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Abstract—In this work, a new approach to natural-language
chunking using an evolutionary model is proposed. This uses
previously captured training information to guide the evolu-
tion of the model. In addition, a multi-objective optimization
strategy is used to produce the best solutions based on the
internal and the external quality of chunking. Experiments and
the main results obtained using the model and state-of-the-art
approaches are discussed.
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I. MOTIVATION

The most basic form of syntactical processing known as
Parsing, is the process of analyzing a sequence of tokens
(i.e., morphosyntactic or lexical categories) to determine
its grammatical structure with respect to a given formal
grammar. Traditional full parsing aims to provide as detailed
as possible analysis of the sentence structure. Full parsing
is a challenging task involving the development of the full
grammar for the language as well as the computational chal-
lenges involved in identifying the most plausible parse of a
given sentence. However many natural-language processing
(NLP) applications do not necessarily require a complete
syntactic analysis. On the other hand, parsers can usually
generate multiple syntax trees for the same input text leading
to ambiguity and efficiency problems. Many of the these
tasks can adequately be performed by identifying the noun
phrases (NP), verb phrases (VP), etc and the relationships
between these entities. Shallow (or partial) parsing can be
used to recover some limited syntactic information from
natural language sentences [2]. This often involves chunking
which refers to the process of unnested grouping the words
into chunks given their morphosyntactical tags [2].
This work proposes a new approach to chunking which

makes good use of the search capabilities of a Genetic Algo-
rithm (GA) and previous training data obtained from anno-
tated corpus. We hypothesize that an evolutionary model for
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chunking can produce competitive results when comparing
with other state-of-the-art techniques.

II. RELATED WORK

Natural-language parsing involves the procedure of bring-
ing basic morphosyntactic categories into high-level syn-
tactic relationships with each other. This is probably the
most commonly encountered form of corpus annotation after
Part-of-Speech (POS) tagging (aka. lexical tagging). Usually
a parser looks for valid tree parses for an input natural-
language sentence. Since this must recursively find different
structures, techniques usually have serious efficiency prob-
lems in analyzing massive amounts of texts.
To reduce the search space and resolve ambiguity issues,

partial (or shallow) analysis for some specific syntactical
groups of the input sentence can be carried out. The most
popular shallow parsing strategy is known as Chunking
which identifies the non-recursive cores of various phrase
types in text, possibly as a precursor to full parsing or
information extraction. The paradigmatic shallow parsing
problem is NP chunking, which finds the non-recursive cores
of Noun Phrases.
Computationally, text chunking consists of dividing a

text in syntactically correlated parts of words. For example,
the sentence “He reckons the current account
deficit will narrow to only 1.8 billion
in September." can be divided into chunks as follows:

[NP He][VP reckons][NP the current
account deficit]

[VP will narrow] [PP to] [NP only
1.8 billion][PP in]

[NP September] .

State-of-the-art chunking techniques can be divided into
two types: those based on grammar rules and those using
supervised machine-learning techniques [3], [2]. Methods
using explicit rules for chunking are not accurate when
dealing with huge amounts of texts. Furthermore, this is
an extremely time-consuming task as these rules are usu-
ally manually built. An early significant improvement to
chunking was achieved by using Memory-based Learning
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(MBL) in which the parser automatically learns the clas-
sification rules based on previously annotated examples.
One of the problems with this approach is the availability
and preparation of examples which is an intensive task.
On the other hand, the search algorithm used for finding
chunks is based on similarity measures which restrict the
type of chunk pattern to be looked for in the training
corpus. A more flexible and adaptive rule-based technique
for chunking is based on Transformation-based Learning
(TBL). This was originally applied to lexical, syntactical and
semantic tagging but further adapted to shallow analysis.
Initially, TBL hypothesizes a set of very simple learning
rules. The technique then iteratively looks for rules that
better correct the errors made by the previously proposed
rules. Despite its high computational cost to validate the
rules in each iteration, variations of the strategy have incor-
porated restrictions on the search space for each iteration
to improve the chunker performance [4]. Statistical-based
methods such as Maximum Entropy parsers (MaxEnt) have
also been used to address these issues. A related method
which uses probabilities for prediction and classification
producing better performance by reducing the number of
required training data is based on Hidden Markov Models
(HMM) in which hidden states of the model keep likely
chunk tags and visible states contain the part-of-speech
(POS) or lexical tags [5]. An important drawback is that as
the number of hidden states grows the method becomes less
effective in exploring the search space than other techniques
such as Support Vector Machines (SVM) [4], [6], [2], [7].
Non-traditional techniques such as evolutionary computation
have also been used in related tasks such as POS tagging,
and text mining. Performance is observed to be similar to
that of traditional methods, however exploring the space of
hypotheses becomes more robust.

III. A NEW APPROACH TO NATURAL LANGUAGE
CHUNKING BASED ON GENETIC ALGORITHMS

This work proposes a new approach to natural-language
chunking using evolutionary computation techniques (i.e.,
Genetic Algorithms which have demonstrated substantial
improvement over a variety of random and local search
methods [8].
Our GA-based chunking model receives a natural-

language text and assigns the corresponding syntactical
chunks for each sentence based on previously computed
training information from annotated corpus. The model can
be divided into two phases: training and chunking.
From a set of natural-language scientific texts (training

texts), the training task computes probabilities of POS tags
and chunks based on an n-gram language model. The
model is then capable of receiving new natural-language
documents and have them chunked. Specifically, the training
phase extracts two kinds of underlying information from the
annotated texts:

1) Associations between lexical and chunk tags: based
on Bayesian models, information regarding the likely
associations between POS tags and chunks is captured.

2) Sequencing data: based on a statistical language
model, sequences of n-grams are obtained using Hid-
den Markov Models.

Resulting training information is further used to guide
the GA that automatically assigns chunks to new natural-
language texts. The initial population for the GA is generated
by randomly combining candidate chunks.
In order to assess the quality of the generated hypotheses,

a multi-objective optimization was applied to determine how
good a sequence of chunks is for a sentence based on
intra-chunk and inter-chunk associations. This is carried out
using structural and lexical information obtained from an
annotated corpus.

A. Training
In order to carry out the chunk parsing, an annotated

corpus of natural-language texts was used. This contains
sentences annotated with standard POS and chunk tags.
For capturing training data, statistical language models were
applied to extract knowledge which will guide the GA. In
particular, n-gram language models were adapted and used.
A n-gram model predicts the occurrence of a symbol

in a sequence based on the n − 1 previous contexts, in
words, this makes explicit the structure of the symbols. For
our approach, a 2-gram (aka. bi-gram) language model was
applied to the training corpus with the symbols being the
chunk tags. The benefit of bi-gram modeling is based on
the assumption that there is a relevant connection between
contiguous chunks in a sentence.
The bi-gram model computes the probability of a se-

quence of chunks c based on the previous context: P (c) =
P (c1)

∏n

i=2 P (ci | ci−1). Therefore, the probability of
assigning a chunk ci (of a sentence) given a previous chunk
ci−1 is computed as: P (ci | ci−1) = N(ci−1,ci)

N(ci−1)
, where

N(ci−1, ci) is the number of occurrences of sequence of
chunks (ci−1, ci) within the training corpus, and N(ci−1) is
the number of occurrences of chunk ci−1 within the same
corpus.

B. Evolutionary Chunking
In our evolutionary approach, chunk classification can be

seen as an optimization problem in which the best chunk tags
should be assigned to the words of a sentence. For this, the
GA requires new representation schema, genetic operators
and evaluation metrics for the hypotheses.
An initial population is created containing a predefined

number of individuals (chunked sentences), each represented
by a genetic string (incorporating the variable information).
Each individual has an associated fitness measure, typically
representing an objective value. The concept that fittest (or
best) individuals in a population will produce fitter offspring
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is then implemented in order to reproduce the next popula-
tion. Selected individuals are chosen for reproduction (or
crossover) at each generation, with an appropriate mutation
factor to randomly modify the genes of an individual, in
order to develop the new population. The result is another
set of individuals based on the original subjects leading to
subsequent populations with better (min. or max.) individual
fitness. Therefore, the algorithm identifies the individuals
with the optimising fitness values, and those with lower
fitness will naturally get discarded from the population.
Hypothesis Representation
In order to code each chromosome representing a se-

quence of chunks, a three-dimensional structure is used.
This contains the words of a sentence, their POS tags and
their automatically assigned chunks. Note that as the GA
goes on, the words and POS tags remain unchanged for
a chromosome. An example of the representation of the
hypothesis for the sentence below can be seen in figure 1:

He reckons the Current account deficit
will narrow to only #1.8 billion in
September

where the chromosome shows the 3-dimension structure
containing components extracted from a standard Wall Street
Journal (WSJ) corpus (an empty gene shows that the
previous chunk is kept).
At the beginning, a sequence of words of a sentence is

assigned a random chunk. As the GA goes on, the size of
this chunk becomes bigger or smaller based on the quality
of the assigned chunk. Genetic operators can modify the
content or the size of the chunk hence its structure may
vary accordingly. However, the size of the chromosome is
fixed as a word must always be tagged with a chunk.
An initial population of hypotheses for the GA is created

from a set of randomly generated combinations of chunks
for each word of an input sentence. Overall, chunks can be
assigned from a set of 36 types of chunks extracted from the
standard Penn Treebank II tagset1. Note that dimensions 1
and 2 remain unchanged whereas the dimension representing
the chunk depends on the assigned chunks. Each chunk
covers segments of the input sentences from 1 (one word)
to the length of the sentence.
Fitness Evaluation
In order to automatically assess the quality of the chunks

generated for each individual, a fitness function is proposed.
For our model, the evaluation considers two objective func-
tions:
1) Quality of the sequence of chunks (aka. inter-chunk
objective): assesses the structure of the sequence of
chunks for a sentence based on the frequencies of
chunks obtained from training data.

1http://www.cis.upenn.edu/̃ treebank/

2) Quality of an individual chunk (aka. intra-chunk ob-
jective): assesses the sequence of POS tags for each
individual chunk of a sentence based on the frequen-
cies of lexical tags assigned to chunks in the training
data.

Both objectives are computed by using data generated
from a training annotated corpus. In order to compute
the intra-chunk measure (Fintra), sequences of n-grams
are obtained using HMM. This considers probabilities of
POS tags associated to chunks. This is, the probability
that a POS tag is associated to a chunk is computed for
all the POS tags of a sentence. The rationale for this
is that some POS tags are assumed to be more likely
to occur within a chunk than other. For each gene, the
metrics calculates P (POSi/Chunkj) which represents the
conditional probability that POSi tag occurs given that the
current chunk is Chunkj . Next, the resulting intra-chunk
measure considers how likely the sequence of pairs (POS
tags and Chunks) is for the sentence of n − 1 words as:
Fintra =

∏Nc

j=1

∑L(j)−1
i=0 P (POSi/Chunkj), where Nc is

the number of chunks of a sentence and L(j) is the length
of the chunk j.
Computating the objective value of the example is as

follows: for the inter-chunk measure (Finter), the objective
value is obtained by computing the probability of the se-
quence of chunks for the input sentence and having then
multiplied so to obtain an objective function value. For
example, assume the following sequence of chunks in a
sentence: “NP | V P | NP | V P | PP | NP | PP | NP ”.
For the first chunk (NP ), the probability of this being the
start of the sentence is first computed. Next, the probability
that the second chunk being V P giving that the previous one
was NP , and so on. The product of these values represents
the inter-chunk fitness for a sequence of chunks.
In order to compute a unique fitness value, several evo-

lutionary multi-objective optimization techniques including
aggregation (i.e., weighted sum of the objective functions),
SPEA-II (the improved Strength Pareto Evolutionary Algo-
rithm ) and the Non-Dominated Sorting Genetic Algorithm
(NSGA-II) were assessed [9]. However, the Precision and
Recall values of the model using NSGA-II were observed
to outperform the other methods hence it was used for the
current experiments.
The overall fitness of an individual which considers the

objective functions above is computed by a multi-objective
optimization strategy based on the NSGA-II algorithm [9].
This uses a ranking method that emphasizes on the good
solution points and tries to maintain a population of such
points throughout the procedure. NSGA-II maintains diver-
sity in its population by a crowding method, which elimi-
nates focusing on certain regions of the solution space, and
explores different regions in the Pareto front. The concept of
non-dominated sorting is underlined by the ranking selection
method which keeps track of the good solution points, and
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Figure 1. Example of a Multi-dimensional Representation for a Chromosome

the niche method which maintains stable subpopulations of
these solutions [9].
Genetic Operators
In order to modify and improve the individuals of the pop-

ulation, new genetic operators have been designed including
selection, crossover, and mutation.
• Selection
A selection operator picks up the best hypotheses to be
reproduced based on the fitness values. For this model,
a binary tournament selection strategy was applied
[8]. This randomly selects pairs of individuals from
the whole population and those having highest fitness
values are considered for reproduction.

• Crossover
A new constrained crossover operator was designed
to exchange chunks from two different hypotheses of
the population. For this, two random individuals are
randomly selected, a single crossing point is chosen and
the chunks are exchanged. The single-point crossover
exchanges chunks from two selected individuals at a
ramdonly selected point and generates two new off-
spring according to a crossover probability Pc. Since
that only valid hypotheses must be generated, if the
crossing point falls within a chunk’s segment, the
operator automatically corrects the resulting crossover
so to obtain valid chromosomes. Consequently, the size
of the chunk may vary as a result of a new change in
a word’s assigned chunk.

• Mutation
For the mutation operator, a random modification of
each chunk is made for a sequence of words with a
mutation probability (Pm) using a pool of available
chunks.

The overall structure of the GA for evolutionary chunking
using these new operators can be seen at figure 2.
The first step is to generate the initial population of

sequences of chunks for an input sentence. Next, fitness
evaluation using the NSGA-II algorithm is used to rank the
population on the basis of their Pareto dominance (i.e., the
fitness is proportional to the number of solutions dominated
by each hypothesis). A large dummy fitness value is assigned
to all the non-dominated individuals of the population, after
which they are shared. In the sharing procedure, a selection
operation divides the original fitness value by a number
proportional to the size of that group. Then these individuals
are temporarily kept aside, and the rest of the population is

ranked in a similar manner, assigning lower dummy fitness
values, as the procedure proceeds. This dummy fitness value
plays an important part in the reproduction of the next
generation, and intuitively, individuals with larger fitness
values produce more offspring than the rest of the popu-
lation. Hence, NSGA-II reduces multiple objectives into a
single dummy fitness function, which allows it to work with
two objective functions for chunking. Once the population
has been evaluated hypotheses are selected for reproduction
based on a binary tournament as previously explained. Next,
crossover and mutation operations are applied to the selected
chromosomes. Finally, the new offspring replaces the previ-
ous individuals to generate the next set of hypotheses.

IV. EXPERIMENTS AND RESULTS
In order to assess the effectiveness of the proposed

evolutionary model for chunking, a series of experiments
was carried out. A first part aimed to tune the different
parameters of the GA and a second part assessed how
accurate the model was compared to other state-of-the-art
approaches.
The different experiments were based on the standard

annotated corpus Wall Street Journal (WSJ) from which
chapters 15 to 18 were used for training (200.000 words)
and chapter 20 was used for testing (50.000 words). This
corpus contains English sentences annotated with POS tags.
These sentences also contain their corresponding chunks
which are later removed for testing purposes. Approximate
chunk distribution for the WSJ corpus is as follows: 51%
for Noun Phrase (NP), 20% for Verb Phrase (VP), 20% for
Prepositional Phrase (PP), 4% for Adverb Phrase (ADVP),
and minor proportions for the other syntactical groups. For
evaluation and comparison purposes, the methods only use
the NP chunk as this becomes one of the most frequent,
useful and popular chunks for several current chunkers.

A. Tuning the Model
In order to adjust the evolutionary model, different con-

figurations for the GA were evaluated using the training
data from WSJ. These considered experiments aiming at
analyzing the robustness of the method under different
settings such as the population size (PopSize), the num-
ber of generations (NumGen), and the probabilities of
crossover (Pc) and mutation (Pm), respectively. Tests are
carried out by considering the best of six runs of the GA
for every setting. The best configurations were determined
by using standard performance metrics of Precision (P ),
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Generate an initial population from random sequences of chunks
Evaluate fitness based on NSGA-II using objective values

(intra-chunk and inter-chunk)
t=0
While (max. number of generations is not achieved)

Select hypotheses for reproduction based on tournament
Apply Crossover operator with Pc

Apply Mutation operator with Pm

Evaluate fitness based on NSGA-II using objective values
(intra-chunk and inter-chunk)
Generate next population from modified chromosomes
t = t + 1

End-While

Figure 2. Multi-Objective GA for Chunking

Recall (R) and the F − score. Final experiments suggested
that best performance (F − score > 0.92) is achieved
for PopSize = 800, NumGen = 800, Pm = %1 and
Pc = %100.

B. Effectiveness of the Model

In order to assess the relative effectiveness of our evo-
lutionary model for chunking, the results obtained for the
different real experiments were compared with those of the
best competitive state-of-the-art chunking techniques using
chapter 20 of WSJ as test data. The main results of the NP
chunkers can be seen in table I.
The results of our evolutionary model for NP chunking

can be seen in table II using different population sizes.
Parameters of the GA considered Pc = 1.0, Pm = 0.01
on the WSJ corpus and produced a Precision of 92.5%
and a Recall of 93.1% (F − score = 92.7%). This shows
the promise of the method when comparing with current
methods. Note that most of the current methods requires a
significant training corpus to produce these results.

Num PopSize Precision Recall F-score
1 400 89.3% 87.2% 88.2%
2 820 92.3% 89.1% 90.6%
3 850 92.5% 93.1% 92.7%

Table II
PERFORMANCE OF OUR MODEL FOR NP CHUNKING

The table suggests that the effectiveness of our model
might not be significantly affected when reducing the size
of the training corpus. In order to investigate the robustness
of model on different sizes of training corpus, further
experiments were carried out. The rationale for this is that
creating training corpus for chunking is an extremely costly
task. In addition, current techniques strongly depend on this

corpus to produce better results. Hence methods which are
less dependent on the size of the training data are preferred.
The model was trained by using the whole training data

as used by other chunking techniques (table I) and the
results are shown in figure 3 in terms of the F − score
metrics. The GA considered the parameters PopSize = 800,
NumGen = 800, Pc = 1.0, Pm = 0.01.

Figure 3. Performance versus size of training data

The graphic shows that as the size of the training corpus
slightly decreases, the effectiveness does not show a sig-
nificant drop for F − score. Significant decreases are not
observed until reducing 70% of the training corpus. This
suggests that the model is not highly dependent of the size
of the corpus so in terms of used resources this may be even
more efficient than some of the state-of-the-art chunking
methods.
Despite outperforming some of the current techniques, the

lower effectiveness when compared with the best of table I
may be due to the distribution of the tags in the training
corpus. This may not directly affect the generation of
hypotheses, but the way the fitness evaluation is computed.

V. CONCLUSIONS
In this work, a new evolutionary model for natural lan-

guage chunking was proposed. The model uses Genetic
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Technique Precision Recall F-score
Memory-based Learning 94.04% 91.00% 92.50%
Support Vector Machine 93.89% 93.92% 93.91%
Hidden Markov Model 92.30% 92.68% 92.49%
Transformation-based Learning 91.80% 92.30% 92.05%

Table I
PERFORMANCE OF SOME STATE-OF-THE-ART NP CHUNKING APPROACHES

Algorithms and multi-objective optimization techniques in
order to assess candidate solutions in terms of quality
metrics involving intra-chunk and inter-chunk probabilistic
associations. A training corpus of annotated sentences with
lexical and syntactical tags is used to capture training
information that guides the GA toward the best solutions.
Experiments for NLP chunking, show the promise of

the GA-based model for chunking syntactical groups such
as noun phrases from a corpus of unseen natural-language
texts. Compared with state-of-the-art chunking techniques,
the performance of the model makes it very competitive.
In addition, settings involving reductions on the amount
of required training corpus also show that the model’s
performance does not significantly drop when reducing the
size of the training data. That is, the method may require
less training corpus to achieve the previous results which is
a practical advantage as annotating training corpus for text
analysis purposes is an extremely demanding task.
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