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Abstract—Energy is a primary constraint in the design and
deployment of wireless sensor networks (WSNs) since sensor
nodes are typically powered by batteries with a limited capacity.
Since radio communication is, in general, the most energy
hungry operation in a sensor node, most of the techniques
proposed to extend the lifetime of a WSN have focused on
limiting transmission/reception of data, for instance, through
data compression. Since sensor nodes are equipped with limited
computational and storage resources, enabling compression
requires specifically designed algorithms. In this paper, we
propose a lossy compressor based on a differential pulse
code modulation scheme with quantization of the differences
between consecutive samples. The quantization parameters,
which allow achieving the desired trade-off between compres-
sion performance and information loss, are determined by a
multi-objective evolutionary algorithm. Experiments carried
out on three datasets collected by real WSN deployments show
that our approach can achieve significant compression ratios
despite negligible reconstruction errors.
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processing;

I. INTRODUCTION

A wireless sensor network (WSN) consists of a set of
autonomous systems, called sensor nodes, communicating
among themselves and deployed in large scale (from tens to
thousands) for applications such as environmental, habitat
and structural monitoring, disaster management, equipment
diagnostic, alarm detection, and target classification. Each
node is a small device able to collect information from the
surrounding environment through one or more sensors, to
elaborate this information locally and to communicate it to
a data collection center called sink or base station, using
generally node to node - multi-hop data propagation [1],
[2].

To this aim, nodes are equipped with a processing unit
with limited memory and computational power, a sensing
unit for data acquisition from the surrounding environment
and a communication unit, usually a radio transceiver. In
general, each sensor produces a stream of data which has
to flow from the sensor node itself to the sink. Further,
nodes which act as routers in a multi-hop propagation

have also to store data coming from other nodes and to
forward them towards the sink. This requires to face with a
main technological constraint: nodes are powered by small
batteries which typically cannot be changed or recharged.
Since radio communication is in general the main cause of
power consumption, transmission/reception of data should
be limited as much as possible. Data compression appears a
very appealing and effective tool to achieve this objective.

Two approaches have been followed in the literature:
• to distribute the computational cost on the overall

network [3], [4], [5];
• to enable compression acting at single node indepen-

dently of the others [6], [7], [8].
The first approach is natural in cooperative and dense

WSNs where data measured by neighbouring nodes are
correlated both in space and in time. Thus, we can apply
distributed transforms or estimate distributed models which
allow decorrelating the data measured by sensors, and,
therefore, representing these data by using fewer bits.

The second approach has been generally undertaken by
adapting some existing dictionary-based compression algo-
rithms to the constraints imposed by the limited resources
available on the sensor nodes. For instance, the lossless com-
pression algorithms proposed in [9], [6], [7] are, respectively,
purposely adapted versions of LZ77, Exponential-Golomb
code and LZW, respectively.

Lossless compression may be inefficient for sensors used
in tiny commercial nodes. Indeed, such sensors, being gen-
erally cheap, collect measures affected by a considerable
noise. Noise increases the entropy of the signal and therefore
hinders lossless compression algorithms to achieve consid-
erable compression ratios. The ideal solution would be to
adopt on the sensor node a lossy compression algorithm in
which the lost information just coincides with the noise.
Thus, we could achieve high compression ratios without
losing relevant information.

To this aim, we exploit the observation that data typically
collected by WSNs are strongly correlated. Thus, differ-
ences between consecutive samples should be regular and
generally very small. If this does not occur, it is likely
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that samples are affected by noise. To de-noise and simul-
taneously compress the samples, we adopt a Differential
Pulse Code Modulation (DPCM) scheme [10], often used
for digital audio signal compression. The difference between
consecutive samples is first quantized and then encoded by
using an entropy encoder. Of course, different combinations
of the quantization process parameters determine different
trade-offs between compression performance and informa-
tion loss. To generate a set of optimal combinations of the
quantization process parameters, we adopt one of the most
popular Multi-Objective Evolutionary Algorithms (MOEAs),
namely NSGA-II [11].

To execute NSGA-II, we first collect a short sequence of
samples from the sensor node. Then, we apply a popular
de-noising technique to this sequence so as to obtain a
sequence of de-noised samples. Each solution generated by
NSGA-II is evaluated by quantizing the original samples
and computing the information entropy of the quantized
sequence as first objective, the number of levels used in
the quantization process as second objective and the mean
square error (MSE) between the quantized samples and the
de-noised samples as third objective. The entropy and the
number of levels provide an indirect measure of the possible
obtainable compression ratios. The MSE quantifies the loss
of information with respect to the ideal (not affected by
noise) signal. Each solution in the Pareto front represents,
therefore, a quantizer with an associated trade-off among
information entropy, number of quantization levels and MSE
between the original de-noised and the quantized sequences
of samples. The user can therefore choose the combination
with the most suitable trade-off for the specific application.
We show that the lossy compression scheme obtained by
using the quantizers generated by the MOEAs in the DPCM
framework is characterized by low complexity and memory
requirements for its execution. Further, it is able to compute
a compressed version of each value on the fly, thus reducing
storage occupation.

We have tested our lossy compression approach on three
datasets collected by real WSN deployments. We show that,
though very simple, our approach can achieve significant
compression ratios despite negligible reconstruction errors,
computed as MSEs between the original de-noised and the
reconstructed signals. We have compared our approach with
a lossy compression algorithm, namely LTC [8], specifically
designed to be embedded in sensor nodes. We show that our
approach outperforms LTC in terms of compression ratios,
complexity (average number of instructions required to com-
press a sample) and reconstruction errors, thus representing
a very interesting state-of-art solution to the problem of
compressing noisy data in WSNs.

II. OUR LOSSY COMPRESSION SCHEME

Figure 1 shows the block diagrams of our compressor
and uncompressor. As regards the compressor, the generic

difference di is calculated by subtracting the most recent
reconstructed value ŝi−1 from current sample si. To use ŝi−1

rather than the original value si−1 avoids the well-known
accumulation of errors problem [12]. Difference di is there-
fore input to the quantization block Q. Let S = {S1, ..., SL}
be a set of cells Sl, with l ∈ [1..L], which form a disjoint
and exhaustive partition of the input domain D (difference
domain in our case). Let C = {y1, . . . , yL} be a set of levels
yl ∈ Sl, with l ∈ [1..L]. The bf(·)c block returns the index
li of the cell Sli which di belongs to. The index li is input to
the g (·) block, which computes the quantized difference d̂i,
and to the entropy encoder ENC, which generates the binary
codeword ci [13]. Since environmental signals are quite
smooth and therefore small differences are more probable
than large ones, an entropy encoder results to be particularly
performing. Indeed, these encoders encode more probable
indexes with lower number of bits.

(a) compressor

(b) uncompressor

Figure 1. Block diagrams of (a) the compressor and (b) the uncompressor.

In the uncompressor, the codeword ci is analyzed by the
decoding block DEC which outputs the index li. This index
is elaborated by the block g (·) to produce d̂i, which is added
to ŝi−1 to output ŝi.

Given a uniform quantizer with cell width ∆, the region
of the input space within ∆/2 of some quantizer level
is called the granular region or simply the support and
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that outside (where the quantizer error is unbounded) is
called the overload or saturation region [14]. When a good
rate-distortion performance is requested to a quantizer, the
zero-cell width is usually treated individually, even if the
quantizer is uniform. Since each input within the zero-cell
is quantized to 0, this cell is often called dead zone [15].

To guarantee a higher fexibility than a uniform quantizer,
but without complicating too much the quantization rule, we
split the granular region into two subregions. Then, we parti-
tion both the subregions uniformly with appropriate different
cell widths. It follows that each quantizer is determined by
the following five parameters: i) width of the dead zone
(DW ), ii) width of the cell in the first granular subregion
(FW ), iii) number of cells in the first granular subregion
(FN ), iv) width of the cell in the second granular subregion
(SW ), v) number of cells in the second granular subregion
(SN ).

To generate a set of different quantizers, we apply NSGA-
II [11] guided by three objectives: the information entropy
H , the quantization complexity C and the mean square error
MSEd between the quantized and the de-noised samples.
Information entropy H provides an indirect measure of the
possible obtainable compression ratios and is defined as:

H = −
L∑

l=1

pl · log2(pl) (1)

where pl is the probability mass function of quantization
index l.

Quantization complexity C is computed as the number
L of distinct quantization levels (and consequently indexes)
used in the quantizer:

C = 2 · (FN + SN) + 1 (2)

A lower value of C implies a lower number of symbols
needed to encode the quantization indexes and therefore a
lower number of bits in the binary codewords.

The MSEd quantifies the loss of information with respect
to the ideal (not affected by noise) signal and is defined as

MSEd =
1
N

N∑
i=1

(si − s∗i )2 (3)

where N is the number of samples, and si and s∗i are,
respectively, the original and the de-noised samples.

To de-noise the samples, we have adopted the wavelet
shrinkage and thresholding method proposed in [16]. We
have used the Symmlet 8 wavelet, a level of decomposition
equal to 5 and the soft universal thresholding rule for thresh-
olding the detail coefficients at each level. The de-noising
process has been performed by using standard Matlab built-
in functions.

Each chromosome codifies the five parameters which
define a quantizer. Each parameter is expressed as a positive
integer in the range [1, MAX] and is codified by a Gray

binary code. The value of MAX depends on the resolution
of the ADC on board the sensor node. On the other hand, to
constrain the upper bound of the range reduces the search
space and allows a better exploration. In our experiments
we set MAX = 64: it follows that each chromosome is
represented by a string of 30 bits. To compute H , C and
MSEd for each chromosome, we use a small set (training
set) of samples collected by the sensor on board the node.

We apply classical one-point crossover and one gene
mutation operators [17]. The crossover operator is applied
with probability PX ; the mutation operator is applied with
probability PM . In the experiments, we adopted PX = 0.9
and PM = 0.02.

III. EXPERIMENTAL RESULTS

In order to show the effectiveness and validity of our
lossy compression approach, we tested it against some real-
world temperature datasets. In particular, we used tem-
perature measurements collected from node 101 of the
FishNet Deployment (FN101 for short), node 10 of the
Grand-St-Bernard Deployment (GSB10) and node 20 of
the Gènèpi Deployment (LG20). These nodes have been
randomly extracted from the nodes used in the SensorScope
deployments [18]. The WSNs adopted in the deployments
employ a TinyNode node type [19], which uses a TI MSP430
microcontroller, a Xemics XE1205 radio and a Sensirion
SHT75 sensor module [20]. This module includes a bandgap
temperature sensor, which can sense air temperature in the
[−20oC, +60oC] range, coupled to an ADC and a serial in-
terface circuit. Each ADC output raw t is represented with
resolution of 14 bits and normally converted into a measure
t in Celsius degrees (oC) as described in [20]. The datasets
corresponding to the three deployments contain measures
t. On the other hand, our algorithm works on raw t data.
Thus, before applying the algorithm, we extracted raw t
from t, by using the inverted versions of the conversion
functions in [20].

Table I summarizes the main characteristics of the
datasets. We used the first N = 5040 samples from FN101
dataset as training set (TRAIN). Since this dataset is a
collection of temperature samples collected with a frequency
of 1 sample each 2 minutes, it is equivalent to consider a 7-
days training set. The extracted portion of the original signal
is first de-noised and then converted back to raw data.

Deployment Symb. Num. of Time interval
name Name samples From To

FishNet FN101 12651 09/08/07 31/08/07
Gr.St Bernard GSB10 23813 15/09/07 18/10/07

Le Gènèpi LG20 21523 04/09/07 03/10/07

Table I
MAIN CHARACTERISTICS OF THE THREE DATASETS.

We applied NSGA-II to the training set. We adopted a
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population of 100 individuals and stopped the algorithm after
10000 iterations. At the end of the optimization process
we obtained an archive of non-dominated solutions with
respect to the three objectives. In particular, the objective C
(quantization complexity) has allowed us to steer the search
of the best solutions towards the ones with the minimum
number of cells. Thus, during the evolution, the archive
is populated preferably by quantizers which, having equal
entropy and MSEd, are characterized by a lower number
of cells, thus avoiding to consider quantizers with a high
number of unused cells. This allows simplifying the imple-
mentation of the quantizer and consequently of the encoder.
Indeed, if the number of indexes is low, the encoder can use
a small dictionary to encode the quantization indexes. This
dictionary can be generated by using the Huffman’s algo-
rithm [21] which provides a systematic method of designing
binary codes with the smallest possible average length for a
given set of symbol occurrence frequencies. Once the binary
codeword representation of each quantization index has been
computed and stored in the sensor node, the encoding phase
reduces to a look-up table consultation.

The only critic point of this approach is that the Huffman’s
algorithm requires to know the probability with which the
source produces each symbol in its alphabet. To determine
an approximation of these probabilities, we can exploit again
the training set: for the specific quantizer, we compute the
probability with which each quantization index occurs when
quantizing the differences between consecutive samples of
the training set and build the optimal dictionary for that data
source by applying the Huffman’s algorithm.

If we project the final archive on the MSEd −H plane
(see Fig. 2), we realize that actually almost all solutions
maintain the non-dominance property with respect to the H
and MSEd objectives: only 12 out of 100 solutions result
to be dominated by one or more solutions in the archive.
In the figure, dots and crosses represent, respectively, non-
dominated and dominated solutions with respect to the
H and MSEd objectives. Non-dominated solutions in the
MSEd −H plane are actually the solutions of interest. We
can observe that the front is wide and the solutions are
characterized by a good trade-off between H and MSEd.

A. Selected Solutions and their validation

To perform an accurate analysis of some solution, we
selected from the front in Fig. 2 three significant quantizers:
solutions A and C characterized by, respectively, the highest
H and MSEd, and solution B characterized by a good
trade-off between H and MSEd. Table II shows the values
of the five parameters which characterize the three selected
quantizers.

Table III shows the quantization indexes, their probabili-
ties and the codewords assigned by the Huffman’s algorithm
when the selected quantizers are used in the proposed
scheme for compressing the training set.

Figure 2. Projection of the Pareto front approximation on the H−MSEd

plane.

Solution DZ FW FN SW SN
A 8 1 3 2 1
B 32 15 1 5 1
C 63 61 1 44 1

Table II
PARAMETERS OF SOLUTIONS A, B AND C.

To assess the performances of the three compression
algorithms generated by, respectively, the quantizers cor-
responding to A, B and C, we use the compression ratio
defined as:

CR = 100 ·
(

1− comSize

origSize

)
(4)

where comSize and origSize represent the sizes of the
compressed and original bitstreams, respectively.

Table IV shows the CR obtained for the three temperature
datasets and the three selected quantizers. Further, the table
reports the MSE between the original noisy and the recon-
structed samples, denoted as MSEn, and MSEd. We can
observe that all solutions achieve good trade-offs between
compression ratios and MSEs. Further, there do not exist

index Probability [A, B, C] Codeword [A, B, C]
−4 [0.1198,−,−] [101,−,−]
−3 [0.0163,−,−] [100011,−,−]
−2 [0.0200, 0.0052, 0] [100001, 1011, 1111]
−1 [0.0252, 0.0311, 0.0131] [10010, 11, 110]
0 [0.6309, 0.9258, 0.9730] [0, 0, 0]
1 [0.0023, 0.0311, 0.0139] [10011, 100, 10]
2 [0.0186, 0.0069, 0] [100010, 1010, 1110]
3 [0.0206,−,−] [100000,−,−]
4 [0.1258,−,−] [11,−,−]

Table III
CODEWORDS USED IN SOLUTIONS A, B AND C.
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Dataset Sol. CR MSEn MSEd

TRAIN
A 87.8919 0.0120 0.0036
B 92.9253 0.0206 0.0076
C 93.4834 0.0785 0.0351

FN101
A 87.4679 0.0676 0.0431
B 92.8128 0.0305 0.0097
C 93.4264 0.0905 0.0384

GSB10
A 86.1882 0.0436 0.0071
B 91.7356 0.0250 0.0043
C 93.1495 0.0887 0.0275

LG20
A 85.2867 0.1200 0.0241
B 89.7784 0.0422 0.0032
C 92.4888 0.0882 0.0173

Table IV
RESULTS OBTAINED BY SOLUTIONS A, B AND C ON THE THREE

DATASETS.

considerable differences between the results obtained in the
training set and the ones achieved in the overall FN101
dataset and the other two datasets. This result could be
considered enough surprising. Indeed, we highlight that both
the optimization and the Huffman’s algorithm were executed
using only a portion of the FN101 dataset. Thus, GSB10 and
LG20 datasets are completely unknown to the compression
scheme. We are conscious that the procedure adopted for
FN101 could have been exhaustively applied also to the
other datasets, in order to find ad-hoc solutions for the par-
ticular deployment. On the other hand, the three temperature
datasets were collected, though in different places and times,
by the same sensor nodes with the same type of temperature
sensor and the same sampling frequency: for this reason
it could be unnecessary to perform the optimization on
each dataset. To validate this assumption for each selected
solution, we executed the Huffman’s algorithm on a portion
of N = 5040 samples extracted respectively from GSB10
and LG20 datasets and used the resulting dictionaries to
compress the corresponding datasets. We verified that the
increases in CR are very small and almost negligible, thus
confirming the possibility of adopting the same encoding for
similar applications of the same sensor.

Solution B, which was chosen on the knee of the Pareto
front, is characterized by compression ratios comparable to
those achieved by solution C and by MSEd comparable
to those obtained by solution A. This solution therefore
represents a good trade-off between compression ratios and
MSEd. For this reason, we chose this solution to perform
the comparisons discussed in the following subsection.

B. Comparison with LTC

To assess the effectiveness of our approach, we adopt
the LTC algorithm proposed in [8]. LTC generates a set of
line segments which form a piecewise continuous function.
This function approximates the original dataset in such a
way that no original sample is farther than a fixed error e
from the closest line segment. Thus, before executing the

Dataset CR MSEn MSEd

[min, max] [min, max] [min, max]
FN101 [92.23, 92.98] [0.0390, 0.0450] [0.0972, 0.0121]
GSB10 [90.90, 91.90] [0.0540, 0.0600] [0.0140, 0.0172]
LG20 [88.65, 89.51] [0.0960, 0.1041] [0.0203, 0.0229]

Table V
CRS AND MSES ACHIEVED BY LTC ON THE THREE DATASETS.

LTC algorithm, we have to set error e. To determine the
value e, which allows LTC to achieve the compression ratios
obtained by our approach, we varied e from 0% to 200%
of the Sensor Manufactured Error (SME) with step 10%.
From the Sensirion SHT75 sensor data sheet [20], we have
SME = ±0.3oC for temperature. We found the following
intervals e = [120, 130], e = [150, 160] and e = [200, 210]
for, respectively, FN101, GSB10 and LG20.

Table V shows the intervals of CR, MSEn and MSEd

obtained by LTC on the three datasets in correspondence to
the intervals of error e. By comparing Table V with Table IV,
we can observe that our algorithm obtains lower MSEs than
LTC in correspondence to equal CRs. For example, for the
FN101 dataset and CR around 92.81, MSEd is between
0.0972 and 0.0121 for LTC, whereas MSEd = 0.0097 for
our algorithm.

Compression ratio and MSE are only two of the factors
which determine the choice of a compression algorithm
suited to WSNs. Another fundamental factor is complexity.
To assess the complexity of our algorithm and of LTC, we
have performed a comparative analysis on the number of
instructions required by each algorithm to compress data. To
this aim, we have adopted the Sim-It Arm simulator [22].
Sim-It Arm is an instruction-set simulator that runs both
system-level and user-level ARM programs. For LTC, we
have set e to the left extremes of the e intervals (we recall
that the left extremes are the most favourable cases for the
LTC algorithm). Table VI shows the numbers of instructions
required for compressing each dataset and the numbers of
instructions per saved bit for each temperature datasets and
their average values. We note that, though our algorithm
achieves lower MSEs at the same bitrate as LTC, it requires
lower number of instructions. We observe that, on average,
our algorithm executes 5.93 instructions for each saved bit
against 40.43 executed by LTC.

Dataset instr. instr/saved bits
our LTC our LTC

FN101 1065656 7440517 5.67 39.83
GSB10 2050525 13951039 5.86 40.26
LG20 1919529 12574212 6.20 41.18

average 1678570 11321923 5.92 40.43

Table VI
COMPLEXITY OF OUR ALGORITHM AND LTC.
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IV. CONCLUSIONS

Reducing the amount of data transmitted/received by a
sensor node is one of the most popular techniques to extend
the lifetime of tiny battery-powered sensor nodes. Due
to the limited resources available on board sensor nodes,
purposely-designed algorithms have been adopted. In this
context, we have proposed a lossy compression algorithm
based on a differential pulse code modulation scheme with
quantization of the differences between consecutive sam-
ples. To generate different combinations of the quantization
parameters corresponding to different optimal trade-offs
between compression performance and information loss, we
have applied NSGA-II on a subset of samples collected by
the sensor. We have tested our lossy compression approach
on three datasets collected by real WSN deployments. We
have shown that our approach achieves compression ratios
up to 93.48% with very low reconstruction errors and
outperforms LTC, a lossy compression algorithm purposely
designed to be embedded in sensor nodes, in terms of both
compression ratio and complexity.
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