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Abstract— This study explores experimentally the potential of 
linear and non-linear support vector machines with three 
kernels to predict insolvency of Irish firms. The dataset used 
contains selected financial features based on information 
collected from 88 companies for a period of six years. 
Experiments show that non-linear support vector machines 
(SVM) with polynomial kernel gives highest prediction 
accuracy and outperforms all other techniques used so far with 
the same dataset. SVM performance is estimated by various 
metrics, receiver operating characteristics analysis, and results 
are validated by the leave-one-out cross-validation technique. 

Keywords-supprt vector machines; data mining; insolvency 
prediction

I.  INTRODUCTION 
Financial analysis has developed a large number of 

techniques aimed at helping potential investors and decision 
makers. To estimate credit risk, investors usually apply 
scoring systems, which takes into account factors, such as 
leverage, earnings, reputation, etc. Due to lack of metrics and 
subjectiveness in estimates, sometimes decisions are 
unrealistic and not consistent. 

Generally, a prediction of firm insolvency can be viewed 
as a pattern recognition problem, and as such, it can be 
solved by using one of two approaches: structural, and 
empirical. The former derives the probability of a company 
for default, based on its characteristics and dynamics, while 
the later approach relies on previous knowledge and 
relationships in that area, learning from existing data or 
experience, and deploys the statistical or other methods to 
predict failure. 

Empirical techniques used for insolvency prediction can 
be considered as statistical and intelligent [6]. Statistical 
techniques include linear discriminant analysis (LDA), 
multivariate discriminate analysis (MDA), quadratic 
discriminant analysis (QDA), logistic regression (logit), 
factor analysis (FA), and some modern, such as support 
vector machines. Intelligent techniques include different 
neural network (NN) architectures, such as single-layer 
perceptron (SLP), multi-layer perceptron (MLP), 
probabilistic neural networks (PNN), auto-associative neural 
network (AANN), self-organizing map (SOM), ARTMAP 
neural networks, learning vector quantization (LVQ), 
cascade correlation neural network (Cascor), decision trees, 
case-based reasoning, evolutionary approaches, rough sets, 
soft computing (hybrid intelligent systems), operational 

research techniques including linear programming (LP), data 
envelopment analysis (DEA) and quadratic programming 
(QP), etc. 

LDA, MDA and logistic regression have been the most 
commonly used statistical models in this type of work. These 
techniques, however, have been sharply criticized because of 
assumptions about the linear separability, multivariate 
normality, and the independence of the predictive variables, 
as these constraints are incompatible with the complex 
nature, boundaries, and interrelationships of most of 
financial ratios [7]. The intelligent techniques have shown 
themselves to be more appropriate for that task as they do 
not rely on a-priori assumptions about the distribution of data 
[3]. 

The backpropagation NN is one of the most well known 
and widely used models of supervised NNs, but this 
approach is totally empirical as no complete theoretical 
explanation exists to obtain the optimal architecture.  

The objective of this study is to explore the potential of 
both linear and non-linear SMV with various types of kernels 
to provide insolvency warning signals. We used data 
collected from 88 Irish companies which allows us to 
compare results with other studies and different prediction 
techniques [5], [8], [9].  

The paper is organized as follows: support vector 
machines are presented briefly in section 2; section 3 
discusses the dataset and data pre-processing; experiments 
and analysis are presented in section 4, followed by section 
conclusions. 

II. SUPPORT VECTOR MACHINES 
SVM, originally introduced by Vapnik in 1990s [11], 

provide a new approach to the problem of pattern recognition 
with clear connections to the underlying statistical learning 
theory. They differ radically from comparable approaches 
such as NN because SVM training always finds a global 
minimum in contrast to NN [12].  

SVMs are supervised learning methods used for 
classification and regression. Training data is a set of points 
of the form 
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where the ci is either 1 or �1, indicating the class to 
which the point xi belongs. Each data point xi is a  
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Figure 1. Maximum–margin hyperplane for a SVM trained with samples 

from two classes. Samples on the margin are support vectors. 

real vector. During training a linear SVM constructs a p-
1-dimensional hyperplane that separates the points into two 
classes (Fig. 1). Any hyperplane can be represented by    
x�w-b, where w is a normal vector and � denotes dot product. 
Among all possible hyperplanes that might classify the data, 
SVM selects one with maximal distance (margin) to the 
nearest data points (support vectors). 

When the classes are not linearly separable (there is no 
hyperplane that can split the two classes), a variant of SVM, 
called soft-margin SVM, chooses a hyperplane that splits the 
points as cleanly as possible, while still maximizing the 
distance to the nearest cleanly split examples. The method 
introduces slack variables, �i , which measure the degree of 
misclassification of the datum xi. Soft-margin SVM 
penalizes misclassification errors and employs a parameter 
(the soft-margin constant C) to control the cost of 
misclassification. Training a linear SVM classier solves the 
constrained optimization problem (2). 
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In dual form the optimization problem can be represented 
by (3). 
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The resulting decision function f(x)=w�x+b has weight 
vector (4). 
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Data points xi for which   �I>0 are called support vectors, 
since they uniquely define the maximum margin hyperplane. 
Maximizing the margin allows one to minimize bounds on 
generalization error.  

If every dot product is replaced by a non-linear kernel 
function, it transforms the feature space into higher-
dimensional, thus though the classifier is a hyperplane in the 
high-dimensional feature space it may be non-linear in the 
original input space. The resulting classifier fits the 
maximum-margin hyperplane in the transformed feature 
space. Some common kernels include: 

� Polynomial kernel: k(x,x�)=(sx�x�+c)d

� RBF kernel: k(x,x�)=exp(-�(x-x�)2)
� Sigmoid kernel: k(x,x�)=tanh(s(x�x�)+c) 
An non-linear SVM is largely characterized by the choice 

of its kernel, and SVMs thus link the problems they are 
designed for with a large body of existing work on kernel 
based methods. Once the kernel is fixed, SVM classifiers 
have few user-chosen parameters. The best choice of kernel 
for a given problem is still a research issue. Because the size 
of the margin does not depend on the data dimension, SVM 
are robust with respect to data with high input dimension. 
However, SVM are sensitive to the presence of outliers, due 
to the regularization term for penalizing misclassification 
(which depends on the choice of C). The SVM algorithm 
requires O(n2) storage and O(n3) to learn. 

III. DATASET 
The dataset contains financial information for a period of 

six years for a total of 88 Irish firms, of which 44 are 
insolvent and 44 are solvent. The dataset consists of 
Altman’s [1] financial ratios (features) as they have been the 
most widely and consistently used to date by both 
researchers and practitioners. The ratios are: 

� R1: Working Capital / Total Assets;  
� R2: Retained Earnings / Total Assets;  
� R3: Earnings Before Interest and Taxes (EBIT) / 

Total Assets;  
� R4: Market Value of Equity / Book Value of Total 

Debt;  
� R5: Sales / Total Assets. 
The working capital is current assets minus the current 

liabilities, which is an indication of the ability of the firm to 
pay its short term obligations. A firm’s total assets are sum 
of the firm’s total liabilities and shareholder equity. It can be 
viewed as an indicator of its size and therefore can be used as 
a normalizing factor. The retained earnings is the surplus of 
income compared to expenses, or total of accumulated 
profits since the firm commencement. The firm’s earnings 
before interests and taxes is also an important indicator. Low 
or negative earnings indicate that the firm is losing its 
competitiveness, and that endanger its survival. Market 
capitalization relative to the total debt indicates that a firm is 
able to issue and sell new shares in order to meet its 
liabilities. Total sales of a firm, relative to the total assets, is 
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an indicator of the health of its business, but without 
certainty as it can vary a lot from industry to industry. 

This study uses the Altman's ratios with two changes 
necessitated: operating profit was used instead of profit 
before interest and tax and so may contain a negligible 
amount of interest receivable; total shareholder funds was 
used as a proxy  for market value of equity because not all of 
the companies used were quoted.  

Two feature sets were used for experiments: one with all 
Altman’s ratios and one with a reduced number of variables. 
Reduction of variables has a potential to improve the abilities 
of a classifier to alleviate the effect of the curse of 
dimensionality problem that appears with small datasets. 
This is because a classifier with fewer inputs has fewer 
adaptive parameters to be determined, and these are more 
likely to be properly constrained by a data set of limited size, 
leading to a classifier with better generalization properties. In 
addition to that, a classifier with fewer weights may be faster 
to train. A variable selection also helps to avoid the 
overfitting phenomenon that makes a classifier to adjust to 
very specific random features of the training data that have 
no causal relation to the target function and makes the 
classifier to lose its ability to generalize. 

An F-ratio analysis shows that variables can be scored by 
their discriminatory power and that the set of variables [R1, 
R2, R3, R4] is a good selection. The same selection was used 
by Serrano [10] with an American dataset and Jones [5] with 
the dataset we use in this study. This also allows our results 
to be compared with those from the other studies. 

The dataset was also preprocessed by transformation (5) 
and (6) that eliminates the effect of unbalanced variable 
values. 
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This is necessary because different variables have values 
which differ significantly because of different units of 
measurements, which can reduce the predictive abilities of 
the model as some of the variables can dominate over others. 
Each of the input variables xi was treated independently. 
Transformed variables have zero mean and unit standard 
deviation over the transformed training set. 

IV. EXPERIMENTS AND DISCUSSION 
A series of experiments with SVM was conducted in 

order to optimize the SVM parameters for the classification 
task. Linear and non-linear models were tested where options 
for non-linear were polynomial, RBF and sigmoid kernels. 
Results show that using all Altman’s ratios [R1, R2, R3, R4, 
R5] best performer is SVM with polynomial kernel (7) 

� � ����3( , ') (8.317 ' 4.296)k x x x x� � �

Optimization of SVM parameters with reduced set of 
features [R1, R2, R3, R4], as discussed above, showed that 
best performance can be obtained by polynomial kernel (8) 
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SVM output the distance of each test datapoint from the 
hyperplane, but in contrast to soft classifiers, such as back-
propagation NN, it does not require mapping of real-valued 
ranks into crisp true/false values by threshold function or 
other techniques. The SVM algorithm optimizes the 
hyperplane location in order to minimize the 
misclassification error and the sign +/- of the distance can be 
considered as class labels true/false. Classification outcomes 
were counted in terms of true positive (TP) or positive hits; 
true negative (TN) or correct rejections; false positive (FP) 
or type I error; and false negative (FN) or type II error. Fig. 2 
and Fig. 3 show the classification results by distance from 
the hyperplane. 

A. Preformance Metrics 
Most common metric to estimate a classifier performance 

is accuracy (ACC). It represents the total number of correctly 
classified instances divided by the total number of all 
available instances. 

�
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The factor C in optimization problem (2) is a parameter 
that controls the trade-off between training error and model 
complexity. The lower the value of C, the more training error 
is tolerated. The best value of C depends on the data and 
must be determined experimentally.  
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Figure 2. Classification of feature set [R1, R2, R3, R4, R5] by SVM with 

kernel (7). 
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Figure 3. Classification of feature set [R1, R2, R3, R4] by SVM with 

kernel (8). 

A series of experiments sought the optimal values of C in 
terms of accuracy for both full and reduced feature set and 
results are shown in Figures 4 and 5. Optimal values for C 
are C=19.127 (ACC=84.09%) for the full feature set and 
C=1.067 (ACC=80.68%) for the reduced set. 

ACC is most often used in applications, however, it can 
be misleading estimator if class distribution is skewed or if 
errors of type I and type II can produce different 
consequences and have different cost. The full picture of 
performance estimation have to include metrics such as 
sensitivity or true positive rate (TPR) (10), specificity or true 
negative rate (TNR) (11), and fall-out or false positive rate 
(FPR) (12). 

� � �����/ ( )TPR TP TP FN� �
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Table 1 shows those values obtained with optimal 
parameter values discussed above. 

The two SVMs (with full and reduced feature set) can 
also be estimated by ROC (Receiver Operating 
Characteristics) analysis. A ROC space is defined by FPR 
and TPR as x and y axes respectively, which depicts relative 
trade-off between true positive (benefits) and false positive 
(costs). The perfect classification would yield a point in the 
upper left corner or coordinate (0,1), representing 100% 
sensitivity (all true positives are found) and 100% specificity 
(no false positives are found). 

A completely random guess would give a point along the 
no-discrimination line from the left bottom to the top right 
corner. As the two SVMs are discrete classifiers, each plots a 
single point in the ROC space with coordinates (0.1861, 0.8) 
and (0.125, 0.8125) respectively. 
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Figure 4. Prediction accuracy of SVM with kernel (7) and feature set  

[R1, R2, R3, R4]. 

0 20 40 60 80 100
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

parameter C 

ac
cu

ra
cy

 
Figure 5. Prediction accuracy of SVM with kernel (6) and feature set  

[R1, R2, R3, R4, R5]. 

It can be noticed that the later point is more ‘northwest’ 
as it is more distant from the no-discrimination line, 
therefore the SVM with full feature set is better in the terms 
of ROC analysis. These results suggest that reduction of the 
Altman’s variables worsen performance of SVM with this 
dataset. 

Finally, Table 2 compares SVM with other techniques for 
insolvency prediction experimented with the same dataset 
[10], [11]. Non-linear SVM shows best prediction accuracy 
of 84% followed by ARTMAP NNs, SOFM, and 
backpropagation NNs. Other advantages of using SVM are 
that the local minima problem of NNs is not an issue; SVM 
requires fewer parameters to tune in contrast to NNs; finding 
appropriate NN architecture experimentally is not a problem 
with SVM. 

B. Validation 
The most popular method for estimating the 

generalization error of a classification rule is cross-validation 
[4]. 

400



TABLE I. SVM PERFORMANCE: SENSITIVITY (TPR), SPECIFICITY 
(TNR), FALL-OUT (FPR), AND ACCURACY (ACC). 

Feature set TPR TNR FPR ACC 

[R1,R2,R3,R4] 80% 81.39% 18.61% 80.68% 

[R1,R2,R3,R4,R5] 81.25% 87.5% 12.5% 84.09% 

 

TABLE II. INSOLVENCY PREDICTION ACCURACY OF TECHNIQUES 
APPLIED TO THE SAME DATASET. 

Method ACC

Backpropagation neural networks 72.7% 

SOFM (Kohonen neural networks) 77.27% 

Fuzzy ARTMAP neural networks 79.5% 

Default ARTMAP neural networks 83.91% 

Support vector machines 84.09% 

 
While there are several versions of cross-validation 

estimator, most theoretical results concern leave-one-out 
cross-validation (LOOCV) estimator. Instead of dividing the 
dataset into training and testing datasets, from the training 
sample (1) the first example (x1,c1) is removed and the 
resulting sample D\1 is used for training, leading to a 
classification rule hl

\1. The classification rule is tested on the 
held-out example (x1,c1). This process is repeated for all 
training examples. The number of misclassifications divided 
by n is the LOOCV estimate. 
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All experimental results discussed in this study were 
carried out according to the LOOCV procedure. This 
technique was also used in other studies, such as [5] and [2]. 
LOOCV is suitable for small size datasets as it allows the 
greatest possible amount of data to be used for training. It is 
also a deterministic technique as no random sampling is 
involved, in contrast of a k-fold cross-validation (1<k<n). 

V. CONCLUSIONS 
Support vector machines provide an approach to the 

problem of pattern recognition, related to the statistical 
learning theory. This study explores experimentally the 
potential of classifiers based on support vector machines to 
predict insolvency of Irish firms. The dataset used contains 
selected financial features based on information collected 
from 88 companies for a period of six years and represented 
as Altman’s ratios. Experiments show that non-linear SVM 
give a better accuracy than linear ones and that polynomial 
kernel outperform RBF and sigmoid kernel. Results also 
show that SVM with polynomial kernel outperform 
backpropagation NN, Fuzzy and Default ARTMAP NN, and 
Kohonen NN, all tested with the same dataset. The 
experiments also showed that reductions of Altman’s ratios 
does not enhance prediction abilities of SVM (in contrast to 

backpropagation NN) which is an indication that in this 
classification task SVM are more resistant to curse of 
dimensionality and overfitting problems. The SVM 
performance was estimated by accuracy, sensitivity, 
specificity, and fall-out, and analyzed by ROC. Results were 
validated by LOOCV technique. 

Using SVM for classification gives other advantages over 
NNs, such as: training always finds a global minimum; SVM 
requires fewer parameters to tune; finding appropriate 
architecture experimentally is not issue. 
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