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Abstract—The huge bandwidth of optical fibres is exploited
through wavelength division multiplexing technology, which
introduces new complexities in the routing problem. In this con-
text, the wavelength converter allocation problem has become
a key factor to minimize blocking. The wavelength converter
allocation problem has been treated as a mono-objective
problem minimizing the number of wavelength converters or
minimizing blocking; however, both criteria are in conflict
with each other. Therefore, the wavelength converter allocation
problem is studied here in a pure multi-objective optimization
context for more appropriate decision making. This work
proposes a multi-objective optimization approach based on
an evolutionary algorithm which simultaneously minimizes
blocking and the number of wavelength converters. Extensive
simulations on three real optical networks show promising
results in the sense that our algorithm generates the trade-off
curve between blocking and the number of converters needed,
and outperforms a recently proposed approach.

Keywords-Optical Network; Wavelength Converter; Evolu-
tionary Algorithm; Multi-Objective Optimization;

I. INTRODUCTION

Wavelength division multiplexing (WDM) is a mature
technology that has solved the electronic bottleneck problem
[1]. In this context, WDM networks provide a larger band-
width at the expense of a higher technological complexity.
WDM networks have several critical issues such as the
routing and wavelength assignment (RWA) problem and
the WDM network design problem, areas of active research
[2]-[1]. The RWA approach aims to calculate the optimal
lightpath, which is conformed by optical fibres and assigned
wavelengths. The main objective of a WDM network design
is to minimize request blocking with the minimum invest-
ment and management costs [1].

Typically, a WDM network imposes the use of just one
wavelength in the whole lightpath. This is known as the
wavelength continuity constraint problem, which is the main
issue that causes the blocking problem [3], [1]; this is,
the incapability of assigning a lightpath to a request. To
overcome the blocking generated by this constraint it is nec-
essary to add wavelength converters into optical routers. A
wavelength converter is a device that changes a wavelength
(λ) into another wavelength (λ′). Deciding how many and

where to locate these wavelength converters is a particular
design problem known as the wavelength converter allo-
cation (WCA) problem, which is NP-hard when dealing
with irregular network topologies [4]. The WCA problem
has been treated as a mono-objective optimization problem.
More specifically, there are two approaches reported in the
literature: (a) minimize the number of wavelength converters
subject to a given blocking probability bound [2], and (b)
minimize the blocking probability subject to a given number
of wavelength converters [5]. Other works [6], [5] have de-
tected the existence of conflict between the minimization of
the blocking probability and the minimization of the number
of wavelength converters; i.e., in order to get solutions with
minimal blocking probability it is necessary to locate a large
number of wavelength converters. This conflict implies that
the WCA problem should be treated in a multi-objective
context. Therefore, this work proposes to deal with it as
a multi-objective optimization problem (MOP) to be solved
with a multi-objective evolutionary algorithm (MOEA) [7].
This algorithm simultaneously minimizes blocking and the
number of wavelength converters. This study considers a
dynamic traffic scenario. In this context, a decision will be
carried out within a set of promising trade-off solutions.

This work is organized as follows: Section II states the
problem. In Section III, major works related to the state-of-
the-art are discussed. The proposed evolutionary approach
is presented in Section IV. Experimental results are given
in Section V. Finally, conclusions and ideas for future work
are exposed in Section VI.

II. PROBLEM STATEMENT

Several architectures with conversion capability have been
proposed [4]. A scheme of shared converters has been con-
sidered in this work. Shared schemes are efficient because
they have converters that can be used by all input channels.
In particular, this paper considers a node architecture where
converters are shared by all input channels. This architecture,
shown in Figure 1, is known as Share-per-node wavelength
converter router (SNWCR) [8]. It is composed of F input
ports and F output ports, F de-multiplexers and F multi-
plexers, m wavelength converters and one optical switch.
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When using a set of wavelengths Λ, the optical switch is
made of (F × |Λ| + m) input and output ports, where |·|
indicates cardinality of a set.

Figure 1. Wavelength converter router.

At the same time, this work considers a complete-range of
wavelength conversion because of its low blocking charac-
teristic [1]. In a complete-range wavelength conversion, each
wavelength λ ∈ Λ can be changed into any other wavelength
λ′ ∈ Λ.

For the sake of completeness, the next nomenclature
and basic symbols used in this article, are defined:
G Direct graph representing a network topol-

ogy.
V Set of nodes in G.
L Set of links in G.
v ∈ V Optical node.
(v, w) ∈ L Direct link, where v, w ∈ V .
Dv Degree of node v ∈ V . This is equal to

number of optical fibres in a node v ∈ V .
s, d ∈ V Source and destination nodes of a request.
to, tf Star time and finishing time of a request.
kv Maximum number of wavelength convert-

ers endured by node v ∈ V .
kmax Maximum value in the set{

k1, k2, ..., k|V |
}

; kmax = maxv∈V {kv}.
xv Number of wavelength converters at node

v ∈ V .
x A solution to the WCA problem; x =[

x1, x2, ..., x|V |
]
.

c Unicast request; c = (s, d, to, tf ).

C Set of unicast requests generated by sim-
ulation of a given traffic pattern; C =
{c1, c2, . . . , c|C|}.

Ψ Set of dynamic traffic patterns; Ψ =
{C1, C2, . . . , C|Ψ|}

Bx
c Variable indicating blocking; if request c

was blocked in a simulation of solution x,
then Bx

c = 1, otherwise Bx
c = 0.

Ω Utilization Matrix of size
(|V | × (kmax + 1)), in which the
(v, j)-th entry denotes the percentage
of time that j wavelength converters are
being utilized simultaneously at node
v ∈ V , where j ∈ K = {0, 1, . . . , kmax}.

Y i
xv

Binary Variable; if i ≤ xv , then Y i
xv

= 1,
otherwise Y i

xv
= 0.

A. Standard Problem Formulation

A recent work [5] proposed to solving the WCA problem
as a mono-objective optimization problem under an indirect-
simulation approach. Statistical information from the simu-
lation stage is consolidated in Ω. Given a topology G, the
utilization matrix Ω, and a fixed number of wavelength con-
verters (NWC), a differential evolution algorithm computes
a solution x that approximately maximizes the sum of total
utilization Θ in the optimization stage according to:

Maximize Θ(x) =
∑
v∈V

∑
j∈K

Ωv,j · Y j
xv

(1)

subject to:

xv ≤ kv = |Λ| ×Dv ∀v ∈ V (2)∑
v∈V

xv ≤ NWC (3)

Numerical experiments show that minimizing (1) ensures
the minimization of the blocking probability.

B. Multi-objective Formulation

This work proposes to solve the WCA problem as a multi-
objective optimization problem under a direct-simulation
approach. Given a topology G, a RWA algorithm and a set of
dynamic traffic patterns Ψ, the goal is to calculate a solution
x that simultaneously minimizes the Number of Wavelength
Converters f1(x) and the Number of blocked requests f2(x):

Minimize y = f(x) =
[
f1(x)
f2(x)

]
(4)

where
f1(x) =

∑
v∈V

xv (5)

f2(x) =
∑
c∈C

∑
C∈Ψ

Bx
c (6)
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subject to restriction given by equation (2), which assures
that wavelength converters installed at a node v do not go
beyond a maximum number kv imposed by the degree of a
node.

III. RELATED WORK

Recently, some works have proposed WCA approaches
that adapt to any RWA algorithm [9], [5], [4]. They use direct
or indirect traffic simulations as a fundamental tool. A direct-
simulation approach evaluates each solution applying a RWA
algorithm under a dynamic traffic pattern [9]. An indirect-
simulation approach, on the other hand, solves problems in
two stages: simulation stage and optimization stage [5], [4].
Given a traffic pattern and all available resources in a WDM
network, simulation stage is carried out to obtain statistical
information about the amount of time wavelength converters
are used at each node. With the previous information, an
indirect-simulation approach begins the optimization stage.

Algorithms based on indirect-simulations are simpler and
faster than those based on direct-simulations, but they
depend on statistical information [5]. However, a direct-
simulation gives full information about the performance of
the proposed solution [9]. Other works reported heuristic
approaches, which allocate a great quantity of wavelength
converters at random [8], [10]. Their objective was mainly
to analyze the advantage of using wavelength conversion in
WDM networks [5].

Roy and Naskar [5] recently proposed an indirect-
simulation approach based on a differential evolution al-
gorithm (DEA) [11] as the optimizer, and the use of a
utilization matrix (Ω) as the storage of statistical infor-
mation. They considered a fixed number of wavelength
converters to be allocated in a SNWCR architecture (Figure
1). Essentially, Ω is obtained from the simulation stage and it
represents the overall usage of wavelength converters, for the
considered traffic pattern [4]. Their work is an improvement
over the one of Xiao and Leung [4], which was the first
to propose an indirect-simulation approach using a heuristic
as the optimizer. In the optimization stage, the DEA’s main
objective is to find how many wavelength converters should
be allocated at each node in such a way that the sum of the
total utilization (Θ) is maximized. A solution with high Θ
should give low blocking probability according to reports in
[4] and [5].

Proposed Approach. This work has adopted the direct
simulation approach considering its high ability to work with
several RWA algorithms. An evolutionary algorithm will be
implemented under this approach, in a similar way to what
has been done in [9] but, this time, in a pure multi-objective
context.

IV. EVOLUTIONARY ALGORITHM

We propose to use the Strength Pareto Evolutionary
Algorithm (SPEA) [12] to solve the WCA problem. SPEA is

a second generation multi-objective evolutionary algorithm
(MOEA), successfully used to solve several engineering
problems [7]. SPEA is based on three populations: the
current population (PA) which is replaced by individuals
from the evolutionary population (PX), and an external
population (PE) that keeps the best individuals calculated
during the evolutionary cycles.

In this multi-objective optimization context, the best indi-
viduals (or solutions) are known as non-dominated. Let us
consider individuals x and x′. It is said that x dominates x′

(x � x′) if every objective function of x is better than or
equal to the same objective function of x′, and x is strictly
better than x′ in at least one objective [7]. Pareto Set (PS)
is a set of non-dominated solutions considering the whole
solution space and its evaluation in the objective space is
called Pareto Front (PF) [7]; i.e. PF = f(PS) . At the
end of the evolutionary process it is desirable that PE = PS.
The chromosome representation used in this work and the
evolutionary operators are explained below.

Chromosome. Each individual is represented by a chro-
mosome x, which is composed of |V | genes. Each gene
xv , represents the amount of wavelength converters to be
installed at node v ∈ V (xv ∈ {0, 1, ..., kv}). It should be
noticed that every solution x should satisfy restriction (2).

Evaluation. The number of wavelength converters repre-
sented by f1(x) is the sum of the xv values given by the
genes, as shown in equation (5). Given a RWA algorithm,
a topology G and a set of dynamic traffic patterns Ψ,
the blocking number of each individual x is assessed by
applying the direct-simulation approach. The implemented
simulation is given in Algorithm 1, of Section V.

Adjustment. After assessing the blocking number, the
unused wavelength converters are removed. For example, let
us assume that xv = 4 and the simulation registered only 3
simultaneous wavelength conversions at node v ∈ V . Then,
the value of xv is adjusted to xv = 3. This last process
is a local optimization process that has the objective of
accelerating convergence.

Fitness. Each individual receives a quality value or fit-
ness which is calculated according to the Strength Pareto
approach proposed in [12]. The fitness of one chromosome
is calculated on the base of its number of wavelength
converters f1(x) and blocking number f2(x). Basically,
each individual x ∈ PE receives a value of strength
proportionally to the number of individuals it dominates.
The fitness of each individual in PE is equal to its strength.
Each individual x′ /∈ PE gets fitness inversely proportional
to the sum of the individuals strengths that belong to the PE
and dominate it [12].

Selection. We have adopted a binary tournament approach
given its simplicity and robustness [7].

Crossover. Considering the structure of the chromosome,
the one-point crossover operator was considered in this
study. The probability pc of applying crossover was selected
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according to [7].
Mutation. The mutation operator was implemented in

two stages. First, an individual is randomly selected with
a probability pm. Then, each gene is modified with a
probability pg .

V. EXPERIMENTAL RESULTS

This section presents the traffic model we use, the as-
sumptions imposed on the problem in question and the
experimental results of the comparison between the proposed
SPEA approach and the DEA algorithms. The tests were
executed on an Intel Pentium IV, 3.2 GHz and 1GB of RAM
personal computer. The SPEA and DEA algorithms were
implemented in Java 1.6 under Windows XP.

A. Traffic Models and Simulation Algorithm

A dynamic traffic pattern C ∈ Ψ is composed of Γ
time slots and |C| requests. Γ is selected according to a
maximum simulation time (MST) and an estimated request
arrival period of time (PT). This is, Γ can be estimated
as Γ = MST/PT. The direct-simulation algorithm is carried
out according to Algorithm 1. Given a dynamic traffic
pattern C, a topology G, a RWA algorithm and a solution
x, Algorithm 1 calculates the blocking number f2(x) of
solution x, according to equation (6).

Direct-Simulation[Ψ, G, RWA, x]
1: f2(x)=0
2: for all C ∈ Ψ ∧ t ∈ {1, 2, . . . ,ΓC} do
3: for all c ∈ C do
4: if t = c (tf ) then
5: free lightpathc resources in G
6: for all c ∈ C do
7: if t = c (to) then
8: compute a lightpathc with RWA
9: if lightpathc = Blocked then

10: f2(x)=f2(x)+1
11: else
12: reserve lightpathc resources in G
13: return f2(x)

Algorithm 1: Pseudo-code for a Direct-Simulation.

B. Assumptions

In the study that follows we assume that:
• The bandwidth of every request is equal to the band-

width of a wavelength, i.e. each request uses one
lightpath.

• The number of optical fibres at each link is one.
• All optical fibres have 10 wavelengths (|Λ|=10).
• For a given topology G, we consider the maximum

supported load capacity as LM = |V | · χ · |Λ|, where
χ is the average number of links of the nodes.

• The Shortest Path (SP) routing and First-Fit (FF) wave-
length assignment algorithms [1] were used to build the
utilization matrix Ω for our simulations as proposed in
[5].

• The Shortest Path Aware (SPA) routing and First-Fit
(FF) wavelength assignment algorithms [1] were used
to evaluate the solutions using the direct simulation
approach.

• For simplicity, the set of dynamic traffic patterns Ψ
consists of a single set C, i.e. Ψ = {C}.

C. Outline of the experiment

The experimental tests have as main objective a fair com-
parison between SPEA and DEA approaches in the WCA
problem. Note that, SPEA is a multi-objective approach
while DEA is a mono-objective approach. DEA takes as
input the number of wavelength converters (NWC) to be
allocated. To achieve a fair comparison DEA is executed
for each value of NWC for which a Pareto solutions was
calculated using SPEA. This way, DEA can get a set of
trade-off solutions similar to the one found with SPEA.
Given a topology G and a RWA algorithm, the details of
our experimental tests are given below:

1. Dynamic Scenario. The set of dynamic traffic patterns
Ψ is generated with Γ = 1000, an uniform distribution was
considered for simplicity.

2. Statistical use. Utilization matrix Ω is calculated ap-
plying a simulation considering a set of dynamic traffic Ψ,
a topology G, a RWA algorithm, and all available resources
of G in the network.

3. SPEA executions. SPEA is executed 10 times obtaining
10 approximate Pareto Fronts. The union of all these 10
Pareto Fronts is calculated. Then, dominated solutions are
deleted to get a good Pareto Front approximation PF ∗spea.

4. DEA executions. After finishing the executions of the
SPEA algorithm, DEA executions begin. A set of trade-off
solutions is obtained using the following steps: (a) DEA is
run 10 times for each NWC found with SPEA, obtaining a
set of solutions PFdea. (b) The blocking number f2(x) of
solutions x ∈ PFdea is calculated applying direct simulation
(Algorithm 1) and the dominated solutions are deleted from
PFdea to obtain a good Pareto Front approximation PF ∗dea.

5. A consolidated set of the best solutions PFbest for
the considered problem is obtained calculating the union
of PF ∗dea and PF ∗spea. Then, non dominated solutions are
deleted to get PFbest.

6. Let a ∈ {SPEA,DEA} be the algorithm, so the
quality of a Pareto Front PF ∗a is calculated using three
quality metrics given by vector M = [M1,M2,M3] [7],
where:

(a) M1 is known as Overall Non-dominated Vector Gen-
eration Ratio to the best Pareto Front PFbest:

M1(a) =
|PF ∗a ∩ PFbest|
|PFbest|

(7)
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Values of M1(a) close to 1.0 indicates that many solutions
from PF ∗a belong to PFbest.

(b) M2 is also known as Generational Distance, which
reports how far, on average, PF ∗a is from PFbest:

M2(a) =
(
∑

y∈PF∗a
min

{
(d2

y,y′ |y′ ∈ PFbest

}
)

1
2

|PF ∗a |
(8)

where dy,y′ indicates the Euclidean distance between solu-
tions y = f1(x) and y′ = f1(x′). When PF ∗a is close to
PFbest, M2(a) gets low values.

(c) M3 represents the Accuracy to the best Pareto Front
PFbest, it is mathematically defined as:

M3(a) =
∑

y∈PF∗a

∑
y′∈PFbest

ACy,y′/|PF ∗a | (9)

where ACy,y′ = 1 if y = y′, otherwise ACy,y′ = 0. If all
solutions of PF ∗a belong to PFbest then the accuracy of
PF ∗a is one.

D. Results and Discussion

The experimental tests which are presented below were
performed on three network topologies [1]: a) National Sci-
ence Foundation (NSF) composed of 14 nodes and 42 links,
b) Network France (NF) with 43 nodes and 142 links and c)
Nippon Telephone and Telegraph (NTT), with 55 nodes and
144 links. The evolutionary parameters are empirically set
to: pc = 1, pm = 0.3, pg = 0.4 and 100 individuals conform
each population, i.e. |PA| = |PX| = 100. The stopping
criterion applied to DEA was 1000 iterations. On the other
hand, two stopping criteria are considered for SPEA: a)
100 consecutive iterations without changes in the external
population (PE) or b) a maximum of 1000 iterations.

The steps summarized in Section V-C were applied to
each topology under the following traffic scenarios: low load
|C|low = 30%LM , half load |C|half = 60%LM , high load
|C|high = 90%LM and saturation load |C|sat = 100%LM .
The experimental results for saturation traffic are presented
in Figure 2. Other tests are omitted because of space
constraints.

A summary of all experimental results considering vector
performance metrics M are given in Table I. In almost all
scenarios it can be noticed that PFbest

∼= PF ∗spea, this is the
reason why the best Pareto Front PFbest was not included
in Figure 2. All experimental results report that PF ∗spea is
better than PF ∗dea.

Figure 2 and Table I show that SPEA has contributed with
better solutions than DEA in all experimental tests. Using the
concepts of dominance Pareto, the quality metrics indicated
that Mspea �Mdea in all scenarios. However, it is important
to highlight that some good solutions calculated by DEA
were not discovered by SPEA on the NSF topology, as
shown in Table I. Note that, the NSF topology is smaller than

Figure 2. Non dominated Pareto Fronts of (a) NSF, (b) NF and (c) NTT
Network to saturation traffic.

the NF and NTT topologies. This suggests that DEA gen-
erates good solutions for low complexity topologies. In this
context, we can say that statistical information calculated by
simulation is a good approach for low complexity topologies.
For high complexity topologies (as NF and NTT), SPEA
performance better although it spent more computation time
than DEA.

Finally, Table II presents a better appraisal on the ex-
perimental results, a consolidated time in seconds spend
per solution (s/sol) (see column TRT/TSA), where TRT
represents the full running time of an experimental test, and
TSA is the total number of trade-off solutions calculated by
an algorithm in all scenarios, while TSAbest is the total
number of non dominated solutions (best set) obtained by
an algorithm. We can observe that, SPEA running time was
longer than the one of DEA. SPEA spent 10% more time
than DEA because of the evaluations based on a direct-
simulation approach. However, considering all solutions of
PF ∗a , the worn-out time for solutions is 40% less for SPEA
than for DEA. On the other hand, the solutions contributed
to the best Pareto Fronts by SPEA improve a great deal the
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Table I
EXPERIMENTAL RESULTS. COMPARISON METRICS BETWEEN SPEA

AND DEA FOR DIFFERENT TRAFFIC SCENARIOS.

Net a
Traffic Scenarios

low load half load
M1 M2 M3 M1 M2 M3

NSF SPEA 0.93 0.06 1 0.97 0.03 1
DEA 0.13 1.2 0.29 0.03 6.81 0.08

NF SPEA 1 0 1 1 0 1
DEA 0 35.4 0 0 57.7 0

NTT SPEA 1 0 1 1 0 1
DEA 0 27.4 0 0 37.5 0

high load saturation load

NSF SPEA 1 0 1 0.97 1.18 1
DEA 0 9.8 0 0.03 11.09 0.06

NF SPEA 1 0 1 1 0 1
DEA 0 56.7 0 0 34.7 0

NTT SPEA 1 0 1 1 0 2
DEA 0 54.4 0 0 50.6 0

ones calculated by DEA. Notice the huge difference (over
50 times) in favour of SPEA in the last column of Table II.

Table II
TOTAL RUN TIME.

a TRT
All Solutions Solutions in PFbest

TSA TRT
TSA

TSAbest
TRT

TSAbest

SPEA 486453 s 237 sol 2053 s/sol 234 sol 2079 s/sol
DEA 435171 s 113 sol 3851 s/sol 4 sol 108793 s/sol

VI. CONCLUSION AND FUTURE WORK

This paper solves the WCA problem as a MOP using
a MOEA, considering a direct-simulation approach. In this
context, the main contribution of the proposed approach is its
ability to find a complete set of Pareto optimal solutions to
best satisfy designer’s needs. Experimental results suggest
that the proposed approach is promising for this network
design problem outperforming state of the art DEA. How-
ever, it is important to emphasize that algorithms based on
indirect-simulation approach are also effective when small
size topologies are considered. As future work, a more
realistic cost function of WDM network design will be
considered.
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