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Abstract—EDA-RL, Estimation of Distribution Algorithms
for Reinforcement Learning Problems, have been proposed by
us recently. The EDA-RL can improve policies by EDA scheme:
First, select better episodes. Secondly, estimate probabilistic
models, i.e., policies, and finally, interact with the environment
for generating new episodes. In this paper, the EDA-RL is ex-
tended for Multi-Objective Reinforcement Learning Problems,
where reward is given by several criteria. By incorporating
the notions in Evolutionary Multi-Objective Optimization, the
proposed method is enable to acquire various strategies by a
single run.

Keywords-Estimation of Distribution Algorithms; Reinforce-
ment Learning Problems; Evolutionary Multi-Objective Opti-
misation;

I. INTRODUCTION

The purpose of Multi-objective reinforcement learning
problems is to acquire policies in order to maximize a total
amount of reward, where is given by several criteria. Such
criteria are usually in trade-off relationships, for instance,
speed and safety. Therefore, it is quite difficult to maxi-
mize all the kinds of reward simultaneously. Conventional
reinforcement learning algorithms have a policy, which is
often represented by the value function or the state-action
value function. Hence, weighted approach for such reward
is adopted: Several criteria are unified with their weights.
Unfortunately, it is quite difficult to design the unification.
The unification affects the characteristic of reinforcement
learning problems, whilst there is no way to decide the
weights such that acquired behaviors are familiar with
designers’ intuitions. Desirable behaviors are different with
ones by optimal policies on weighted reward. For instance,
suppose that designers of agents set weights to 0.6 and 0.4
for “speed” and “safety” criteria, respectively. Unfortunately,
it is rarely occurred that agents acquire rewards at the same
ratio as in weights. In addition, the changes of weights imply
that learning process is re-carried out since it will yield the
different problem instance.

Estimation of Distribution Algorithms (EDAs) are a
promising evolutionary computation method. By making use
of probabilistic models, EDAs can outperform conventional
evolutionary computations. The EDA-RL, proposed by us,

is an extension of EDA to solve reinforcement learning
problems [1]. One of the primary features of the EDA-
RL is direct estimation of reinforcement learning agents’
policies by using Conditional Random Fields. On the other
hand, conventional reinforcement learning algorithms esti-
mate state values or state-action values, instead of a policy.
The EDA-RL can directly estimate a policy as a conditional
probability distribution in a statistical way. Another feature
is that a kind of undirected graphical probabilistic model is
used in the EDA-RL. Recently, Markov Networks have often
been used by the EDA community [2][3][4]. However, they
are using Markov Networks to optimize functions, not to
solve reinforcement learning problems.

Evolutionary Multi-objective Optimization (EMO) has
been broadly studied not only in evolutionary computation
community but also in engineering design because it is able
to search for Pareto set by a single run. In this paper,
the EDA-RL is extended to multi-objective reinforcement
learning problems by incorporating the notion of EMO:
Firstly, Pareto fronts of episodes are constituted during
evolution by using dominance relations in EMO. At each
generation, then, the Pareto front is divided into several
clusters. For each cluster, a policy is estimated. Therefore,
the proposed method can learn several policies by a single
run.

II. MULTI-OBJECTIVE REINFORCEMENT LEARNING
PROBLEMS

The reinforcement learning problem is the problem of
learning from interactions with an environment. Such inter-
actions are composed of perceptions of the environment and
actions that affect both agents and environments. Agents try
to maximize the total reward received from the environment
as consequences of their actions. In other words, the task for
agents is to acquire a policy π(s, a) which maximizes the
prospective reward. The variables s and a in π(s, a) denote
states recognized by agents, and actions taken by agents,
respectively.

R =
∞∑
t

r(t)
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Figure 1. Reinforcement Learning Problems

The policy can be defined by using a probabilistic for-
mulation such as P (a|s). Most Reinforcement Learning
algorithms learn value functions, e.g., a state-action value
function Q(s, a) and a state value function V (s), instead of
estimating the policy π(s, a) directly. That is, in the case of
conventional Reinforcement Learning algorithms, the policy
π(s, a) is approximated by value functions. In this paper,
we adopt Conditional Random Fields to estimate the policy
π(s, a) from selected episodes in the previous generation.

In the case of multi-objective reinforcement learning,
reward Ri is given by each criterion i (1, . . . , n). Agents
try to maximized all kinds of reward:

max(R1, . . . , Rn)

As in usual multi-objective optimization, such criteria are
in trade-off relationships. Therefore, in order to judge the
effectiveness of policies or episodes, the following domi-
nance relations are utilized: An episode e1 dominates an
episode e2 iff Re1

i ≥ Re2
i (1, . . . , n) and Re1

i �= Re2
i at

least one criterion. In addition, a policy π1(s, a) dominates
a policy π2(s, a) iff Eπ1(s,a)[Ri] ≥ Eπ2(s,a)[Ri](1, . . . , n)
and Eπ1(s,a)[Ri] �= Eπ2(s,a)[Ri] at least one criterion.

III. CONDITIONAL RANDOM FIELDS

A. Overview

Conditional Random Fields (CRFs) were first proposed
by Lafferty et al. in order to apply statistical learning to
segmentation problems in text processing [5]. The CRFs can
handle a conditional distribution P (y|x) with an associated
graphical structure. A notable feature of the CRFs is that
they model such conditional distributions whereas Hidden
Markov Models, which are traditionally used in broad areas
such as voice recognition and text processing, estimate joint
probability distributions P (x,y). This implies that we do not
have to consider the probabilistic distribution of inputs P (x)
since P (x,y) = P (y|x) · P (x). In general, the probability
distribution of the inputs P (x) is unknown. Moreover, in
the case of Reinforcement Learning Problems, it depends
on agents’ actions.

CRFs can be regarded as a sort of Markov Network
since CRFs use an undirected graph model to represent a

st-1 st st+1

at-1 at at+1

Figure 2. Graphical model of a Linear-Chain CRF

probabilistic distribution. That is, variables in the problem
are factorized in advance. Each clique (factor) is associated
with a local function.

In the case of a log-linear Markov Network, the joint
probability P (y,x) can be represented as follows:

P (y,x) =
1
Z

∏
A

ΨA(yA,xA), (1)

where ΨA denotes a local function for a set of variables
yA,xA ∈ {y,x}. Z is a normalizing factor which ensures
that the distribution sums to 1:

Z =
∑
y,x

∏
A

ΨA(yA,xA). (2)

On the other hand, CRFs can handle the following con-
ditional probabilities P (y|x):

P (y|x) =
P (y,x)∑
y′ P (y′,x)

=
1
Z

∏
A ΨA(yA,xA)∑

y′
1
Z

∏
A ΨA(y′

A,xA)

=
∏

A ΨA(yA,xA)∑
y′

∏
A ΨA(y′

A,xA)

=
1

Z(x)

∏
A

ΨA(yA,xA), (3)

where
Z(x) =

∑
y′

∏
A

ΨA(y′
A,xA).

B. Linear-chain CRF

This subsection introduces the linear-chain CRF which
is widely used in the natural text-processing area. The
linear-chain CRF is one of the simplest CRFs. Here, input
and output variables x, y in the previous subsection are
substituted by a sequence of states s = {s1, s2, . . . , sT } and
a sequence of corresponding actions a = {a1, a2, . . . , aT },
respectively. The linear-chain graphical model in this case
is depicted in Figure 2. Each circle (node) in this figure
represents a state or an action at the corresponding time
step. Each line with a black square in the middle of the line
indicate that nodes are associated with a local function Ψ.

As we can see from this figure, the linear-chain CRFs
factorize an episode, i.e., a sequence of state-action pairs
(s, a) into state-action pairs (st, at) and transitions of actions
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(at−1, at). The local function for each time step is defined
as follows:

Ψk(a, s) =
{

exp(λk · uk(at, st)) k ≤ K ′

exp(λk · vk(atk−1 , at)) K ′ < k <≤ K,

where uk(at, st) and vk(atk−1 , at) are feature functions and
K ′ is the total number of possible combinations of states
and actions (a, s). K is the total number of the feature
functions. The values uk(at, st) and vk(atk−1 , at) are set
to 1 if the corresponding state-action pair and action-action
pair are observed, respectively. λk denotes a parameter for
a factor k. Equation (3) can be rewritten using the above
notation as follows:

P (a|s) =
1

Z(s)
exp

⎧⎨
⎩

T∑
t=1

⎧⎨
⎩

K′∑
k=1

λkuk(at, st)

+
K∑

k=K′+1

λkvk(at−1, at)

}}
. (4)

C. Parameter Estimation

Suppose that N episodes (s(i),a(i)), (i = 1, . . . N) are
acquired to estimate the policy and each episode (s(i), a(i))
is composed of a series of state-action pairs:

(s(i),a(i)) = {(s1, a1), (s2, a2), . . . (sTi , aTi)},
where Ti denotes the length of episode i. The log likelihood
method is used to estimate the parameters θ = (λ1, . . . , λK):

l(θ) =
N∑

i=1

log P (a(i)|s(i))

=
N∑

i=1

Ti∑
t=1

⎧⎨
⎩

K′∑
k=1

λkuk(at, st) +
K∑

k=K′+1

λkvk(at−1, at)

⎫⎬
⎭

−
N∑

i=1

log Z(s(i))

In order to calculate the optimal parameter θ, the partial
derivative of the above equation is used. For k ≤ K ′, we
can calculate the partial derivative as follows:

∂l

∂λk
=

N∑
i=1

Ti∑
t=1

uk(at, st) −
N∑

i=1

(Z(s(i)))′

Z(s(i))

=
N∑

i=1

Ti∑
t=1

uk(at, st) −
N∑

i=1

∑
a′

t

P (a′
t|s(i)) · uk(a′

t, st).

The first and second terms of the right hand side of this
equation denote the number of observations of the factor
uk(at, st) and the expected value of the factor uk(at, st)
under the current value of the parameter θ, respectively.
Therefore, this derivative indicates that the parameter λk

is modified along that expected value closest to the actual
observation in the selected episodes. Further descriptions

Sampling
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Estimation

Individuals Probabilistic
Model

Chosen
Individuals

x1, x2, x3, x4,...xn

x1, x2, x3, x4,...xn

Figure 3. Search Process by Estimation of Distribution Algorithms

needed to calculate l(θ) and ∂l
∂λk

, i.e., Z(s(i)) and P (a′
t|s(i))

are described in appendix.

IV. ESTIMATION OF DISTRIBUTION ALGORITHMS

Estimation of Distribution Algorithms are a class of
evolutionary algorithms which adopt probabilistic models
to reproduce individuals in the next generation, instead
of conventional crossover and mutation operations. The
probabilistic model is represented by conditional probability
distributions for each variable. This probabilistic model is es-
timated from the genetic information of selected individuals
in the current generation. Figure 3 shows the general process
of EDAs. As depicted in this figure, the main calculation
procedure of the EDAs is as follows:

1) Firstly, N individuals are selected from the population
in the previous generation.

2) Secondly, the probabilistic model is estimated from
the genetic information of the selected individuals.

3) A new population whose size is M is then sampled
by using the estimated probabilistic model.

4) Finally, the new population is evaluated.
5) Steps 1)-4) are iterated until the stopping criterion is

reached.

V. EDA-RL

A. Calculation Procedure of EDA-RL

Figure 4 depicts the calculation procedure of the proposed
method, i.e., EDA-RL. The procedure is summarized as
follows:

1) The initial policy π(s, a)(= P (a|s)) is taken to be a
uniform distribution. That is, according to the initial
policy π(s, a), agents move randomly.

2) Agents interact with the environment by using policy
π(s, a) until Ts episodes are generated. An episode is
a sequence of pairs (state st, action at).

3) The best episode, i.e., the episode with greatest reward,
among the Ts episodes in the previous step is stored
in the episode database. Return to 2) until the number
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Figure 4. Search Process of an EDA-RL

of chosen episodes reaches a predefined constant value
Cd.

4) A new policy π(s, a) for the set of episodes in the
database is estimated by CRF. After the estimation,
all episode data in the database is erased.

5) Return to 2) until terminal conditions are met.

One of the main differences between conventional EDAs
and EDA-RL is the use of the estimated probabilistic
model. Conventional EDAs employ a probabilistic model
to generate individuals, i.e., solutions for given problems.
On the other hand, the probabilistic model estimated by
CRF represents the policy π(s, a). In other words, the
probabilistic model denotes the solution itself.

We note that in 1) in the above procedure, we do not
have to assume a uniform distribution for the initial policy.
That is, if there is plenty of observation data available, e.g.
play-data by humans, or episodes from the conventional
approach, such data can be used to generate an initial
policy. This means that the proposed method can easily
incorporate human knowledge and can improve on it by
using an evolutionary approach.

B. Extension of EDA-RL to Multi-Objective Reinforcement
Learning Problems

In comparison with conventional EDA-RL in the previ-
ous subsection, what we extend for Multi-Objective Re-
inforcement Learning Problems is that 1) several policies
πj(s, a)(j = 1, . . . , m) are employed, 2) fitness assignment
and selection method of episodes are used ones in Zittler’s
SPEA2 [6], and 3) clustering algorithm is carried out to
selected episodes in order to separate such episodes into
several learning sets for policies.

1) The initial policies πj(s, a) are taken to be a uniform
distribution.

2) Agents interact with the environment by using one of
policies πj(s, a) until noc episodes are generated.

3) Fitness Fl for the lth episode is assigned by using
the fitness assignment algorithm in SPEA2, and bet-
ter episodes are selected from the noc episodes and
episodes selected in the previous generation.

4) Episodes selected in the previous step are clustered by
using K-means method.

5) New policies πj(s, a) for the clustered set sj of
episodes are estimated by CRF.

6) Return to 2) until terminal conditions are met.

C. Interaction with the Environment

As mentioned in the previous subsection, a probabilistic
model formed from selected episodes represents the poli-
cies of agents, which decide the actions for the current
situation. The original CRFs were used in text-processing
and bio-informatics, where several outputs (y1, y2, . . . , yT )
have to be determined simultaneously for corresponding in-
puts (x1, x2, . . . , xT ). Unfortunately, reinforcement learning
problems are not problems of this type. That is, at every time
step t, agents need to decide on their outputs. Therefore, we
employ factors related to the current state and the previous
action, which are then used to decide on the output1. The
factors used to choose an action at for state st are uk(at, st)
and vk(at−1, at). Hence, from equation (4)

P (at|st, at−1) =
1

Z(st)
exp

⎧⎨
⎩

K′∑
k=1

λkuk(at, st)+

K∑
k=K′+1

λkvk(at−1, at)

}
, (5)

where Z(st) can be calculated as follows:

Z(st) =
∑
a′

t

exp

⎧⎨
⎩

K′∑
k=1

λkuk(a′
t, st) +

K∑
k=K′+1

λkvk(at−1, a
′
t)

⎫⎬
⎭ .

By using this probability and the following equation, an
action at at time step t is chosen.

a = argmax P (at|st, at−1).

Moreover, an ε-greedy method is used in this paper so that,
with probability ε, a new action is randomly chosen, instead
of the above action. The parameter ε is set to be 0.05.

VI. EXPERIMENTS

A. Problem Settings

Probabilistic Transition Problems and the Perceptual
Aliasing Maze Problem are introduced in order to investigate
the effectiveness of the proposed method.

1On the other hand, in building the probabilistic model, we take account
of the whole sequence of (state, action) pairs.
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Figure 5. A depiction of Probabilistic Transition Problems in the case
where there are 10 intermediate states

As depicted in Figure 5, a start point is located at the
center position. Agents can take two actions at any states: a
left or a right move. By taking these actions, agents move
to an adjacent state. However, with probability Pw, agents
move in the opposite direction to their chosen action; this is
called an error move. There are two goals: both goals give
two symmetrical reward to agents

Rleft,1 = 100/count + nos

Rleft,2 = SMRS

Rright,1 = SMLS

Rright,2 = 100/count + nos,

where SMRS and SMLS denote the absolute value of the
index number of the most right and left state in the episode,
respectively. nos denote the number of intermediate states.
This paper sets nos to be 20. For instance, consider “optimal
policy” in terms of Rleft,1. The “optimal behavior” is that
all the actions are left in the episode. In this case, Rleft,1 is
100/nos + nos, and Rleft,2 is 0 if there is no error move.
Now, suppose that an agent moves twice to right, then go
back to left goals as in the “optimal policy”. In this case,
Rleft,1 is 100/(nos + 4) + nos, and Rleft,2 is 2 if there is
no error move. Agents recognize two kinds of reward R∗,1

and R∗,2. When agents reach one of the goals, the episode
is finished.

B. Results

Figure 6 shows the experimental results of the probabilis-
tic transition problems by the conventional EDA-RL and
the proposed method. The graphs on the left and right sides
denote error move probability PW = 0.1 and PW = 0.3,
respectively. The number of intermediate states is set to be
20. These graphs represent all the episodes during evolution,
except for fail episodes, which cannot reach to either of goals
until 200 steps. The distribution of episodes in the proposed
method is more broad than the one in the conventional
EDA-RL. The proposed method acquired two strategies such
either of two kinds of reward can mainly be received.
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VII. CONCLUSIONS

In this paper, EDA-RL, Estimation of Distribution Al-
gorithms for Reinforcement Learning Problems, proposed
earlier, is extended to apply Multi-objective Reinforcement
Learning Problems. In the proposed method, better episodes
are selected by using dominance relations as in SPEA2.
Then selected episodes are clustered by using clustering al-
gorithms, and are used to estimate policies. By incorporating
the scheme in EMO and separately estimating policies, the
proposed method is enable to acquire several strategies by
a single run. The experimental results of the probabilistic
transition problems confirm this.
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Figure 6. Experimental results: conventional EDA-RL (UPPER) and the proposed method(LOWER); error move Probability Pw = 0.1 (LEFT) and
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