
A Genetic Programming-based Algorithm for Composing Web Services

Manuel Mucientes, Manuel Lama, Miguel I. Couto
University of Santiago de Compostela, Spain

manuel.mucientes@usc.es, manuel.lama@usc.es, miguelixen.couto@rai.usc.es

Abstract—Web Services are interfaces that describe a
collection of operations that are network-accessible through
standardized web protocols. When a required operation is
not found, several services can be compounded to get a
composite service that performs the desired task. To find
this composite service, a search process over a huge search
space must be performed. The algorithm that composes
the services must select the adequate atomic processes and,
also, must choose the correct way to combine them using
the different available control structures. In this paper a
genetic programming algorithm for web services composition
is presented. The algorithm has a context-free grammar
to generate the valid structures of the composite services.
Moreover, it includes a method to update the attributes of
each node. A full experimental validation with a repository
of 1,000 web services has been done, showing a great
performance as the algorithm finds a valid solution in all
the tests.

Keywords-Web service, composition, genetic programming.

I. INTRODUCTION

Web Services are interfaces that describe a collection of
operations that are network-accessible through standard-
ized web protocols, and whose features are described using
a standard XML-based language [1], [2]. This includes
functional features that indicate the input/output needed to
invoke the execution of a web service; non-functional fea-
tures such as cost, robustness, reliability, etc.; interaction
features or choreography that describe how a client dialogs
with the service in order to consume its functionality;
and structural features or orchestration that model how
the internal components of the service are combined to
execute it.
In this way, as the characteristics are available through

the interfaces, the web services can be discovered and
invoked automatically by extern programs (clients). When
programs do not find a service with the required function-
ality (inputs and outputs), it is possible to compose a new
service automatically. This composed service combines
the functionalities of other services to get the desired
outputs. One of the main advantages of web services is that
they make their characteristics available to other programs
or agents. This combination can consist in a set of services
that are executed in a sequence or in a set of workflow-
like structures that control the execution of the services
(specified through web services composition languages as
OWL-S [3] or BPEL4WS [4]). These two problems are
very different from the point of view of computational
complexity: in the second case the number of candidate
solutions can be really high. This makes classical search
methods not applicable.

In the last years several papers have dealt with the
composition of OWL-S services. Some approaches con-
sider the composition problem as a planning problem of
several actions (services) that operate on an initial state
(inputs and preconditions) and generate an output state
(postconditions) [5], [6], [7], [8], [9]. In these works, the
planning techniques are blended with semantic reasoning
to combine the outputs of some services with the inputs of
others. The main problem is that in these approaches the
result of the composition is a sequence of services and,
therefore, they do not take into account other control con-
structions that are part of the OWL-S model. In this way,
this particular problem has a computational complexity
much lower than those compositions that follow languages
like OWL-S or BPEL4WS.
Other papers solve the composition of services with

optimization techniques like linear logic [10] or genetic
programming [10], [11]. These works have been vali-
dated with a low number of services and, consequently,
the performance of the proposed algorithms cannot be
really tested. The most similar approach to our pro-
posal describes an algorithm for services composition in
BPEL4WS [11]. The main difference with our proposal
is that (i) it does not show a formal description of
the grammar to compound services, and (ii) attributes
updating after crossover and mutation is not explicitly
managed. Therefore, it is difficult to evaluate the degree
of fulfillment of all the interactions among services to get
a valid solution.
In this paper we present a genetic programming algo-

rithm that solves the problem of composition of OWL-
S services. The algorithm uses a context-free grammar
to limit the valid structures and takes into account the
attributes updating. A full validation has been done in
OWLS-TC [12], a repository with more than 1,000 ser-
vices, showing a great performance, as in all the cases a
correct composition was found.

II. GENETIC PROGRAMMING FOR WEB SERVICES
COMPOSITION

The first step in the design of an algorithm for web
services composition requires the definition of the type of
composite services that are going to be build. A compact
definition of the valid structures of a tree (chromosome)
for a web services composition can be described by a
context-free grammar.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.155

379

• V = {initialProcess, process, compositeProcess}
• Σ = {anyOrder, atomicProcess, choice, sequence, split,
splitJoin}

• S = initialProcess
• Rules:

– initialProcess −→ sequence process
– process −→ compositeProcess process | atomicPro-
cess process | compositeProcess | atomicProcess

– compositeProcess −→ anyOrder process | choice pro-
cess | sequence process | split process | splitJoin pro-
cess

Figure 1. Context-free grammar for web services composition.

A. Context-free grammar
A context-free grammar is a quadruple (V,Σ, P, S),

where V is a finite set of variables, Σ is a finite set of
terminal symbols, P is a finite set of rules or productions,
and S is an element of V called the start variable.
The grammar that defines the valid structures for web
services composition is described in Fig. 1. The first item
enumerates the variables, then the terminal symbols, in
third place the start variable is defined, and finally the
rules for each variable are enumerated. When a variable
has more than one rule, rules are separated by symbol |.
Variable initialProcess is the start variable of the grammar
and generates a sequence of processes.
Variable process defines either composite processes or

atomic processes. Two of the four rules of this variable
are recursive and, therefore, a process can be composed
of any number of atomic and composite processes. Finally,
variable compositeProcess represents the combination of
a control structure and a process (of any type), i.e. a
composite process.
All the nodes of type variable, together with terminal

symbol atomicProcess constitute the service nodes. They
are characterized by the following attributes:

• Control structure: the node of type control structure
({anyOrder, choice, sequence, split, splitJoin}) the
service node depends on.

• Available inputs: are those inputs that are available
for a service. A subset of them are selected as inputs
to the service.

• Necessary inputs: are the inputs that the node needs
for running all the atomic processes in the subtree for
which the root is the node.

• Obligatory inputs: in some situations, the outputs of
several services have to be used as inputs to the
current service. This means that at least one of that
outputs has to be selected as input to the current
service. An example of this situation is the sequence
of two services Sa and Sb. Let Oa = {oa

1
, . . . , oa

na
}

be the set of outputs generated by service Sa, and
In
b = {ib

1
, . . . , ibnb

} be the set of necessary inputs
of Sb. Then, Oa ∩ In

b �= ∅. If this condition is not
fulfilled, the composition of services Sa and Sb is not
a sequence, and the structure is not valid. Therefore,
the inputs of the service must contain a subset of
the obligatory inputs. Following the example, the
obligatory inputs of service Sb are the outputs of

service Sa, i.e., Io
b = Oa.

• Outputs: generated by the service. They can be di-
rectly generated by the service (if it is an atomic
process) or by the subtree with the service as root
node (composite process).

The size of the search space can be calculated taking
into account both the grammar and the services repository.
In this paper, the repository that has been used for the
validation of our proposal is the OWLS-TC collection
(a repository of 1,000 services). Thus, the size of the
search space is over 1060. Other approaches to services
composition only consider sequences of services and,
therefore, the size of the search space is much lower (1030

for sequences of up to 10 services). Consequently, our
proposal solves a much more difficult problem.

B. Attributes updating

The initialization of a tree (web services composition),
or a modification of it due to crossover or mutation,
requires the updating of all the attributes of each node.
The initial step of the algorithm resets all the attributes of
all the nodes in the tree, and then initializes the necessary
inputs of the root node (initialProcess) to the set of inputs
of the web services composition to be solved. Then, the
tree is traversed in preorder, updating the attributes of
each node. To traverse a tree in preorder, the following
operations must be performed recursively at each node,
starting with the root node: first, visit the root. Then,
traverse the subtrees that have as root node the children
of the root. Children are traversed in order, starting with
the leftmost node and continuing to the right. Updating
the attributes of each node is done in a different way
depending on the type of attribute:

• Control structure (cs): this attribute is propagated in
a top-down way. This means that a node inherits the
attribute value from its parent. There is an exception
to this rule. The node will set its control structure
to its leftmost brother when that brother is a control
structure.

• Available inputs (Ia): they are propagated in a top-
down way. When the control structure of the node is
sequence, all the outputs of the brothers to the left of
the node will also be added as available inputs.

• Necessary inputs (In): the propagation is done in a
bottom-up way. This means that, if and only if the
node is a leaf node, all its ancestor nodes will add as
necessary inputs the necessary inputs of the node.

• Obligatory inputs (Io): they are propagated in a top-
down way. There is an exception to this rule: when
the control structure of the node is sequence and the
brother node immediately to the left is a service node.
In this case, the following algorithm is applied to get
the obligatory inputs:
1) Traverse in preorder the subtree that has as root
node the brother node just to the left of the
current node (the one for which the obligatory
inputs are being calculated).

380

2) Get the last node traversed in that process. It
will be the rightmost node of the subtree.

3) If both the last and current nodes depend on the
same control structure (they have a reference to
the same node of type controlStructure), then
the obligatory inputs of the current node are the
outputs of the last node.

4) Else, the obligatory inputs of the current node
are the outputs of the brother node immediately
to the left.

• Outputs (O): the attribute is propagated in the same
way as the necessary inputs.

Fig. 2 shows a services composition. Terminal symbols
(leafs of the tree) are represented by rectangles or squares,
and variables are shown as flatted circles. Each node
includes the values of the different attributes. In this
example the initial available inputs are ia and ib, while
the outputs that are generated by the atomic processes are
o2.1, o3.1, o6.1, and o7.1.

�������
�	
������
������	������
��
����������������������
��
���� ��
���� �
����

��������������
�	
������
������	������
��
����������������������
��
���� ��
���� �
����

��������������
�	
������
������	������

��
�����������������
��
�������������
���� �
����

�����	��
�	
���

��������
�	
���

�������
�	
������
������	������
��
����������������� ��
��������

��
���� �
���������

�������
�	
������
�������������
��
����������������� ��
��������

��
���� �
���������

 ��!�������������
�	
�"����
�������������
��
����������������� ��
��������

��
���� �
���������

�������
�	
������
�������������
��
������������ ��
�������������
��
���� �
��������������

�������
�	
������
�������������
��
�����������
�����������������
��
���
�������������������

������#��������
�	
�$���
��

��
�����������
�����������������
��
���
�������������������

��������������
�	
������
�������������

��
������������
��
���� ��
���� �
����

��������������
�	
������
�������������

��
�������
��
��������
������
����

Figure 2. A chromosome representing the composition of several atomic
processes.

C. Genetic programming-based algorithm
Fig. 3 describes the genetic programming algorithm that

has been used for web services composition. The first three
steps of the algorithm correspond to an initialization. t

represents the number of iterations, while timesRun will

be used to detect situations in which the search gets stuck.
The iterative part of the algorithm starts at step four.
This part will be repeated until the maximum number of
iterations is reached or the best possible solution is found.
The main stages of the iterative part are the selection of
the individuals, the crossover and mutation to generate
new individuals, their evaluation, the replacement of the
population, the local search, and the checking of stuck
situations in the search process. All of them are described
in detail in the next sections.

1) Initialize population
2) Evaluate population
3) t = 1, timesRun = initialTimesRun
4) While t ≤ maxT and fitnessbest < maxFitness

a) Selection
b) Crossover
c) Mutation
d) Evaluate new individuals
e) Replace population
f) Run the local search
g) t = t + 1
h) If bestInd (t) �= bestInd (t− 1), then timesRun =

timesRun− 1
i) If none of the individuals of the population
have been created in the current iteration, then
timesRun = timesRun− 1

j) If timesRun < 0, then:
i) Reinitialize population, keeping only the best
individual.

ii) Evaluate new individuals
iii) timesRun = initialTimesRun

Figure 3. Genetic programming algorithm for web services composition.

1) Initialization: The first step of the algorithm is the
generation of the initial population. A new individual is
generated applying randomly the rules of the grammar.
If the depth of the tree reaches the maximum predefined
value, then all the nodes of type service at that depth are
transformed to atomicProcess nodes. Once the structure of
the tree has been defined, the attributes of the nodes must
be initialized using the algorithm defined in Sec. II-B.
This attributes updating algorithm is run with one spe-

cial characteristic. When an atomicProcess node is reached
during the traversal of the tree, as no specific service
has been assigned to it, one has to be selected from the
repository. The selection is done randomly from the set
of services that fulfill: Ia

j ⊇ Ik and Io
j ∩ Ik �= ∅. Thus, a

service k can be selected if its inputs are a subset of the
available inputs of the atomicProcess node j (Ia

j) and if at
least one of the inputs of k belongs to the set of obligatory
inputs of j (Io

j).
2) Evaluation: The calculation of the fitness of each

individual of the population is done analyzing four criteria:
generated outputs, used inputs, depth of the tree and
number of nodes of type atomicProcess:

fitness = ω1 ·

(
Oroot

Oobj
+

In
root
Iobj

)
+

ω2 ·
1

depth
+ ω3 ·

1

#atomicProcess
(1)

where Oroot are the outputs of the root node of the tree (this
node is the result of the composition of the services), Oobj

381

are the outputs that are required to solve the composition,
In
root are the necessary inputs of the root, Iobj are the inputs
provided to solve the composition, #atomicProcess is the
number of atomic processes in the tree, and ωi are values
that weight the importance of each criterion.
3) Selection: The selection mechanism that has been

used is the binary tournament selection. In a k-tournament
selection, k individuals are randomly picked from the
population with replacement, and the best of them is
selected. In this case, k = 2 (binary tournament selection).
4) Crossover: The crossover operator consists in the

replacement of a subtree of the individual by a subtree of
the other individual. The process is as follows:

• Select randomly a node of type service in the first
individual.

• Generate the set of candidate nodes in the second
individual. These nodes must have the following
characteristics:
– They must be of type service.
– (In

2
−O2) ∩ Io

1
�= ∅. In

2
−O2 represents all the

inputs that are used by the subtree of the second
individual and that have not been generated in-
side that subtree. This set of inputs must contain
at least one of the obligatory inputs of the subtree
that is going to be replaced in the first individual.

– In
2
− O2 ⊆ Ia

1
. Also, the set of inputs used in

the subtree of the second individual must be a
subset of the available inputs for the subtree of
the first individual.

• Select randomly a node of the candidate nodes set,
and replace the subtree of the first individual with the
selected subtree of the second individual.

• Execute the attributes updating algorithm. During the
execution of the algorithm, if a leaf node of type
atomicProcess is reached, two conditions must be
checked: Ia

j ⊇ Ik and Io
j ∩ Ik �= ∅, i.e., the inputs

of the process (Ik) must be a subset of the available
inputs of the node and, also, they must contain at
least one of the obligatory inputs of the node. If
the conditions are not fulfilled, a new atomic process
must be selected using the same procedure as in the
initialization stage (Sec. II-C1).

5) Mutation: The mutation operator modifies a subtree
of the individual. First, a node must be randomly selected.
If the node is of type variable, then the subtree that has
as root the selected node is eliminated. The new subtree
is generated applying the rules of the grammar randomly
for that variable in the same way as in the initialization
stage (Sec. II-C1). On the other hand, if the node is of
type terminal, there are two cases:

• If the node is a control structure, a new one is
randomly selected.

• If the node is an atomic process, then a new process
is randomly selected from the repository using the
same conditions defined in the initialization stage
(Sec. II-C1)

In all the cases, the attributes updating algorithm must
be run. Also, the validity of the atomic processes must be

checked and, if necessary, a new selection of the atomic
processes is done.
6) Replacement: The selection mechanism is based on

the CHC model [13]. It is a population-based selection
approach, i.e., parents and their corresponding offspring
are combined (generating a population with a size 2N ,
being N the size of the initial population), and the best
N individuals are selected for the next population.
7) Local search: The objective of the local search is

to improve some of the individuals of the population
implementing a search process with a low degree of
exploration and a high degree of exploitation, i.e., a very
exhaustive search in the neighborhood of the individual.
In this paper the local search has been implemented with
the steepest ascent hill climbing algorithm.
8) Reinitialization: The last steps of each iteration (Fig.

3) update the value of timesRun, decreasing it when the
best individual has not improved and also when no individ-
uals of the current iteration have survived the replacement
process. If timesRun takes a value below 0, the population
is reinitialized in the same way as in the initialization
stage, but keeping the best individual.

III. RESULTS

The validation of the genetic programming algorithm
for web services composition has been done with a
set experiments with different degrees of complexity. A
repository with 1,000 services has been used for the tests.
The service compositions that have been implemented are
shown in Fig. 4. For each example, a short description
of the task that the composite service solves is given.
Also, the available inputs (those provided by the user) and
the desired outputs are enumerated. Then, the solution to
the requested service is indicated: it is a combination of
control structures and atomic processes. In most of the
cases there are a few possible best solutions, but only one
has been indicated in Fig. 4. After that, each of the atomic
processes is described and, finally, the maximum fitness is
indicated. This maximum fitness is, in most of the cases,
under 1, as the depth of the tree and the number of atomic
processes in the composite process are greater than one
(Eq. 1).
Table I shows the results for all the test examples

described in Fig. 4. Each column in the table represents the
results of the evolutionary algorithm for a test example.
As evolutionary algorithms are nondeterministic, results
of one run over an example are not meaningful. Thus, for
each of them 10 runs were executed. The rows represent
the time to obtain the best solution found by the algorithm,
the quotient between the necessary inputs of the root
and the inputs provided to solve the composition, the
quotient between the outputs of the root node of the
tree and the outputs required to solve the composition,
the fitness value, the depth and the number of atomic
processes of the tree and, finally, the number of the
different control structures in the tree (sequence, split,
splitJoin, anyOrder, choice). For each of these columns,
two values are represented: χ is the arithmetic mean over

382

1) Obtain the time interval and the diagnostic process for a hospital:
• Inputs: HOSPITAL
• Outputs: TIMEINTERVAL, DIAGNOSTICPROCESS
• Solution: sequence(HOSPITAL DIAGNOSTICPROCESSTIMEINTERVAL SERVICE)
• List of atomic processes:

– HOSPITAL DIAGNOSTICPROCESSTIMEINTERVAL SERVICE:
∗ Inputs: HOSPITAL
∗ Outputs: TIMEINTERVAL, DIAGNOTICPROCESS

• Best fitness: 1.0
2) Confirm if, given a town, country and a price, it is possible to buy coffee and whiskey:

• Inputs: COUNTRY, TOWN, RECOMMENDEDPRICE
• Outputs: COFFEE, WHISKEY
• Solution: sequence(TOWNCOUNTRY HOTEL SERVICE, HOTELRECOMMENDEDPRICE COFFEEWHISKEY SERVICE)
• List of atomic processes:

– TOWNCOUNTRY HOTEL SERVICE:
∗ Inputs: COUNTRY, TOWN
∗ Outputs: HOTEL

– HOTELRECOMMENDEDPRICE COFFEEWHISKEY SERVICE:
∗ Inputs: RECOMMENDEDPRICE, HOTEL
∗ Outputs: COFFEE , WHISKEY

• Best fitness: 0.975
3) Obtain the maximum price of a book given the academic item number of the author:

• Inputs: ACADEMIC-ITEM-NUMBER
• Outputs: MAXPRICE, BOOK
• Solution: sequence(ACADEMIC-ITEM-NUMBER BOOKAUTHOR SERVICE, AUTHOR BOOKMAXPRICE SERVICE)
• List of atomic processes:

– ACADEMIC-ITEM-NUMBER BOOKAUTHOR SERVICE:
∗ Inputs: ACADEMIC-ITEM-NUMBER
∗ Outputs: AUTHOR , BOOK

– AUTHOR BOOKMAXPRICE SERVICE:
∗ Inputs: AUTHOR
∗ Outputs: MAXPRICE , BOOK

• Best fitness: 0.975
4) Get the maximum price of a book, its type and the recommended price in dollars using the academic item number of the author:

• Inputs: ACADEMIC-ITEM-NUMBER
• Outputs: MAXPRICE , BOOK-TYPE , RECOMMENDEDPRICEINDOLLAR
• Solution: sequence(ACADEMIC-ITEM-NUMBER BOOKAUTHOR SERVICE, AUTHOR BOOKMAXPRICE SERVICE, anyorder(BOOK RECOMMENDEDPRICEINDOLLAR SERVICE,

BOOK AUTHORBOOK-TYPE SERVICE)
• List of atomic processes:

– ACADEMIC-ITEM-NUMBER BOOKAUTHOR SERVICE:
∗ Inputs: ACADEMIC-ITEM-NUMBER
∗ Outputs: AUTHOR , BOOK

– AUTHOR BOOKMAXPRICE SERVICE:
∗ Inputs: AUTHOR
∗ Outputs: MAXPRICE , BOOK

– BOOK RECOMMENDEDPRICEINDOLLAR SERVICE:
∗ Inputs: BOOK
∗ Outputs: RECOMMENDEDPRICEINDOLLAR

– BOOK AUTHORBOOK-TYPE SERVICE:
∗ Inputs: BOOK
∗ Outputs: BOOK-TYPE

• Best fitness: 0.9225
5) Get the weather, map and hotel given the city:

• Inputs: CITY
• Outputs: WHEATHERSEASON, MAP, HOTEL
• Solution: sequence(split(CITYCITY MAP SERVICE, CITY WHEATHERSEASON SERVICE, DURATIONCOUNTRYCITY HOTEL SERVICE))
• List of atomic processes:

– CITYCITY MAP SERVICE:
∗ Inputs: CITY
∗ Outputs: MAP

– CITY WHEATHERSEASON SERVICE:
∗ Inputs: CITY
∗ Outputs: WHEATHERSEASON

– DURATIONCOUNTRYCITY HOTEL SERVICE:
∗ Inputs: CITY, DURATION, COUNTRY
∗ Outputs: HOTEL

• Best fitness: 0.9417

Figure 4. Description of the web services compositions used for test.

Table I
AVERAGE RESULTS (χ± σ) FOR THE TEST EXAMPLES

Example 1 2 3 4 5
Time (s) 25,70 ± 17,29 137,91 ± 7,52 167,37 ± 6,31 227,94 ± 26,80 155,73 ± 12,35

I
n

root
Iobj

1,00 ± 0,00 1,00 ± 0,00 1,00 ± 0,00 1,00 ± 0,00 1,00 ± 0,00
Oroot
Oobj

1,00 ± 0,00 1,00 ± 0,00 1,00 ± 0,00 1,00 ± 0,00 1,00 ± 0,00
fitness 1,00 ± 0,00 0,98 ± 0,00 0,96 ± 0,02 0,92 ± 0,00 0,92 ± 0,00
depth 2,40 ± 0,52 3,00 ± 0,00 3,60 ± 1,26 8,10 ± 1,91 7,30 ± 2,31

#atomicProcess 1,00 ± 0,00 2,00 ± 0,00 2,00 ± 0,00 4,00 ± 0,00 3,10 ± 0,32
#sequence 0,90 ± 0,32 1,00 ± 0,00 1,10 ± 0,32 2,00 ± 0,94 1,10 ± 0,88

#split 0,00 ± 0,00 0,00 ± 0,00 0,10 ± 0,32 0,40 ± 0,70 0,50 ± 0,53
#splitJoin 0,00 ± 0,00 0,00 ± 0,00 0,00 ± 0,00 0,00 ± 0,00 0,00 ± 0,00
#anyOrder 0,10 ± 0,32 0,00 ± 0,00 0,20 ± 0,63 0,50 ± 0,53 0,70 ± 0,67
#choice 0,00 ± 0,00 0,00 ± 0,00 0,20 ± 0,42 0,30 ± 0,48 0,70 ± 0,82

383

10 runs and σ is the standard deviation over the 10 runs,
which reflects the robustness of the probabilistic algorithm
to obtain similar results regardless the followed pseudo-
random sequence.
The values that have been used for the parame-

ters of the evolutionary algorithm are: maxT = 100,
initialTimesRun = 20, population size = 200, crossover
probability = 0.9, mutation probability = 0.03 (per gene),
maximum depth of the tree = 12, ω1 = 0.9, ω2 = 0.05,
ω3 = 0.05, percentage of the individuals to apply local
search = 1%.
The first thing that must be noticed is that, in all the

test examples an acceptable solution has been found in all
the runs. This means that In

root = Iobj and Oroot = Oobj.
On the other hand, the maximum possible fitness has been
reached for three of the tests, while in the other two the
fitness is a 2% lower than the best fitness (Table 4). Going
into the details for each test:

• Test 1: this test is very simple, as it is just an atomic
process and not a services composition. However, it
has been included to verify that also under simple
conditions the algorithm works properly (the best
fitness was always reached). The number of atomic
processes is always the right one, while the depth is
slightly over the minimum possible value (2). The
number of control structures is always null, except
for sequence as this node is inserted in the tree by
the rule of the start symbol.

• Test 2: in this example all the executions reached
the best possible services composition (two atomic
processes connected in a sequence).

• Test 3: the number of atomic process that have been
used in this composition is always the correct one (2).
However the depth has a high variability. This means
that some unnecessary nodes (control structures) have
been generated.

• Test 4: again, the number and type of atomic pro-
cesses is correct (always very close to the maximum
fitness), but the composition has been obtained with
different structures in each of the runs. Therefore,
there is variability in the depth and, also, in the type
of control nodes.

• Test 5: the number of atomic processes is near the
best one (3), but it has been reached with different
structures: sequence, split, anyOrder and choice have
been used to generate the different solutions.

IV. CONCLUSIONS

A genetic programming algorithm for web services
composition has been presented. The algorithm is able to
compound services using different control structures and
generates compositions following a context-free grammar.
A full validation has been done with a repository of
1,000 services, showing a very good performance. In
all the tests and runs a valid solution was found and,
moreover, in many cases the best possible composition
was obtained. As future work, a pruning method will be
added to improve the size of the obtained compositions.

REFERENCES
[1] F. Curbera, W. A. Nagy, and S. Weerawana, “Web Service:

Why and How,” in Proceedings of the OOPSLA-2001
Workshop on Object-Oriented Services, Tampa, Florida,
USA, 2001.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web
Services. Springer, October 2003.

[3] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, S. McIlraith, S. Narayanan, M. Paolucci, B. Par-
sia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara,
OWL-S: Semantic Markup for Web Services, World Wide
Web Consortium (W3C), November 2004, available at
http://www.w3.org/Submission/OWL-S/.

[4] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana, Business Process Execution
Language for Web Services, Version 1.0, November 2002,
standards proposal by BEA Systems, International Business
Machines Corporation, and Microsoft Corporation.

[5] M. Klusch and A. Gerber, “Fast composition planning
of owl-s services and application,” in ECOWS ’06: Pro-
ceedings of the European Conference on Web Services.
Washington, DC, USA: IEEE Computer Society, 2006, pp.
181–190.

[6] Z. Wu, K. Gomadam, A. Ranabahu, A. P. Sheth, and J. A.
Miller, “Automatic composition of semantic web services
using process and data mediation,” in Proceedings of the
9-th International Conference on Enterprise Information
Systems (ICEIS’07), Funchal, Portugal, 2007, pp. 453–461.

[7] P. Traverso and M. Pistore, “Automated composition of
semantic web services into executable processes,” in Pro-
ceeding of the Third International Semantic Web Confer-
ence, ser. Lecture Notes in Computer Science, vol. 3298.
Hiroshima, Japan: Springer, 2004, pp. 380–394.

[8] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau,
“Htn planning for web service composition using shop2,”
Journal of Web Semantics, vol. 1, no. 4, pp. 377–396, 2004.

[9] D. Linner, H. Pfeffer, and S. Steglich, “A genetic algorithm
for the adaptation of service compositions,” in Proceedings
of the 2th International Conference on Bio-Inspired Models
of Network, Information and Computing Systems (BIONET-
ICS 2007). Budapest, Hungary: IEEE Computer Society,
2007, pp. 277–281.

[10] J. Rao, P. Kungas, and M. Matskin, “Composition of
semantic web services using linear logic theorem proving,”
Information Systems, vol. 31, no. 4-5, pp. 340–360, 2006.

[11] L. Aversano, M. di Penta, and K. Taneja, “A genetic
programming approach to support the design of service
compositions,” International Journal of Computer Systems
Science and Engineering, vol. 4, pp. 247–254, 2006.

[12] U. Kuster, B. Konig-Ries, and A. Krug, “Opossum - an
online portal to collect and share sws descriptions,” in
Proceedings of the 2th IEEE International Conference on
Semantic Computing (ICSC 2008). Santa Clara, California,
USA: IEEE Computer Society, 2008, pp. 480–481.

[13] L. Eshelman, Foundations of Genetic Algorithms. Morgan
Kaufmann Publishers, 1991, vol. 1, ch. The CHC adaptive
search algorithm: How to have safe search when engaging
in nontraditional genetic recombination, pp. 265–283.

384

