, 9 attributes, and 2 classes).

• NEWTHYROID. Predicting the type of patient’s thy-
roid (215 instances, 5 attributes, and 3 classes).

Table I summarizes the averaged results after running 10-
fold cross-validation. The same process is repeated for each
problem. The data set is divided into 10 parts of equal size
keeping the original distribution (percentage of elements for
each class) in the whole set. One part is used as test set
whereas the remainder are used as training set.

All tested algorithms are implemented in Fispro2 and/or
KBCT3, two free software tools for designing FRBSs. In
addition, for comparison purpose the two first rows of the
tables show results provided by other methods implemented
in Weka4: MP (Multilayer Perceptron) which yields very
accurate neural network classifiers (disregarding compre-
hensibility), and C45 (Quinlan’s decision trees) which pro-
vides good interpretability-accuracy trade-offs with accuracy
smaller than MP. Accuracy (ACC) is computed as the ratio of
samples correctly classified for train and test. Interpretability
is characterized by the number of rules (NR); the total rule
length (TRL) computed as the total number of premises
for all the rules; and average rule length (ARL) defined
as the average number of premises per rule. The best
interpretability-accuracy trade-offs obtained by our method
are remarked with symbol [*] while the most comprehen-
sible solutions are identified with [+]. Notice that, C45

1http://www.ics.uci.edu/-mlearn/MLSummary.html
2http://www.inra.fr/internet/Departements/MIA/M/fispro/
3http://www.mat.upm.es/projects/advocate/kbct.htm
4http://www.cs.waikato.ac.nz/ml/weka/
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Table I
RESULTS OF THE EXPERIMENTATION.

IRIS
Method ACC(train) ACC(test) NR TRL ARL

MP 0.987 0.973
C45 0.98 0.96 4.7 12.5 2.66

WM 0.8376 0.8202 4.6 9.2 2
S 0.8376 0.8202 3 3.6 1.2

S-IC 0.8376 0.8202 3 3.6 1.2
S-DC 0.8376 0.8202 3 3.6 1.2

S-IC-DC 0.8376 0.8202 3 3.6 1.2
O-SW 0.9595 0.9466 3 3.6 1.2

FDT 0.9073 0.9001 3.7 3.7 1
S 0.9073 0.9001 3 3 1

S-IC 0.9073 0.9001 3 3 1
S-DC 0.9073 0.9001 3 3 1

S-IC-DC 0.9073 0.9001 3 3 1
O-SW 0.9609 0.94 3 3 1

FPA 0.9073 0.9001 5 10 2
S 0.9073 0.9001 3 3 1

S-IC 0.9073 0.9001 3 3 1
S-DC 0.9073 0.9001 3 3 1

S-IC-DC 0.9073 0.9001 3 3 1
O-SW [*] [+] 0.9609 0.94 3 3 1

WINE
Method ACC(train) ACC(test) NR TRL ARL

MP 1 0.9719
C45 0.9881 0.9385 5.4 13.7 2.537

WM 0.8714 0.8712 13.1 54.2 3.9
S 0.8738 0.8712 5.1 15 2.7744

S-IC 0.8738 0.8712 5 14.8 2.8208
S-DC 0.8726 0.8712 5.1 14.4 2.6755

S-IC-DC 0.8726 0.8712 5.2 14.7 2.6823
O-SW 0.9662 0.9103 5 14.8 2.8208

FDT 0.8788 0.8546 5.1 11.7 2.2252
S 0.8788 0.8546 4.4 9.7 2.1401

S-IC 0.8807 0.849 4.3 9.5 2.15
S-DC 0.8788 0.8546 4.4 9.7 2.1401

S-IC-DC 0.8813 0.8546 4.3 9.4 2.1334
O-SW [*] [+] 0.9569 0.9101 4.3 9.4 2.1334

FPA 0.8896 0.8825 15.7 65.6 3.9
S 0.8908 0.8714 4.7 12.9 2.6621

S-IC 0.8908 0.8769 4.6 12.3 2.6217
S-DC 0.892 0.877 4.8 12.9 2.6171

S-IC-DC 0.892 0.8714 4.5 11.3 2.485
O-SW 0.947 0.9043 4.5 11.3 2.485

WBCD
Method ACC(train) ACC(test) NR TRL ARL

MP 0.992 0.9604
C45 0.9801 0.9604 10.5 41.9 3.99

WM 0.9662 0.9518 92.3 532.3333 6
S 0.9681 0.9531 12.8 60.7 4.2979

S-IC 0.9674 0.959 13 61.1 4.3577
S-DC 0.9674 0.9546 11.7 48.6 3.878

S-IC-DC 0.9668 0.9546 11.8 49.8 3.8897
O-SW 0.977 0.9503 11.7 48.6 3.878

FDT 0.9644 0.9619 13.5 45.7 3.1104
S 0.9649 0.9589 7.4 20.2 2.6824

S-IC 0.9649 0.9589 7.6 20.9 2.7094
S-DC 0.9649 0.9589 7.5 20.7 2.7163

S-IC-DC 0.9649 0.9574 7.5 20.9 2.7413
O-SW [*] 0.9724 0.9708 7.4 20.2 2.6824

FPA 0.9647 0.962 142.8 549.6667 6
S 0.9666 0.9457 6 18.8 3.0091

S-IC 0.9668 0.9546 6.6 22.4 3.1745
S-DC 0.9663 0.9545 6.9 22.6 3.1612

S-IC-DC 0.9669 0.9517 6.6 20.6 2.9809
O-SW [+] 0.9722 0.9487 6 18.8 3.0091

NEWTHYROID
Method ACC(train) ACC(test) NR TRL ARL

MP 0.9886 0.9675
C45 0.9829 0.9205 8 31.3 3.9125

WM 0.8668 0.8375 14.1 63.5 4.4
S 0.8698 0.8468 5.3 16.1 2.9516

S-IC 0.8718 0.8515 5.3 16.8 3.0766
S-DC 0.873 0.847 5.7 17.5 3

S-IC-DC 0.8724 0.847 5.5 16.4 2.88
O-SW 0.9329 0.8978 5.3 16.1 2.9516

FDT 0.8733 0.856 7.4 14.1 1.8833
S 0.8738 0.856 6 11.1 1.8151

S-IC 0.8738 0.856 6 11.1 1.8151
S-DC 0.8738 0.856 6 11.1 1.8151

S-IC-DC 0.8738 0.856 6 11.1 1.8151
O-SW [*] 0.9386 0.907 6 11.1 1.8151

FPA 0.874 0.8696 13.8 62.2 4.4
S 0.8797 0.8701 4.6 14.4 3.0633

S-IC 0.8781 0.8606 4.7 14.9 3.0616
S-DC 0.8776 0.8746 5.2 16.1 3.0762

S-IC-DC 0.8771 0.8746 5.2 15.4 2.9386
O-SW [+] 0.9256 0.8932 4.6 14.4 3.0633

sometimes obtains a solution non-dominated by our method,
i.e., a more accurate (but less comprehensible) solution.

First, the feature selection procedure identifies the inputs
to consider as well as their number of labels. Second, for
each input three partitions (REG, KM, and HFP) are gener-
ated, and then compared to select the best one according
to data distribution. Third, rules are induced from data
(WM, FDT, and FPA). Then, each KB is simplified four
times exploring four different rule ranking options: (1) S
stands for simplification without changing the rule ranking
provided by the rule induction algorithm; (2) S-IC means
rule ranking from most simple to most complex rules; (3)

S-DC is just the inverse ranking (decreasing complexity);
(4) S-IC-DC tries the tree previous strategies in parallel. At
each intermediate simplification step the solution yielding
the smallest complexity is selected as the KB to be simplified
in the next step. Finally, simplified KBs are compared and
the most compact one is selected (set in boldface in the
tables) to be optimized (O-SW).

In all analyzed problems, our method is able to yield
classifiers more robust, compact and comprehensible than
the ones obtained with C4.5. However, such gain of inter-
pretability is obtained at the cost of a loss of accuracy. Com-
paring C4.5 with the best trade-offs obtained by our method,
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we lose, in mean (for the four problems), around 2.5%
regarding training patterns and around 1.3% with respect to
test. Furthermore, in the case of the simplest classifiers the
loss is around 2.9% for training and around 2.2% for testing.
This reduction of accuracy seems absolutely reasonable
taking into account the simplicity and comprehensibility
of the classifiers. In addition, our method exhibits a good
generalization ability obtaining similar accuracy for both
training and test. This fact is mainly due to the combination
of simplification and optimization procedures.

Finally, comparing the proposed rule ranking options, S-
IC-DC seems to be the best one because it gives the best
results in most cases (six over twelve). Nevertheless, we
observe that many times (four over twelve) preserving the
rule ranking provided by rule induction (S) yields better
results. This fact may be due to a memory effect. Every
simplification step has an influence in the whole series of
subsequent ones. However, S-IC-DC only analyzes one step.
Keeping a temporal sliding window could yield better results
but it would increase significantly the computational cost.

IV. CONCLUSIONS

This paper has proposed new functionalities (C45-based
feature selection and interpretability-guided rule ranking) as
well as a new way of combining tools (partition design,
rule generation, simplification, and optimization) already
provided by HILK methodology. In consequence we have
upgraded HILK to a new and powerful version HILK++
able to get very encouraging results. However, more work
still remains to be done. We will try our process with
more benchmark databases. In addition, it is necessary to
explore other feature selection procedures as well as other
optimization strategies. For instance, a GA-based approach
could help to overcome the intrinsic problems of local
search, like falling in local minimum, yielding even better
results.

ACKNOWLEDGMENT

This work has been partially funded by the Foundation
for the Advancement of Soft Computing (Mieres, Asturias,
Spain) and Spanish government (CICYT) under project:
TIN2008-06890-C02-01.

REFERENCES

[1] L. A. Zadeh, “The concept of a linguistic variable and its
application to approximate reasoning,” Parts I, II, and III.
Information Sciences, vol. 8, 8, 9, pp. 199–249, 301–357,
43–80, 1975.

[2] J. M. Alonso and L. Magdalena, “A conceptual framework
for understanding a fuzzy system,” in IFSA-EUSFLAT 2009,
pp. 119–124.

[3] S. Guillaume, “Designing fuzzy inference systems from data:
An interpretability-oriented review,” IEEE Transactions on
Fuzzy Systems, vol. 9(3), pp. 426–443, 2001.

[4] C. Mencar and A. M. Fanelli, “Interpretability constraints
for fuzzy information granulation,” Information Sciences, vol.
178, pp. 4585–4618, 2008.

[5] J. Casillas et al., Accuracy improvements in linguistic fuzzy
modeling. Studies in Fuzziness and Soft Computing,
Springer-Verlag, Heidelberg, 2003, vol. 129.

[6] ——, Interpretability issues in fuzzy modeling. Studies in
Fuzziness and Soft Computing, Springer-Verlag, Heidelberg,
2003, vol. 128.

[7] J. M. Alonso, L. Magdalena, and S. Guillaume, “HILK: A
new methodology for designing highly interpretable linguis-
tic knowledge bases using the fuzzy logic formalism,” Int.
Journal of Intelligent Systems, vol. 23(7), pp. 761–794, 2008.

[8] J. R. Quinlan, C4.5: Programs for Machine Learning. Mor-
gan Kaufmann Publishers, San Mateo, CA, 1993.

[9] J. Abonyi, J. A. Roubos, and F. Szeifart, “Data-driven genera-
tion of compact, accurate, and linguistically sound fuzzy clas-
sifiers based on a decision-tree initialization,” International
Journal of Approximate Reasoning, vol. 32, pp. 1–21, 2003.

[10] J. A. Hartigan and M. Wong, “A k-means clustering algo-
rithm,” Applied Statistics, vol. 28, pp. 100–108, 1979.

[11] S. Guillaume and B. Charnomordic, “Generating an inter-
pretable family of fuzzy partitions,” IEEE Transactions on
Fuzzy Systems, vol. 12(3), pp. 324–335, 2004.

[12] J. C. Bezdek, “Pattern recognition with fuzzy objective func-
tions algorithms,” Plenum Press, 1981.

[13] M.-Y. Chen, “Establishing interpretable fuzzy models from
numeric data,” in 4th World Congress on Intelligent Control
and Automation IEEE, 2002, pp. 1857–1861.

[14] E. H. Mamdani, “Application of fuzzy logic to approximate
reasoning using linguistic systems,” IEEE Transactions on
Computers, vol. 26(12), pp. 1182–1191, 1977.

[15] L.-X. Wang and J. M. Mendel, “Generating fuzzy rules by
learning from examples,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 22 (6), pp. 1414–1427, 1992.

[16] H. Ichihashi, T. Shirai, K. Nagasaka, and T. Miyoshi, “Neuro-
fuzzy ID3: A method of inducing fuzzy decision trees with
linear programming for maximizing entropy and an algebraic
method for incremental learning,” Fuzzy Sets and Systems,
vol. 81, pp. 157–167, 1996.

[17] P.-Y. Glorennec, Algorithmes d′apprentissage pour systèmes
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