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Abstract—The purpose of this paper is to present an effective
way to achieve a high-level integration of a Clinical Decision
Support System in the general process of Heart Failure care and
to discuss the advantages of such an approach.
In particular, the relevant and significant medical knowledge
and experts’ know-how have been modelled according to an
ontological formalism extended with a base of rules for infer-
ential reasoning. These have been also combined with advanced
analytical tools for data processing. In particular, methods for
the segmentation of echocardiographic image sequences and
algorithms for ECG processing have been implemented and
integrated into the system.

I. INTRODUCTION

The need for a more efficient, cost-effective and personal-
ized care and for a more rational deployment of diagnostic
resources is one of the reasons behind the strong demand
and hence success of computerized applications developed to
assist health care givers in their routine clinical workflows [1].
Actually, the provision of specialized care regimes depends
on the optimization abilities of care professionals to apply
the necessary medical knowledge by also integrating the
interpretation of diagnostic test results, medication availability
and responses to past treatments. This can be a particularly
burdensome task and it may be now beyond the mental
integration capabilities for unaided healthcare professionals
to deliver patient care with the efficacy, consistency and
safety that the full range of current knowledge could support.
Nowadays, the development and increasing use of hospital
or, even, cross-enterprise regional health information systems
make possible the design of ambitious integrated platforms of
services in order to guarantee the continuity of care across
the various stakeholders. Clinical Decision Support Systems
(CDSSs) are a natural ingredient of such integrated platforms,
since they may foster adherence to guidelines, prevent omis-
sions and mistakes, spread up-to-date specialistic knowledge
to general practitioners and so on. A great value added to
the efficacy and usefulness of a support application can be
assured by the integration of advanced methods for diagnostic
data processing. Actually, signal and imaging investigations
are currently a basic step of the diagnostic, prognostic and
follow-up processes of diseases.

Among chronic diseases, Heart Failure (HF) is a complex
clinical syndrome, whose management requires –from the ba-
sic diagnostic workup– the intervention of several stakeholders
and the exploitation of various diagnostic signal and imaging
resources. Indeed, due to complexity and urgency of chronic
HF patients’ management, several attempts to cope with the
problem have been made in different research projects and
resulted in the development of dedicated IT solutions such as
automated guidelines systems [2], decision support systems
[3], or Machine Learning methods for automated HF diagnosis
[4] or prognosis [5]. More recently, the European project
HEARTFAID “A knowledge based platform of services for
supporting medical-clinical management of the heart failure
within the elderly population” [6] aims at defining efficient
and effective health care delivery models for the optimal
management of HF patients. The HEARTFAID platform has
been conceived as an integrated and interoperable system,
able to guarantee an umbrella of services that range from the
acquisition and management of raw data to the provision of
effective decisional support to clinicians [7]. Specifically, the
core of the platform is represented by a CDSS, which has
been carefully designed by combining innovative knowledge
representation formalisms, robust and reliable reasoning ap-
proaches, and innovative methods for diagnostic image and
signal analysis.

In this paper, the CDSS design and development is discussed
by focusing particularly on the knowledge formalization pro-
cess and how signal and image processing results have been
modelled in it.

II. BACKGROUND

A. Clinical Background

HF is a progressive disorder caused by a decreased ability
of the ventricle to fill with or eject blood and in which damage
to the heart causes weakening of the cardiovascular system.
HF progresses by underlying heart injury or inappropriate
responses of the body to heart impairment. It is a progressive
disorder that must be managed in regard to not only the
state of the heart, but the condition of the circulation, lungs,
neuroendocrine system and other organs as well. In its chronic
form, HF is one of the most remarkable health problems for
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prevalence and morbidity, especially in the developed western
countries, with a strong impact in terms of social and economic
effects. All these aspects are typically emphasized within the
elderly population, with very frequent hospital admissions and
a significant increase of medical costs.

The first, immediate and enlightening proof of HF complex-
ity is represented by its diagnostic workup. Indeed, it can be
considered as the first stage of HF patients’ management which
necessarily requires the acquisition and analysis of signals
and images. Once assessed the presence of main signs and
symptoms, physicians usually require diagnostic examinations
such as ECG, chest X-ray and neuroendocrine evaluations
(i.e. Brain Natriuretic Peptides) in order to check out the
diagnosis, confirmed eventually by an echocardiography in-
vestigation. Supporting such a decision problem requires to
encode the workflow into an opportune knowledge base that
formalizes, for each step, the set of conditions evaluated by
physicians.

B. Decision Support in Heart Failure

Recent studies and experiences have demonstrated that
accurate HF management programs, based on a suitable inte-
gration of inpatient and outpatient clinical procedures, might
prevent and reduce hospital admissions, improving clinical
status and reducing costs [8], [9]. Actually, HF routine practice
presents several aspects in which an automatic, computer-
based support could have a favorable impact. A careful inves-
tigation about the needs of HF practitioners and the effective
benefits assured by decision support was performed: four
problems were identified as highly beneficial of CDSS point-
of-care intervention [4]. They can be referred as macro domain
problems and listed up as: (i) HF diagnosis, (ii) prognosis, (iii)
therapy planning, and (iv) follow-up. Further detailed decision
problems were identified for specifying these macro domains,
focusing as much as possible on the medical users’ needs;
explicative examples are:

• severity evaluation of heart failure
• identification of suitable pathways
• planning of adequate, patient’s specific therapy
• analysis of diagnostic examinations
• early detection of patient’s decompensation
The idea behind the development of a CDSS able to support

this kind of problems was to provide clinicians with advices,
suggestions and alerts in the different phases of chronic HF
patients’ management, without altering their normal activities.

In practice, the implementation of CDSS was mainly fo-
cused on the incorporation of high-quality, evidence-based
medical knowledge, suitably formalized and employed in
automated reasoning processes in order to obtain diagnostic,
prognostic and therapeutic conclusions to be supplied to
clinicians.

C. Significance of Signal and Image Processing Methods

During the formalization of the main decisional problems in
the heart failure domain and listing up all the pieces of knowl-
edge, data and information relevant for decision making, the

importance of considering and interpreting ECG signals and
echocardiography images came forth. Indeed, HF diagnostic
workup was a straightforward example of the importance of
computer-aided data processing in HF decision making.

As it is well known, imaging techniques offer invaluable aid
in the objective documentation of cardiac function, by supply-
ing parameters relative to chamber dimensions, wall thickening
and motion, systolic and diastolic function, regurgitations and
pulmonary blood pressure. As previously mentioned, chest X-
ray and echocardiography should be included in the HF initial
diagnostic workup. Further, echocardiography will be regularly
repeated to monitor in an objective way the changes in the
clinical course of a HF patient. Thus, echocardiography and in
particular 2-D TransThoracic Echocardiography (TTE) for its
non-invasiveness and versatility is the key imaging technique
for the practical management of HF. On the other side, ECG
is recognized as the very basic examination performed in
the evaluation and assessment of HF. According to [10], the
negative predictive value of normal ECG to exclude left ven-
tricular systolic dysfunction exceeds 90%. Summing up, ECG
and TTE processing methods may allow for the automatic
or semi-automatic computation of clinical parameters relevant
in decisional problems in the HF domain, thus providing
reproducible and reliable numerical values and reducing intra-
and inter-observer variability.

III. METHODS

A. The Clinical Decision Support System
The CDSS was devised for processing patients’ related

information by exploiting the relevant medical knowledge op-
portunely elicited from medical experts, extracted from clinical
guidelines, and suitably formalized for being used in reasoning
processes. While encoding such knowledge, the integration
of both signal and image processing methods was conceived
in order to include parameters extracted from different data
acquisition modalities into the more general process of health
care management. In particular, the integration was focused
on two main issues:

1) supplying relevant parameters to the inferential pro-
cesses

2) personalizing the diagnostic investigations by suggesting
which parameters should be evaluated.

An example can be used for better explaining the implica-
tions of these two issues: while processing patient’s data for
identifying the causes of her worsening, the CDSS may need
a number of routine parameters not yet available. In such a
case, a suggestion will be issued by the system asking the
clinician to perform additional examinations, such as an ECG
or a TTE, in order to obtain the missing parameters. On the
other side, it can happen that such routine parameters are not
able to completely explain patient’s status and thus the system
can require the extraction of other non standard features that
can enlighten patient’s peculiar conditions. In both cases, the
reasoning process pauses, waiting for additional information.
Reactivating the process requires data processing algorithms
to be performed.
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Fig. 1. The organization of the knowledge base and the reasoning component
of the CDSS

A symbolic approach [11] was selected for formalizing the
domain knowledge. In particular, among the several symbolic
knowledge representation methods –most of which refers to
logics in order for a formal semantics– a hybrid solution based
on the use of formal ontologies and rules appeared the most
promising.

Ontologies were selected as knowledge representation meth-
ods thanks to their main properties, such as conceptuality (i.e.,
an ontology corresponds to a conceptual model of a domain
which can be easily understood and captured), explicitness
(i.e., the relevant notions of the domain are explicitly included
into the machine-interpretable conceptualization model), and
easiness to be shared (i.e., an ontology is generally built after
a certain agreement on the terminology to be used among a
domain community). Another feature that appeared relevant in
the choice was the spread of ontologies within the Semantic
Web field and, thus, the availability of different up-to-date,
open-source technologies developed by large communities.
This was also considered important since the CDSS was
conceived to be used in a web-based environment [7].

Although the various advantages, ontologies present some
limits and lacks owed to their description logics foundations.
This means that complex or derived relations cannot be
induced from an ontological artefact. A rule-based formalism
is generally employed for filling these lacks. Rules are used
to reflect the notion of consequence; they come in the form
of IF-THEN-constructs and allow expressing various kinds
of complex statements. They are based on different kinds
of logics and have, thus, a well definite semantics supported
by assessed reasoning tools. Morevoer, rules are particularly
suitable for encoding procedural knowledge, i.e., not only
declarative information about the existence of domain con-
cepts, but also action to be performed when specific conditions
are met.

The medical-clinical knowledge was then formalized into
a composite Knowledge Base (KB) that consisted in a suite
of ontologies and a base of rules, as shown in Figure 1.
Clinical guidelines [10] were used as knowledge source and
experts’ know-how was elicited through several interviews.
Moreover, in order to maintain the focus on the actual
routine activities of clinicians, some realistic scenarios were
conceived in cooperation with the experts and followed dur-

ing the knowledge representation process. This fostered the
development of an effective supportive instrument able to
integrate clinicians’ routine workflows and provide correct
suggestions when needed. A problem decomposition approach
was adopted, by identifying the different CDSS interventions
and the correspondent relevant pieces of knowledge which
were then suitably structured.

In order to be more precise, examples of actual problems
identified as requiring the CDSS help are the following:

A patient, monitored at home, completes a periodic
questionnaire (i.e. the Minnesota Questionnaire) which
is transmitted for interpretation to the CDSS, which
automatically detects any change in her symptoms

A patient undergoes a TTE examination and computed
parameters are submitted to the CDSS which, once
recomputed more objectively some of them by using the
image processing tools, estimates additional information,
such as the pulmonary pressure, and according to them
suggests to the clinician a change in therapy

A problem-specific point of view was maintained for building
the KB. The ontology was hence structured so as to be
functional to its use in the reasoning process, instead of being
developed as a structured terminology.

A comprehensive conceptual model was firstly devised for
capturing all the relevant information, concepts and relations.
Figure 2 shows an excerpt of such a model, some aspects
are worth of note: the class “patient” is central and links
all the other classes; the class “suggestion” was used for
modelling the responses of the CDSS to each possible query;
the class “currentStatus” was included for modelling the
dynamic situation of patients’ conditions.

In order to optimize the reasoning process (i.e., to speed it
up and make it easier), this model was organized into a suite
of ontologies composed by a set of sub-domain ontologies,
one for each of the identified sub-problems the CDSS had to
provide suggestions for, i.e., diagnosis, follow-up and therapy,
and these were further divided into task ontologies. An upper
ontology was defined for linking all the information, more
precisely the class “patient” is the main component of this
upper ontology.

Particular attention were paid to the diagnostic procedures
and, then, to the role signals and images have within the
functioning of the CDSS. More precisely, the parameters that
can be extracted from the different modalities were extensively
analyzed and inserted into the conceptual model (see Figure 2).
Actually, rules were formalized by using the concepts specified
into the ontologies. Again, guidelines and experts’ know-how
were used as knowledge sources.

B. Image Processing Methods

Since TTE is the key imaging modality for the management
of heart failure patients, a careful analysis of the modality
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Patient

Name: string
Age : int
ID: int
Gender: enum
…

currentStatus

Date:  dateTime
Age : int
ID: int
Gender: enum
…

hasCurrentStatus

Sign

hasSign
Cardiovascular
Sign

isA

Blood Pressure

Systolic BP: int
DiastolicBP: int
PulsePressure:int
…

isA

Symptoms
hasSymptom

Circulation

arterialPeripheral: string
caroticBruitLeft: string

caroticBruitRight:string

arterialPulse:string
…

isA

Anamnesis

Enrollment: dateTime
Monitoring:dateTime
lifeStyle:enum{smoker,.. }
…

hasAnamnesis

Disease

pastPathology
Cardiomiopathy

Aetiology:stringisA

surgicalIntervention

Date:dateTime
…

pastIntervention

required

DiagnosticProc
edure

Date:dateTime

performed

Echocardiography

LV_endDiastolicDiameter:float

LV_endDiastolicVolume:float

LV_endSystolicDiameter:float

LV_endSystolicVolume:float

inferiorVenaCavaDiameter:float

…

isA

Electrocardiogram

Leads:int
Pacemaker:boolean
heartRate:int

Rythm:int

QRS:int

…

isA

Holter

HRAverage:int

…

isA

Suggestion

Date:dateTime

suggestedTo

SuggestedProc
edure

isA

isA

SuggestedTher
apy

Therapy

follows

isAisA

Fig. 2. An excerpt of the conceptual model used for building the ontology.
Boxes represent classes and contain their simple datatype properties, while
relations among classes are represented by the arcs (arrows between two
boxes).

was carried out in cooperation with medical partners, from
which it was concluded that the development of assisted seg-
mentation methods, able to deal with echocardiographic image
sequences, could represent a valid support to the physicians
in the process of image report formation. Indeed, assisted
segmentation methods may make more reproducible the most
important measurement performed by TTE, which is Left
Ventricle (LV) Ejection Fraction (EF). LV EF, which permits
to distinguish patients with cardiac systolic dysfunction from
patients with preserved systolic function, is given by the
normalized (non-dimensional) difference between LV End-
Diastolic Volume (EDV) and the End-Systolic volume (ESV).
Among different models for the computation of such volumes,
the American Society of Echocardiography [12] suggests the
use of the so-called Simpson’s rule, by which the LV is
approximated by a stack of circular (or elliptical) disks whose
centers lie on the major axis. The border of the LV cavity
is needed for estimating its axis and the radii of the disks
in the stack. For this reason, Simpson’s method relies on the
segmentation of the LV border. In the case of manual seg-
mentation of TTE images, inter- and intra-observer variability
is strong, since often the anatomical structures of interest are
not easily distinguishable due to intrinsic limitations of the
modality. Further, the error in the estimation of EDV and ESV
greatly propagates to the value of LV EF; for these reasons
manual contour tracing is unable to provide a satisfactory
and reproducible measurement of LV EF. Image processing
techniques may reduce variability of human interventions in
border tracing, by providing automated or, at least, semi-
automated methods for tracing contours of relevant structures
found in an image. However, the segmentation problem for
ultrasound images is by no means trivial, due mainly to low

signal to noise ratio, low contrast, and image anisotropy and
speckle noise [13]. From these considerations, it was judged
important to develop a prototypical toolkit for the analysis of
apical-view sequences and the estimation of LV EF.

C. Signal Processing Methods

ECG signals play a crucial role in HF diagnosis and follow-
up. After some interviews with the clinicians, a significant
operative scenario was identified where a non-interpretive
electrocardiograph acquires and transfers resting ECGs to the
hospital gateway where the ECGs are processed in order to:

1) Detect the QRS complexes
2) Identify the dominant beats
3) Evaluate the averaged dominant beat

In fact, the averaged dominant beat is usually used by the car-
diologists for the evaluation of the main measurements for the
diagnosis or the follow-up of HF patients, like ST depression,
QRS and QT durations, Sokolow-Lyon index, presence of left
or right bundle branch block and presence of pathological Q
waves. Thus, the algorithms developed for signal processing
–together with a suitably designed graphical interface– may
be used for the semi-automatic accurate estimation of such
parameters, which, in turn, are used as input by other CDSS
services.

The robust and scalable algorithms developed for ECG
processing are briefly described below.

1) QRS detection: The selected approach for QRS detection
[14] starts with a signal pre-filtering in order to reduce the
baseline wandering and the high-frequency noise. Then, a QRS
enhanced Signal (QeS) is built as the sum of the absolute
derivatives of the pre-filtered channels. QRSs are detected
using an adaptive threshold and special techniques are used
in order to avoid indicating large-amplitude T-waves as other
QRSs and to reject any QRS detection too closer to the
previous one. In each channel, noise estimation for each
QRS is performed and a number of consecutive noisy QRSs
determine the presence of a noisy interval. In each noisy
interval a procedure selects the results obtained by the QRS
detection using QeS produced by channel combination with
lowest noise.

2) QRST morphological classification: The QRST morpho-
logical classifier has been designed based on a two-phase
decision tree [15] and starts with a pre-processing for the
reduction of baseline wandering and high-frequency noise. In
the first phase, each QRST complex is best aligned, using
horizontal and vertical wiggling, with an estimated centroid
in the point which minimizes the L1 distance. ”Similarity”
features like the L1 and L2 distances and the centroid-to-
beat correlation coefficient are then evaluated and, using also
the peak-to-peak value of the complex, it is determined with
a decision tree whether the complex should be considered
dominant or not. Then, the same algorithm is applied again to
the remaining beats identifying all the other morphological
classes. In the second phase, all non-dominant groups are
reprocessed, after splitting the large groups into smaller ones.
The centroid of each reformed group is compared to the
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dominant group centroid using the same features of the first
phase and, if the new classification criteria are satisfied, its
beats are put into the dominant class. For the last group of
phase one, which is more a collection of leftover complexes
than a group of similar complexes, each beat is separately
compared to the centroids of all groups formed so far. In
absence of a satisfactory likeness with any other class, a new
group is formed with that beat. Noise is also estimated for each
QRST in order to loosen the criteria for the beat assignment to
the dominant class in the first phase and during the processing
of the last group in the second phase.

3) Evaluation of the averaged dominant beat: A rough
approach might be simply the average of all the beats classified
as dominant, however:

• Beats with too much noise would corrupt the proper
averaging.

• Incomplete beats (typically the first and the last of the
recording) would corrupt the proper averaging.

• Beats not properly aligned to a proper reference point
would provoke artifact in the averaged beat.

Thus, the set of the dominant beats -found during the
classification process- is analyzed in order to exclude for each
channel incomplete beats (usually the first and the last of the
recording) and beats with high noise. Finally a subset of good
dominant beats is identified for each channel and the averaging
is performed on this subset based on the alignment values
previously identified. The averaging is performed on the orig-
inal signal band-pass filtered in the band 0.1-40 Hz in order
to avoid non-linearities (mainly in the T-wave morphology)
introduced by the median filters used in the classification pre-
processing.

IV. RESULTS AND DISCUSSION

Results of the methods introduced are herein reported
orderly.

Clinical Decision Support. A number of tools and instru-
ments are available for developing the CDSS according to
the design specifications. The key factors that were taken into
account for defining an up-to-date system were: (i) accordance
to standards, (ii) efficiency and (iii) robustness.

Several technologies were investigated, with particular at-
tention to the Semantic Web field, since it offers various
tools for building ontological models, knowledge bases and
reasoning on them (plus, the CDSS was conceived to be
integrated within a web-based application). For selecting the
appropriate tools, the W3C recommendations were carefully
analyzed and the performance, compatibility and maintenance
of the different tools were considered. As to the knowledge
representation formalism, the Web Ontology Language (OWL)
[16] –and specifically the OWL DL sublanguage– was selected
for defining the ontologies, since it can be considered as the
actual de-facto standard semantic mark-up language for this
task and offers all the power and expressivity of Description
Logics. Standard medical ontologies such as UMLS [17], were
taken into account for selecting a commonly recognized and
agreed terminology.

For defining the rules, the Semantic Web Rule Language
(SWRL), which combines OWL and Rule Mark-up Language
[18], was selected as suggested by the W3C for extending
the set of OWL axioms to include Horn-like rules. For the
reasoning component, Jena [19] was preferred as a Java
environment that includes OWL, a language for querying
ontologies, i.e. [20], and a rule-based inference engine. In
particular, for improving the reasoning capability of the rule-
based inference engine, Bossam [21] and Pellet [22] were also
used.

As discussed and illustrated in the previous section, the for-
malized KB contained a number of rules and conditions related
to the signal and imaging procedures and processing methods.
This means that the CDSS can issue suggestions regarding the
necessity of performing an echocardiography examinations or
can employ the parameters extracted from signals and images
for issuing advices. An explicative illustration of the CDSS
functioning in the latter case can be easily obtained consider-
ing a patient that performs a TTE. The acquired images and the
parameters previously extracted from the echocardiographic
device can be uploaded to the CDSS and submitted for further
processing. The image analysis methods can be, then, launched
for re-computing the left ventricle volumes and the LVEF.
Once these values are available and transmitted to the CDSS,
they are combined with other facts about the patient and used
for obtaining further information and conclusions, such as the
condition of the filling pattern, systolic pulmonary pressure
and the type of heart failure.

For better showing and allowing to appreciate the results of
this integration, it should be mentioned that the CDSS as well
as the signal and image processing tools were developed to be
integrated into the HEARTFAID platform of services, which
also include a Telemonitoring System for acquiring and store
patients’ data at home, an electronic Case Report Form for
managing patients’ information, a web-based User Interface,
and a DICOM-compliant Image Archive, also equipped with
a web-based interface, for storing and browsing the results
of imaging investigations. The platform was implemented
as a web-based application according to a service oriented
approach. Describing the platform and its implementation is
beyond the purpose of this paper (see [6]), but it is worth
mentioning that the CDSS was not developed to be invoked
explicitly by clinicians; rather it was designed so as to assist
them contextually during their work, offering suggestions at
appropriate circumstances. For instance, when a clinicians
is checking patient’s status, the suggestion of performing
an echocardiographic investigation may be automatically dis-
played. This type of integration is handled by the Integration
Middleware component which is responsible for orchestrating
all the platform services.

In particular, the situation described before was imple-
mented by considering that the TTE images are uploaded into
the Image Archive and the image analysis tool is launched
so as to compute the mentioned parameters. Results of the
segmentation are stored into the archive and displayed for
being approved. If this is the case, the information is sent to
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Fig. 3. Example of CDSS response after echo parameters are computed

the CDSS and results are displayed in a new page as shown
in Figure 3. Image Processing. A toolkit –consisting of three
modules– for the analysis of apical image sequences and the
computation of LV EF has been designed and implemented.
The first module (Region Identification), which takes in input
an apical sequence of the heart, is able to identify the left
ventricle cavity in every frame of the sequence by means of
mimetic criteria, providing a rough segmentation of it. The
second module (Segmentation Refinement), which takes in
input an image and a rough segmentation of it, is able to refine
the segmentation exploiting a variational formulation of level
set methods, which achieves regularization of the boundary
of the LV as well as better adherence to image edges. The
third module (Feature Extraction) is able to extract significant
features from a set of segmented left ventricles, the most
important being EDV and ESV (both computed according to
Simpson’s rule) and, in turn, LV EF. The various procedures
have been implemented in the Matlab environment, exploiting
the Image Processing Toolbox (IPT), and have been tested
on 2D image sequences, recorded from the apical window (2-
chamber and 4-chamber views). The echocardiographic device
was GE Vivid 7. The data consisted of image sequences
acquired at the rate of 25 frames per second.

Signal Processing. The ECG processing algorithm were
tested on the publicly available annotated MIT-BIH Arrhytmh-
mia Database [23]. For the QRS detection, a sensitivity of
99.76% and a positive predictive value of 99.81% have been
obtained. Very satisfactory results were also obtained for
dominant class discrimination on all the annotated beats of the
same database with sensitivity 99.05% and specificity 93.94%.
A slight reduction of the performances was obtained on the
detected beats obtained by the QRS detector described above,
but the results were still very satisfactory with sensitivity
98.71% and specificity 93.81%.

V. CONCLUSIONS

In this paper we have presented a high-level integration of
diagnostic signal and image processing into the wide-ranging
services provided by a CDSS for the management of heart
failure. In particular, we have motivated the choices made

in designing suitably image and signal processing algorithms
and we have shown how they can be deployed in decisional
problems –and hence in the global process of care– by the
CDSS. The CDSS was developed by integrating the knowledge
elicited from clinical guidelines and experts’ interviews into
a hybrid KB consisting of a suite of ontologies and a base
of rules. The feedbacks obtained so far by clinicians were
encouraging.
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