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Abstract 
 

This paper presents map-based data classification 

for hematopoietic tumor patients.  A set of squarely 

arranged neurons in the map is defined as a block, and 

previously proposed block-matching-based learning 

constructs the map used for data classification.  This 

paper incorporates pseudo-learning processes, which 

employ block reference vectors as quasi-training data, 

in the above training processes.  Pseudo-learning 

improves the accuracy of classification.  Experimental 

results establish that the percentage of missing the 

screening data of the tumor patients is very low.  

 

 

1. Introduction 
 

Blood physicians are specialists in detecting 

hematopoietic tumors.  In regions where the number of 

blood physicians is limited, home doctors are key 

persons for the early detection.  Blood physicians and 

home doctors are therefore anxious for breakthrough 

devices that visually warn users of the possible onset 

of the tumors.   

When learning is successfully complete for a self-

organizing map (SOM) [1]-[4], some neuron clusters 

are clearly formed in the map according to attributes of 

data.  Since processing results are visually provided by 

neuron clusters, SOM’s have recently been used to 

express medical data [5]-[7].  In [8]-[10], SOM’s are 

adopted to recognize the data of hematopoietic tumor 

patients.  To the best of our knowledge, except for such 

schemes, no works based on soft computing have been 

reported to classify blood-test data of normal persons, 

hematopoietic tumor patients, and non-hematopoietic 

tumor patients.  Especially, block-matching-based 

SOM’s (BMSOM’s) [11] are applied in [10].  A set of 

squarely arranged neurons forms a block, and the 

winner search is made for the block level.  In 

nonstationary environments, a training data set changes 

suddenly.  Such situations probably occur in clinical 

practice.  Fast BMSOM learning referred to as T-

BMSOM[10] constructs maps achieving high accuracy 

in finding data of the tumor patients, even if maps are 

in nonstationary environments.  Owing to the 

significance of tumor diagnosis, new mechanism 

improving the accuracy is required at any time.   

This paper proposes a method of improving the 

classification accuracy for the tumor patients’ data, 

incorporating pseudo-learning in T-BMSOM.  A block 

has a reference vector.  Pseudo-learning employs block 

reference vectors as quasi-training data, whereas 

regular training data are generated from screening data.  

Pseudo-learning reduces differences of frequencies of 

being winners among blocks.  Since winner blocks 

chosen for quasi-training data are known in advance, 

costs required for winner search are extremely low for 

pseudo-learning.  Thus, while proposed learning 

requires extra processes related to quasi-training data, 

the total computational time complexity is within 

tolerable level.  Simulations establish that pseudo-

learning is useful in improving the accuracy of 

precisely judging the data class of tumor patients and 

that of patients contracting other diseases.   

 

2. Preliminaries 
 

Blood physicians actually use screening data.  They 

are easily available to home doctors.  Vectors to be 

entered into the classification system are therefore 

generated from them.  Each of the data consists of 56 

items (e.g., white blood cells and chlorine [8]-[10]).  

Data classes are as follows: class of normal persons 

(CN), that of hematopoietic tumor patients (CHT), and 

that of non-hematopoietic tumor patients (CNH).   

A block is a set of neurons arranged in square. One 

of the blocks is chosen as a winner.  In an N N-sized 

map, the maximum (or minimum) block size is 

(N 1) (N 1) (or 2 2).  A block has a reference vector.  

It equals the average of reference vectors of neurons in  
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Figure 1.  Example of decision-tree-like winner 

search 
 

the block.  To find a winner block, block reference 

vectors are checked in terms of Euclidean distances to 

presented input data.   

In T-BMSOM learning [10] for an N N-sized map, 

the decision-tree-like search chooses (N 2) candidates 

for winner per member of the training data set.  The 

size of the (N+1 s)-th candidate is (s 1) (s 1) where 

3 s N.  This candidate has the shortest distance to the 

presented training data among four (s 1) (s 1)-sized 

blocks, which are included in the same s s–sized block 

chosen as the (N s)-th candidate.  The block with the 

shortest Euclidean distance is finally chosen as the 

winner for the presented data, out of such (N 2) 

candidates.  Figure 1 depicts an example. 

Batch learning is also employed in T-BMSOM.  

The following formulas are defined for the i-th neuron.  

Wupdate
i (tc, j) Wupdate

i (tc, j 1) + x(tc, j) / ,     (1) 

Wratio
i (tc, j) Wratio

i (tc, j 1) + 1
, (2) 

where x(tc, j) is the j-th training data on the tc-th epoch, 

and 1 tc T.  The learning completion condition is 

specified by T.   is the size of the winner block with 

the i-th neuron.  Every time the training data is 

presented, the above two values are accumulated.  

When the tc-th epoch is complete, all neuron reference 

vectors are updated at once.  The i-th neuron reference 

vector, W
i
(tc), is then given by  

W i (tc) =Wupdate
i (tc,Q) /Wratio

i (tc,Q) , (3) 

where Q is the total number of the training data. 

 

3. Map-based data classification for 

hematopoietic tumor patients 
 

3.1. Construction of maps 

 

The screening data generally includes some items 

without measured values [8]-[10].  Training a map 

using such incomplete data degrades its classification 

capability.  The imputation is therefore made as 

follows.  A set of the screening data is prepared.  Their  

 
Figure 2.  Substitution executed for 

generation of training data belonging to CHT 
 

classes are rightly known.  For a set of (P+U) data 

belonging to some class, let us assume that each of the 

P data lacks the k-th item value where 1 k 56.  The k-

th item values are then averaged for the remaining U 

data, and the average is given to the k-th item of the 

above P data.  Figure 2 depicts an example.  After the 

imputation is complete for all missing items, the 56-

dimensional data is applied as the regular training data.   

T-BMSOM learning sometimes fails to update

block reference vectors appropriately, if differences of 

frequencies of being winners are great among blocks. 

The adaptability of training a map to a nonstationary 

environment becomes more robust, if the differences 

can be reduced.  Pseudo-learning is one of the 

promising schemes for reducing the differences.  

Neuron reference vectors in a Q Q-sized block are 

updated, assuming its block reference vector to be the 

presented training data.  Such block reference vector is 

hereafter referred to as the quasi-training data.  The 

winner for some quasi-training data is clearly the block 

with it as the reference vector.  Thus, since the winner 

block is known in advance, pseudo-learning does not 

have to require presenting the quasi-training data 

actually.  The batch process is also applied for pseudo-

learning to update neuron reference vectors at once.   

Pseudo-learning is conducted before a normal epoch 

of T-BMSOM starts.  An epoch of proposed learning 

consists of the stage for presenting the quasi-training 

data hypothetically and that for presenting regular 

training data.  If a 5 5-sized map is prepared and 

reference vectors of 3 3-sized blocks are employed as 

the quasi-training data, the number of quasi-training 

data is 9.  For each of quasi-training data, Equations 

(1) and (2) calculate values related to updating the 

reference vector of the i-th neuron.  The values are 

accumulated.  Once the first stage is complete, all 

neuron reference vectors are updated, using Equation 

(3).  The second stage in the same epoch follows the 

first stage, using regular training data.    

Let us compare the case of cancelling pseudo-

learning with that of adopting it.  If nonstationary 

environmental changes (e.g., update of training data 
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Figure 3.  T-BMSOM with pseudo-learning and 

conventional T-BMSOM 
 

set) occur under executing normal T-BMSOM learning, 

it is possible that some small-sized blocks are 

successively chosen as winners.  Figure 3 depicts an 

example.  If the upper and rightmost 2 2-sized block is 

successively chosen as a winner, 12 neuron reference 

vectors outside it are never updated.  Pseudo-learning 

copes well with such issue.  To simplify the discussion, 

reference vectors of all 3 3-sized blocks are 

considered to be quasi-training data.  The 3 3-sized 

block shares at least one neuron with the upper and 

rightmost 2 2-sized block.  Therefore, updating neuron 

reference vectors in this block absolutely affects all 

3 3-sized blocks.  Pseudo-learning hypothetically 

presents vectors of the 3 3-sized blocks affected in the 

above way as quasi-training data, and stores values 

associated with the modifications on neuron reference 

vectors in the 3 3-sized blocks.  This is why the area 

of neuron reference vectors to be updated is enlarged in 

proposed learning, compared with the case where 

pseudo-learning is cancelled.   

 

3.2. Block labeling and data classification 
 

Once learning is complete, labeling is made for 

Q Q-sized blocks as follows.  For all items, averages 

of regular training data belonging to the class r are 

calculated, where r {CN, CNH, CHT}.  Let ALDr 

denote the data with such averages as item values.  Let 

Bi
Q
 denote the i-th Q Q-sized block, and let Wi

Q
 denote 

its block reference vector.  The three distances, 

||Wi
Q

ALDr||’s, are calculated for Bi
Q
.  The label 

assigned to Bi
Q
 equals that of the data with the 

minimum distance to Bi
Q
.  If the data is equal to other 

data in distance to Bi
Q
, Bi

Q
 is labeled SUSPENSION 

(“SUS” for short).  For example, when ||Wi
Q
 

ALDCN||=5, ||Wi
Q

ALDCNH||=15 and ||Wi
Q

ALDCHT||=5, 

SUS is assigned to Bi
Q
 as its label.   

 
Figure 4.  Generation of three data used for 

classification 
 

Table 1.  Example of judgments 
Labels of winners 

 
CN CNH CHT 

Distance 

CN    5 

CNH    15 

Labels 

of 

data CHT    10 

 

The screening data unused for learning is referred to 

as the pilot data.  To classify the pilot data, three data 

are generated from each of the originals.  For arbitrary 

items with no measured values, the averages of the 

regular training data belonging to the class r are given 

to the original data as the corresponding item values.  

Figure 4 illustrates the above.  The label assigned to 

the generated data means the class of the regular 

training data used to calculate the averages.   

The three generated data are presented to a map 

with labeled blocks.  If the presented data has the label 

different from that of a winner block, a response is 

disregarded.  If the label of one of the three generated 

data only equals the label of a winner block, only one 

response is available.  In other words, the original pilot 

data belongs to the class denoted by the latter label.  In 

the case where labels of the two generated data at least 

equal those of winners, either two or three responses 

are available.  The Euclidean distance is then checked 

between the reference vector of each winner and each 

of the presented data corresponding to winners.  The 

class is considered to be that denoted by the label of 

the winner with the shortest distance.  Table 1 shows 

an example.  It is presumed that the class of the 

original pilot data is CN.  Finally, if there are no 

available responses, the data class is SUS.  This means 

that the judgment is suspended.   

 

4. Classification model  
 

A set of screening data is divided in H subsets, and 

any combination of such subsets is employed as a 
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Figure 5.  Model of environmental change 

defined as BMNS case 
 

regular training data set at a given point in time.  The 

number of members in some subset is approximately 

equal to that in another subset.  The imputation in 3.1 

is applied to obtain complete data.  The following 

model case is assumed to be a nonstationary 

environment, and is referred to as the BM
NS

 case.   

In the BM
NS

 case, the maximum number of the 

regular training data is fixed.  The regular training data 

set initially consists of M subsets (M<H).  It is updated 

by adding a subset every TD epochs.  Let HMAX denote 

the maximum number of subsets in the data set.  After 

the number of subsets reaches HMAX, a subset is added 

and one of the M subsets included in the initial data set 

is deleted.  Adding and deleting a subset in this way 

are successively invoked every TD epochs.  The same 

subset is never simultaneously chosen as the target to 

be added and that to be deleted.  Let ND denote the 

number of such invocation.  Assuming that the above 

are defined as one trial of the simulation, the total 

number of epochs is (HMAX M+ND+1)TD per trial.   

Figure 5 depicts an example.  We have (H, M, TD, 

HMAX, ND)=(16, 10, 25, 12, 3).  The regular training 

data set initially consists of the 3rd through 12th 

subsets at the 1st epoch.  A new subset is added at the 

26th and 51st epochs.  The number of subsets reaches 

HMAX at the 51st epoch.  The 3rd subset is deleted and 

the 15th subset is added at the 76th epoch.  Adding and 

deleting a subset are made every 25 epochs.  The final 

environmental change occurs at the 126th epoch.  It is 

related to the 6th and 1st subsets.  The resultant regular 

data set is used until the 150th epoch.   

The BM
NS

 case corresponds to the situation that old 

data must be deleted from the storage for any reason, to 

process new data.   

 

5. Experimental results 
 

The screening data are prepared for 1831 examinees.   

Table 2.  Actualities versus classification 
results 

Numbers of classified original data 
 

CN CNH CHT SUS 

CN n0
CN

 n1
CN

 n2
CN

 n3
CN

 

CNH n0
CNH

 n1
CNH

 n2
CNH

 n3
CNH

 Actualities 

CHT n0
CHT

 n1
CHT

 n2
CHT

 n3
CHT

 

 

The classes of these data are known in advance.  For 

the data of any examinee, about 28 percent of the 56 

item values are missing on average.  All data are 

divided into five combinations by means of the five-

fold cross-validation.  A combination consists of 1465 

training data and 366 pilot data.   

Entries in Table 2 denote the numbers of classified 

data.  A column corresponds to a classification result.  

A row corresponds to an actual class.  n0
CN

, n1
CHN

 and 

n2
CHT

 therefore mean the numbers of data precisely 

judged as those belonging to CN, CNH and CHT, 

respectively.  The classification capability is evaluated 

by the following percentage: the percentage of the 

number of the data judged as belonging to the class r 

(r {CN, CNH, CHT, SUS}), compared to total 

number of the data belonging to the actual class.  The 

percentages associated with precisely judged data are 

specially denoted by P
CN

, P
CNH

 and P
CHT

: 

PCN
= n0

CN / nd
CN

d=0

3
, (4) 

PCNH
= n1

CNH / nd
CNH

d=0

3
,  (5) 

PCHT
= n2

CHT / nd
CHT

d=0

3
. (6) 

A 16 16-sized map is prepared.  Quasi-training data 

equals all reference vectors of 2 2-sized blocks.  When 

environmental changes occur on a regular training data 

set, learning is successively conducted without 

initializing neuron reference vectors.  In other words, 

initial vectors used for learning correspond to the latest 

neuron reference vectors just before environmental 

changes occur.  For maps trained by the proposed 

method, 2 2-sized blocks alone are labeled.  This is 

due to the fact that reference vectors of such blocks are 

quasi-training data.  The method for constructing a 

map in [10] labels blocks with size from 2 2 through 

15 15, if the map size is 16 16.   

Parameters in the BM
NS

 case are as follows: (H, M, 

TD, HMAX, ND)=(16, 10, 25, 12, 7).  Due to the five-

fold cross-validation, five combinations of screening 

data are available as regular training data sets.  A 

combination consists of 16 subsets, and an initial 

regular training data set has 10 subsets out of them.  

Ten sets are generated as initial regular training data 

sets per combination.  The proposed method is 

evaluated, considering one of the initial sets to be a 

starting point.  The pilot data are classified every 50 

epochs of training a map.  Once an evaluation is  
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Table 3.  Averaged results achieved by 
proposed method in BMNS case 

 

(a) 50 epochs later 

Results for the pilot data(%) 
 

CN CNH CHT SUS 

CN 96.17 0.68  3.15 0.00  

CNH 6.85 79.61  13.54 0.00  
Actualit

ies 
CHT 5.08 13.92  81.00 0.00  

 
(b) 100 epochs later 

Results for the pilot data(%) 
 

CN CNH CHT SUS 

CN 95.98 0.84  3.17 0.02  

CNH 6.76 79.59  13.65 0.00  
Actualit

ies 
CHT 4.85 14.28  80.87 0.00  

 
(c) 150 epochs later 

Results for the pilot data(%) 
 

CN CNH CHT SUS 

CN 96.12 0.87  2.99 0.02  

CNH 6.13 79.91  13.95 0.00  
Actualit

ies 
CHT 4.95 14.52  80.53 0.00  

 
(d) 200 epochs later 

Results for the pilot data(%) 
 

CN CNH CHT SUS 

CN 95.80 0.80  3.38 0.02  

CNH 6.29 80.70  13.01 0.00  
Actualit

ies 
CHT 5.02 14.45  80.53 0.01  

 
(e) 250 epochs later 

Results for the pilot data(%) 
 

CN CNH CHT SUS 

CN 96.45 0.75  2.78 0.02  

CNH 6.33 80.47  13.21 0.00  
Actualit

ies 
CHT 5.19 13.81  81.00 0.00  

 

complete, the above are repeated, using one of the 

remaining training data sets.  Table 3 shows averages 

obtained from all evaluations for pilot data.   

Let us specially discuss the classification results of 

CHT-class data.  The classification capability of such 

data is demonstrated with the bottom rows in Table 3.  

When generally detecting the tumors, blood physicians 

comprehensively refer to powerful outcomes (e.g., 

bone marrow test and lumbar puncture) in addition to 

the screening data.  The screening data are thus the 

barely minimum data.  While the classification is made 

under such restricted condition, P
CHT

’s exceed 80.5 

percent.  If it is acceptable that CNH and SUS are 

pseudopositive, the probability that the proposed 

method fails to notice the CHT-class data is less than 

5.2 percent.  The dangerous false classification must be 

avoided with great care for the CHT-class data.  In the 

above context, if the powerful outcomes are available 

together with the screening data, the probability of  

 
Figure 6.  Comparison of proposed method 

with other classification in [10] 

 
missing the tumor patients is drastically reduced.   

Let us next compare the proposed method with the 

method in [10], provided that parameters on 

environmental changes and way of data classification 

are similar to those in the above BM
NS

 case.  The 

following percentage is assessed: PCOMP
r
=(NPRM

r 

NOTM
r
)/NOTM

r
, where NPRM

r
 (or NOTM

r
) denotes the 

numbers of data whose class is precisely judged as r 

(r {CN, CNH, CHT}) by the proposed method (or 

method in [10]).  Figure 6 depicts averaged results.   

The proposed method is almost equivalent to the 

method in [10] in terms of finding the CN-class data.  

The former however surpasses the latter in recognizing 

the other class data.  The former requires about 20 

percent more training data than the latter per epoch in 

the above BM
NS

 case, owing to 225 quasi-training data.  

However, since winners for quasi-training data are 

clearly known in advance, the cost of presenting one of 

them is much less than that of presenting one of the 

regular training data.  In addition, the proposed method 

has the advantage of low cost of block labeling.  This 

is because the proposed method presents 675 data to 

finish labeling, whereas the method in [10] presents 

3717 data in the above BM
NS

 case.  The proposed 

method thus achieves performance advances in Figure 

6 in return for the slight increase of total costs.   

Let us finally discuss block clusters.  Figure 7 

depicts an example of the trained map in the above 

BM
NS

 case.  A map has 15 2 2-sized blocks a side.  

The small-sized squares correspond to such blocks.  

Positions of the winners serve to guess the dependable 

levels of judgments made by the map [8]-[10].  If the 

winner block belongs to the boundary region between 

clusters, medical doctors can make a decision for the 

presented data, sufficiently keeping in mind the 

possibility that the true class disagrees with the class  
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(a) 50 epochs later           (b) 100 epochs later 

                  
(c) 150 epochs later                 (d) 200 epochs later 

              
(e) 250 epochs later 

Figure 7.  Maps constructed in BMNS case 
 

specified by the label of the winner.  To adequately 

take advantage of this concept, clusters with sharp 

outlines should be formed.  The proposed method 

yields maps with clear clusters as shown in Figure 7.  

Thus, pseudo-learning never spoils the capabilities of 

maps in visually aiding medical doctors. 

 

6. Conclusions 
 

This paper has proposed a map-based method for 

recognizing screening data of hematopoietic tumor 

patients with high accuracy.  Pseudo-learning is 

adopted to improve the plasticity of trained maps to 

nonstationary environments.  It employs block 

reference vectors as quasi-training data, and presents 

them hypothetically.  Since the cost of presenting such 

data is much less than that of presenting the regular 

training data, the extra computational time complexity 

caused by pseudo-learning is tolerable.  Experimental 

results in a nonstationary environment establish that 

pseudo-leaning makes it possible to improve the 

probability of judging the CNH-class and the CHT-

class data.   

In future studies, the proposed method will be 

modified to diagnose detailed types of the tumors. 
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