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Abstract 

 
This paper presents the work of our group 

concerning cancer image analysis and modeling. The 
adopted strategy aims to build a complete system for 
analysis and visualization of DICOM tomographic 
data, offering a variety of annotation or automatic 
segmentation tools as well as tools for tumor growth 
simulation and visualization. 

  
 
1. Introduction 
 

One of the major concerns in clinical practice and 
treatment of cancer is the fastest possible transform of 
scientific discoveries arising from laboratory, clinical 
or population studies into clinical applications, to 
reduce cancer incidence, morbidity and mortality. This 
is the scope of translational research (illustrated in Fig. 
1), which in turn can be further resolved in early and 
later states [1]. Towards this direction this paper refers 
to a concrete and practical framework of applying state 
of the art image analysis algorithms to facilitate tumor 
delineation and further estimate tumor growth 
dynamics and treatment response “in silico”; in a 
dedicated easy to use computer platform. To state its 
applicability and potential use, the presented 
framework is specialized in highly aggressive and 
malignant cancer cases, like the Glioblastoma 
multiforme (GBM). It is the most common and most 
aggressive type of primary brain tumor in humans, 
accounting for 52% of all primary brain tumor cases 
and 20% of all intracranial tumors. Unfortunately, even 
with complete surgical resection of the tumor, 
combined with the best to date available treatment, the 
survival rate for GBM remains very low [2]. 

The paper proceeds as follows: Section 2 provides 
an overview of the platform that forms the cornerstone 
of the presented framework. Details on the 
implemented delineation algorithms are given in 
section 3. Section 4 details the 3D model of 

heterogeneous anisotropic glioma evolution and 
presents some initial results using the platform, 
whereas section 5 concludes the paper. 

 
2. Integration Platform 
 

The different technologies concerning cancer image 
analysis and modeling developed by our group are 
currently being integrated in ‘DoctorEye’ (available at 
http://biomodeling.ics.forth.gr/) [3], a novel, open 
access and easy to use platform, for intuitive 
annotation and/ or segmentation, visualization and 
growth simulation of tumors. Its development is 
clinically driven and follows an open modular 
architecture focusing on plug-in components. The main 
advantage of the proposed platform is that the user can 
quickly and accurately delineate complex areas in 
medical images in contrast with other platforms that do 
not facilitate the delineation of areas with complicated 
shapes. Additionally, multiple labels can be set to 
allow the user to annotate and manage many different 
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Fig. 1: Translating research into cancer care can greatly 
benefit the diseased patient. A practical easy to use “in-silico 
modeling” application can advance discoveries more 
effectively toward early human testing for a new therapeutic, 
diagnostic and preventative intervention scheme. 
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areas of interest in each selected slide. The close 
collaboration with clinicians in designing the platform 
has ensured that it can be effectively used in the 
clinical setting.  

Another feature that adds value to the platform is 
that it allows computational “in-silico” models of 
cancer growth and simulation of therapy response to be 
easily plugged in, providing a future integrated 
platform for modeling assisted therapy decision 
making. Currently, our group is working towards 
incorporating such models in the platform and the new 
version will also be freely available. In this context, the 
platform could also serve as a validation environment 
where the simulation predictions could be compared 
with the actual therapy outcome in order to achieve a 
global optimization of the modeling modules. This tool 
is part of the “Contra Cancrum” EU-ICT research 
project [4] and in its first stage serves as an intuitive 
3D annotation system. 

 
3. Tumor delineation 
 

Medical image segmentation and specifically tumor 
delineation has been a subject of vast research in the 
past years. The region of a tumor is typically 
heterogeneous, containing different tissue structures 
and fuzzy boundaries. For this reason, accurate 

segmentation for both the automatic and semiautomatic 
case is a very challenging task. The platform currently 
invests on different segmentation approaches that 
mostly focus on MRI tomographic images since this 
modality has been extensively used by the clinicians in 
the glioma case. 

Two different, in terms of underlying theoretical 
concepts, segmentation algorithms are currently 
available in the platform: namely the “Magic Wand” 
(described in section 3.1), mainly designed for the 
clinician to annotate ROIs as well as improvements of 
the “Active Contours” (described in section 3.2), 
algorithm for semi-automated segmentation for the 
non-expert user aiming at saving time and reducing 
intra/ inter-observer variability among radiologists. 
The first is based on image intensity, whereas the 
second is a model-based method. However, supported 
algorithms can easily be extended using external plug-
ins. 

In case of errors in the segmentation process the 
clinician can adjust the tolerance level (when using the 
Magic Wand option), in order to achieve a more 
precise delineation of the tumor region. This can be 
done in real time by the user adjusting a slider in the 
GUI as illustrated in Fig. 2.  

 

Fig. 2: A single slide is selected for further processing. A working area has been set (green rectangle) and the segmentation algorithm has 
been applied. The selected area is labeled with a pink alpha-channel transparency. 
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3.1. The Magic Wand Algorithm 
 
The function of the Magic Wand algorithm is based 

on finding and selecting all the pixels around a pre-
specified user-selected initial point that are similar in 
gray intensity. A tolerance value can be specified by 
the user to determine how closely to match colors 
(higher tolerance ends up in a larger selection). 

All the points selected by the algorithm are 
automatically stored in an image mask of the same size 
as the original image. Each pixel in the image mask 
represents the position of the selected pixels in the 
original image and is used to label the delineated 
tumors. Moreover, to enhance its effectiveness, we 
implemented a faster version of this algorithm which 
excludes all the pixels that have already been 
examined, to ensure that the algorithm does not check 
them again. 
 
3.2. The Active Contours Algorithm 
 

An alternative method to perform segmentation in 
two-dimensional images is based on iterative evolution 
methods such as the discrete active contours algorithm. 
A number of evolution methods are available to evolve 
active contours. A traditional snake is a curve 

( ) [ ( ), ( )], [0,1]s x s y s s= ∈v , that evolves through time 
in order to minimize its energy functional, which has 
the following form: 

 
1

0
( ) ( ( ( )) ( ( )))snake internal imageE E s E s ds= +∫v v v  (1) 

The internal contour energy is defined as:  

 2 2( ( ) '( ) ( ) ''( ) ) 2internalE s s s sα β= +v v  (2) 

where '( )sv  and ''( )sv  denote the first and second 
derivatives of ( )sv  with respect to s .The parameters  
α and β are weighting parameters that control the 
snake's rigidity and curvature, respectively: high values 
discourage stretching and bending of the contour, 
imposing it to be more rigid, while low values let the 
snake be more elastic and develop corners. The image 
energy term imageE  depends on the gradient of the 
image and is associated to the external forces that pull 
the snake towards the desired image boundaries. 

The external energy is supposed to be minimal 
when the snake is at the object boundary position. The 
user is required only to add points in order to define the 
initial boundary approximation step. The following 
parameters can also be defined in order to achieve 
optimal segmentation results: Continuity, Curvature, 
Gradient and Pressure (or balloon).  

Recently, our group introduced an improved 
method, the key point of which is the use of adaptable 
parameters for the snake evolution [5]. Instead of using 
constant parameters for every pixel, we group the 
pixels according to their gradient magnitude and the 
corner strength, and assign to each group a different set 
of parameters. Thus, we are able to geographically 
adapt the snake's behavior in the image and include, or 
not, small high-contrast regions by simply adjusting 
two user-defined thresholds. The method follows very 
closely the annotation of the clinician and as shown in 
Fig. 3 it can be locally adaptive to include small details 
near the boundary (probably a necrotic center that the 
clinician has included in his ROI annotation), while the 
traditional active contours fail. 
 
4. Glioma Growth Simulation 

 
Several mathematical models have been developed 

towards simulating the mechanism of glioma growth. 
The most successful models have used variations of the 
diffusion-reaction equation, with the recent ones taking 
into account brain tissue heterogeneity and anisotropy. 
Our group has implemented continuous models by 
studying in detail the mathematical solution and 
implementation of the 3D diffusion equation, 
addressing related heterogeneity and anisotropy issues 
[6]. The model developed are in essence a fast 
realization and solution of the diffusion-reaction 
equation using different numerical approximation of 
finite differences. It can simulate either glioma growth 
or other diffusive phenomena, with the vectorization 
operator giving anyone the ability to adjust the model 
to a preferred proliferation rate. Moreover, a 
performance study of different numerical schemes, 
based on finite differences concluded that the 
Backward Euler (BE) method yields the best results 
when tested in a theoretical framework. This study was 

Fig. 3: (a) Clinician's manual annotation, (b, c) Traditional 
snake's results, (d) Results applying our proposed method. 
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testing the performance of different numerical schemes 
in a simplified test case of the pure diffusion equation, 
for which there is a known analytical continuous 
expression of the solution [6]. Fig. 4 illustrates the 
results of the BE when applied on real dataset; initial 
tumor state (left column showing different views) and 
after 112 simulated days (central column). Finally, the 
actual tumor growth is depicted in the last column and 
was found to correspond very well to the model-based 
simulation [6].  

The platform developed focuses on the 
implementation and inherent features of the later 
approximations and points out how an efficient model 
could help clinicians to better visualize the exact tumor 
boundaries, predict tumor expansion and, thus, 
accustom therapy. 

 
5. Conclusion 
 

This paper presented the work of our group towards 
a complete system for cancer image analysis, 

annotation, visualization and modeling. The system is 
being developed in close collaboration with clinicians 
and the ultimate goal is to include as many state of the 
art technologies as possible in order to become a useful 
interface that could help the clinical translation of in-
silico technologies. 
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Fig. 4: 3D representation of tumor state as extracted from 
MRI images: Initial real data (left column), after 112 
simulated days using the BE method (central column), by 
using BE, and actual growth on 112th day (right column). 
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