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Abstract

Real options are a typical framework in economics that
involves uncertainty and can take advantage of a model
of uncertainty that includes stochastic processes and fuzzy
numbers; to perform the complete analysis with american
type real options, we need to compute the fuzzy extension of
the value function and this requires massive calculations.
A special version of the multiple population differential

evolution algorithm is designed to compute the level-cuts
of the fuzzy extension of the multidimensional real valued
function of fuzzy numbers in the resulting optimization prob-
lems.

1 Introduction

Real options theory (ROT) is by now recognized as a
most appropriate valuation technique for corporate invest-
ment decisions because of its distinctive ability to take into
account management's �exibility to adapt ongoing projects
in response to uncertain technological and market condi-
tions. Dixit and Pindyck ([2]) develop a systematic treat-
ment of ROT, providing the fundamentals of this method,
using particularly dynamic programming and its connec-
tions with contingent claims analysis, and also emphasize
the market implications of such valuation of investment de-
cisions under uncertainty. Trigeorgis (see e.g. [7]) provides
a taxonomy of real options that maps different categories of
investments into the space of different types of �nancial op-
tions. We present a real options that will be evaluated within
a fuzzy setting; more speci�cally, the present values of ex-
pected cash �ows and expected costs are estimated by fuzzy
numbers. To the best of our knowledge, such an approach
has never been discussed in the literature, with the excep-
tion of Carlsson and Fuller [1], that interpret the possibility
of making an investment decision in terms of a European
option, while we use an American option.
A special version of the multiple population differential

evolution algorithm is designed to compute the level-cuts
of the fuzzy extension of the multidimensional real val-
ued function of fuzzy numbers in the resulting optimization
problems. We perform some computational experiments
connected with the option to defer investment, that is an
American call option on the present value of the completed
expected cash �ows with the exercise price equal to the re-
quired outlay.

2 Basic fuzzy numbers and fuzzy arithmetic

Fuzzy numbers are a very powerful and �exible way to
describe uncertainty or possibilistic values for given vari-
ables for which a precise quanti�cation is not possible
or one is interested in evaluating the effects of variations
around a speci�ed value (see [3]). A wide class of fuzzy
numbers with the core at a 2 R is obtained by considering
its membership function � : R �! [0; 1] such that, de-
noting [a�; a+] the interval representing the support (corre-
sponding to the membership level � = 0),

�(x) =

8<: L(x) if a� � x � a
R(x) if a � x � a+
0 otherwise

for x 2 R

(1)
where L(x) is an increasing function with L(a�) = 0,
L(a) = 1 andR(x) is a decreasing function withR(a) = 1,
R(a+) = 0.
For values of � 2]0; 1], the � � cut is de�ned to be the

compact interval [u]� = fxj�(x) � �g and the support
is [u]0 = clfxj�(x) > 0g (cl(A) is the closure of set A);
denote [u]� = [u�� ; u+� ] for � 2 [0; 1]. The support of u is
the interval [u�0 ; u

+
0 ] and the core is [u

�
1 ; u

+
1 ]. If u

�
1 < u

+
1

we have a fuzzy interval and if u�1 = u+1 we have a fuzzy
number. We refer to functions u�(:) and u

+
(:) as the lower and

upper branches on u, respectively.
To model the monotonic branches u�� and u+� we start

with two increasing shape functions p�; p+ such that
p(0) = 0 and p(1) = 1 with the four numbers u�0 �
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u�1 � u+1 � u+0 de�ning the support
�
u�0 ; u

+
0

�
and the

core
�
u�1 ; u

+
1

�
and we de�ne

u�� = u�0 + (u
�
1 � u�0 )p�(�) and (2)

u+� = u+0 + (u
+
1 � u+0 )p+(�) for all � 2 [0; 1] .

The two shape functions p� and p+ are selected in a fam-
ily of parametrized monotonic functions.
The simplest representation is obtained on the trivial de-

composition of the interval [0; 1], with �0 = 0; �1 = 1:
In this simple case, u can be represented by a vector of 8
components

u = (u�0 ; �u
�
0 ; u

+
0 ; �u

+
0 ;u

�
1 ; �u

�
1 ; u

+
1 ; �u

+
1 ) (3)

where u�0 ; �u
�
0 ; u

�
1 ; �u

�
1 are used for the lower branch u�� ,

and u+0 ; �u
+
0 ; u

+
1 ; �u

+
1 for the upper branch u+� . The para-

meters �u�0 ; �u
�
1 � 0 are the �rst derivatives (slopes) of

u�� with respect to � at � = 0 and � = 1; the parameters
�u+0 ; �u

+
1 � 0 are the �rst derivatives of u+� at � = 0 and

� = 1, respectively. More generally, if the functions u�� and
u+� (we suppose for simplicity that they are differentiable)
and the corresponding slopes are known on a decomposi-
tion 0 = �0 < �1 < ::: < �N = 1 of the interval [0; 1], i.e.
if we know the values u��i = u�i , u+�i = u+i and the �rst
derivatives �u�i � 0, �u+i � 0, then we use equations (2)
piecewise on each subinterval [�i�1; �i] for i = 1; 2; :::; N
and obtain the general parametrization

u = (�i;u
�
i ; �u

�
i ; u

+
i ; �u

+
i )i=0;1;:::;N . (4)

We call (4) the LU parametrization (or LU-fuzzy repre-
sentation) of u. Details can be found in [5] and [6].

3 Differential Evolution algorithms for fuzzy
arithmetic

We adopt an algorithmic approach to describe the ap-
plication of differential evolution methods to calculate the
fuzzy extension of multivariable function, associated to the
LU parametrization.
Let v = f(u1; u2; :::; un) denote the fuzzy extension of

a continuous function f in n variables; it is well known
that the fuzzy extension of f to normal upper semicontin-
uous fuzzy intervals (with compact support) has the level-
cutting commutative property (see [3]), i.e. the � � cuts
v� = [v�� ; v

+
� ] of v are the images of the � � cuts

of (u1; u2; :::; un) and are obtained by solving the box-
constrained optimization problems8>><>>:

v�� = min

�
f(x1; :::; xn)j

xk 2 [u�k;�; u
+
k;�];

�
v+� = max

�
f(x1; :::; xn)j

xk 2 [u�k;�; u
+
k;�];

�
:

(5)

We will consider differentiable functions f . If uk =
(u�k;i; �u

�
k;i; u

+
k;i; �u

+
k;i)i=0;1;:::;N are the LU-fuzzy repre-

sentations of the n input quantities and

v = (v�i ; �v
�
i ; v

+
i ; �v

+
i )i=0;1;:::;N ; (6)

then the �� cuts of v are obtained by solving (5).
For each � = �i, i = 0; 1; :::; N the minfg and the

maxfg can occur either at a point whose components xk;i
are internal to the corresponding intervals [u�k;i; u

+
k;i] or are

coincident with one of the extremal values; denote by bx�i =
(bx�1;i; :::; bx�n;i) and bx+i = (bx+1;i; :::; bx+n;i) the points where
themin and themax take place; then v�i = f(bx�1;i; :::; bx�n;i)
and v+i = f(bx+1;i; :::; bx+n;i) and the slopes �v�i , �v+i are
computed (as f is differentiable) by

�v�i =
nX
k=1bx�k;i=u�k;i

@f(bx�1;i; :::; bx�n;i)
@xk

�u�k;i (7)

+
nX
k=1bx�k;i=u+k;i

@f(bx�1;i; :::; bx�n;i)
@xk

�u+k;i

�v+i =
nX
k=1bx+k;i=u�k;i

@f(bx+1;i; :::; bx+n;i)
@xk

�u�k;i (8)

+
nX
k=1bx+k;i=u+k;i

@f(bx+1;i; :::; bx+n;i)
@xk

�u+k;i:

The idea of DE to �nd min or max of
ff(x1; :::; xn)j(x1; :::; xn)2A � Rng is simple: start
with an initial "population" x(1) = (x1; :::; xn)

(1); :::;
x(p) = (x1; :::; xn)

(p)2A of p feasible points for each
generation (i.e. for each iteration) to obtain a new set of
points by recombining randomly the individuals of the
current population and by selecting the best generated
elements to continue in the next generation. The initial
population is chosen randomly and should try to cover
uniformly the entire parameter space.
Denote by x(k;g) the k�th vector of the population at

iteration (generation) g and by x(k;g)j its j�th component
(j = 1; :::; n).
At each iteration, the method generates a set of candidate

points y(k;g) to substitute the elements x(k;g) of the current
population, if y(k;g) is better.
To generate y(k;g) two operations are applied: recombi-

nation and crossover.
A typical recombination operates on a single component

j 2 f1; :::; ng and generates a new perturbed vector of the
form v

(k;g)
j = x

(r;g)
j + [x

(s;g)
j � x(t;g)j ], where r; s; t 2

f1; 2; :::; pg are chosen randomly and  2]0; 2] is a constant
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(eventually chosen randomly for the current iteration) that
controls the ampli�cation of the variation.
The potential diversity of the population is controlled

by a crossover operator, that construct the candidate y(k;g)
by crossing randomly the components of the perturbed
vector v(k;g)j and the old vector x(k;g)j :

y
(k;g)
j =

(
v
(k;g)
j if j 2 fj1; j2; :::; jhg
x
(k;g)
j if j =2 fj1; j2; :::; jhg

where h is a random integer between 0 and n (it is 0 with
probability q) and j1; j2; :::; jh are random components if h
is not 0; so, the components of each individual of the current
population are modi�ed to y(k;g)j by a given probability q.
Typical values are  2 [0:2; 0:95], q 2 [0:7; 1:0] and p � 5n
(the higher p, the lower ).
The candidate y(k;g) is then compared to the existing

x(k;g) by evaluating the objective function at y(k;g) : if
f(y(k;g)) is better than f(x(k;g)) then y(k;g) substitutes
x(k;g) in the new generation g + 1, otherwise x(k;g) is re-
tained.
To take into account the particular nature of our problem,

we modify the basic procedure and examine two different
strategies.
Let [u�k;i; u

+
k;i]; k = 1; 2; :::; n and f : Rn ! R be

given; we have to �nd v�i and v+i according to (5) for
i = 0; 1; :::; N . The slope parameters �v�i , �v

+
i are com-

puted by (7)and (8).
The �rst strategy is implemented in algorithm 1. Func-

tion ran(0; 1) generates a random uniform number in [0,1].
SPDE (Single Population DE procedure): start with the

(� = 1) � cut back to the (� = 0) � cut so that the
optimal solutions at a given level can be inserted into the
"starting" populations of lower levels; use two distinct pop-
ulations and perform the recombinations such that, during
generations, one of the populations specializes to �nd the
minimum and the other to �nd the maximum.
MPDE (Multi Populations DE procedure): use 2(N +1)

populations to solve simultaneously all the box-constrained
problems (5); N + 1 populations specialize for the min and
the others for the max and the current best solution for level
�i is valid also for levels �0; :::; �i�1: The details of MPDE
are descibed in the following algorithm.
Algorithm MPDE: (Frame of MPDE).
Choose p � 5n, gmax � 500, q and .
Select (x(l;i)1 ; :::; x

(l;i)
n ); x

(l;i)
k 2 [u�k;i; u

+
k;i]

8k; l = 1; :::; 2p; i = 0; 1; :::; N
let y(l;i) = f(x(l;i)1 ; :::; x

(l;i)
n )

let v�i = min
�
y(l;j)jj = 0; :::; i;8l

	
let v+i = max

�
y(l;j)jj = 0; :::; i;8l

	
let bx�i ; bx+i 2 Rn the points where v�i ; v+i are taken
for g = 1; 2; :::; gmax
(up to gmax generations or other stopping rule)

for i = N;N � 1; :::; 0
for l = 1; 2; :::; p
select (randomly) r; s; t 2 f1; 2; :::; pg
and k� 2 f1; 2; :::; ng
for k = 1; 2; :::; n
if (k = k� or ran(0; 1) < q) then
x0k = x

(r;i)
k + [x

(s;i)
k � x(t;i)k ]

x00k = x
(p+r;i)
k + [x

(p+s;i)
k � x(p+t;i)k ]

ensure u�k;i � x0k; x00k � u
+
k;i

else
x0k = x

(l;i)
k , x00k = x

(p+l;i)
k

endif
end
let y0 = f(x01; :::; x0n) and y00 = f(x001 ; :::; x00n);
if y0 < y(l;i) (population for min)
substitute (x1; :::; xn)(l;i) with (x01; :::; x0n)

if y00 > y(p+l;i) (population for max)
substitute (x1; :::; xn)(p+l;i) with (x001 ; :::; x00n)

if y0 or y00 are better
update values fv�j ; v

+
j ; bx�j ; bx+j jj = 0; :::; ig

endif
end

end
end

In our case, as we have simple box-constraints, it is easy
to produce feasible starting populations, as we have to gen-
erate random numbers x(k;0)j between the lower u�j;i and the
upper u+j;i values.
During the iterations, we use a variant of the method

above, where the y(k;g) are progressively forced to be feasi-
ble or with small infeasibilities and a penalty is assigned to
infeasible values:
(i)modify y(k;g)j to �t [u�j;i� "

g2 ; u
+
j;i+

"
g2 ]; j = 1; 2; :::; n

with small " � 10�2(u+j;i�u
�
j;i); so that the eventual infea-

sibilities decrease rapidly during the generation process;
(ii) if the candidate point y(k;g) is infeasible and has a

value f(y(k;g)) better than the current best feasible value
f(x(best;g)) then a penalty is added and the value of y(k;g)
is elevated to f(x(best;g)) + "0 (for the min problems) or
reduced to f(x(best;g))� "0 (for the max problem), being "0
� 10�3 a small positive number.
To decide that a solution is found, we use the following

simple rule: choose a �xed tolerance tol � 10�3; 10�4 and
a number bg � 20; 30 of generations; if for bg subsequent it-
erations all the values v�i and v

+
i are changed less than tol;

then the procedure stops and the found solution is assumed
to be optimal. In any case, no more than 500 iterations are
performed (but this limit was never reached during the com-
putations).
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4 Fuzziness in option to defer investment

The option to defer investment is an American call option
on the present value of the completed expected cash �ows
with the exercise price being equal to the required outlay. A
project that can be postponed allows learning more about
potential project outcomes before making a commitment
(see the seminal contribution by McDonald and Siegel [4]).
A �rm is supposed to consider the following investment op-
portunity: at any time t the �rm can pay some estimated
cost K to install an investment project whose expected fu-
ture net cash �ows conditional on undertaking the project
have an estimated present value �. If V = V (�) is the
option value then the following second order ordinary dif-
ferential equation holds:

1

2
�2�2V 00 (�) + ��V 0 (�)� rV = 0

for � < �� with the initial condition V (0) = 0 and
smooth-pasting V (��) = ���K;V 0 (��) = 1: The solu-
tion is (

�� = K �
��1

V (�) = (�� �K)
�
�
��

�� (9)

with � = 1
2�

�
�2 +

��
�
�2 �

1
2

�2
+ 2r

�2

� 1
2

> 1: As soon as�
reaches the threshold value ��, the �rm �nds it optimal to
invest (case of the option to defer investment) or disinvest
and liquidate (case of the option to abandon). Thus, the
decision is based on the threshold value, which depends on
all the parameters of the model.
Our formalization of the valuation of real options sched-

ules the presence of fuzziness in three fundamental steps:
(a) in the stochastic differential equation driving the dynam-
ics of �, we assume �, � and the initial value of � to be
fuzzy; (b) the valuation function of the option depends not
only on �; � and � but also on r and K; which we assume
to be fuzzy too; (c) as fuzziness affects the crucial thresh-
old value ��, the process f�t; t � 0g is assumed to be a
fuzzy stochastic process and �� is itself a fuzzy quantity;
correspondingly, V (��) is fuzzy and its membership is to
be computed.
The extension principle is then applied to obtain the

fuzzy�� and V (��) from the exact solutions given in equa-
tion (9). In the formulae (6) and (7)-(8) the vector bxi is
equal to (b�i; b�i; bri; bKi) and some of the partial derivatives
that de�ne the slopes of the representation are nothing else
than the �rst order Greeks, in particular, @f(b�i;b�i;bri; bKi)

@� is
the Vega and @f(b�i;b�i;bri; bKi)

@r is the Rho.
The degree of the uncertainty and the way in which it is

spread from the model, play a central role in the analysis of
the real option. The nonlinearities entering in the de�nition
of V (�) in (9) are the main cause of such effects and they

can propagate or contract uncertainty. It is very important to
perceive the magnitude and the type of these effects. In par-
ticular we are interested in the analysis of how the various
kinds of uncertainties inserted into the parameters will pro-
duce the corresponding uncertainties in ��, V � = V (��):
As soon as information (on �, �, r, K) is modelled by

fuzzy numbers, �� and V � also become fuzzy and are rep-
resented by � � cuts

h
��

�

� ;�
�+
�

i
and

h
V �

�

� ; V �
+

�

i
for all

degrees of possibility �. The maximal uncertainty corre-
sponds to the supports at � = 0; given by the intervalsh
��

�

0 ;�
�+
0

i
and

h
V �

�

0 ; V �
+

0

i
for �� and V � respectively.

Due to the nonlinearity of �� and V �; the � � cuts are
not necessarily symmetric and, for a given uncertainty on
the input values �, �, r and K; they have different left and
right variations. Let b�� and bV � denote the values of��� and
V �� corresponding to � = 1. It is immediate to argue that
V � is symmetric if and only if�V �

+

� = �V �
�

� ; 8� 2 [0; 1[
where

�V �
+

� = V �
+

� � bV � , �V ��� = bV � � V ��� .

The quantity �V �
+

� represents the possible increase in bV �
due to uncertainty and analogously, �V �

�

� measures the
possible decrease. The same argument can be applied to
��� and b��, de�ning the quantities���+� = ��

+

� � b�� and
���

�

� = b�� ����� .
An index that measures the propagation of uncertainty

on the right and left sides is the following asymmetry ratio
S (such that S � 0); for a given value of � we can compute:

S� =
���

+

�

�����
: (10)

If � = 1 we set S1 = 1; if � decreases to zero, both nu-
merator and denominator will increase with different mag-
nitudes reported by their ratio: when S� > 1; it means that,
for the given level � of uncertainty, the right semi-interval
is larger than the left one, in other words it is more possible
to obtain bigger values than the crisp one instead of smaller;
when S� < 1; the reverse holds.

5 Computational experiments

We test the fuzziness effect in the option to defer invest-
ment by running several computational experiments; the
fuzzy version of the indicated parameters (say �) is assumed
as triangular (linear shaped) symmetric fuzzy numbers, cen-
tered at the crisp values and with the support being the in-
terval [� � 0:1�; � + 0:1�], corresponding to a symmetric
uncertainty of 10%. To analyze the effect of the uncertainty
on the output variables, we compute their membership func-
tions for � � levels with � = 1 (the crisp level), � = 0:75
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(corresponding to the uncertainty of 2:5% in the parame-
ters), � = 0:5 (corresponding to the uncertainty of 5% in
the parameters), � = 0:25 (corresponding to the uncertainty
of 7:5% in the parameters), � = 0 (corresponding to the un-
certainty of 10% in the parameters).
The robustness of the fuzzy model for the option to de-

fer investment is presented with two sets of real data that
we call, for short, Test1 and Test2, referring to two differ-
ent industrial sectors. Test1 refers to an investment deci-
sion in the human genome sciences project (HGSI) whose
data are taken from the Human Genome project database.
Test2 refers to an investment decision in a big infrastructure,
that is the Eurotunnel project. The values of the parameters
�; �; r andK are the following:

Test1 Test2
� 0:01 0:025
� 0:048 0:183
r 0:044 0:06
K 704:9 8865

We show the shape of V � in the two cases of real data
and the preliminary consideration attains the fact that it ex-
ists a uniformity in the results about the ROT behavior even
if the cases under consideration belong to deeply different
industrial areas. In tables concerning the behavior of �� we
report three different cases that we will denote as: Allfuzzy,
when the parameters �; �; r andK are fuzzy; Kcrisp, when
�; �; r are fuzzy and K is crisp and �nally Kfuzzy, when
�; �; r are crisp andK is the unique source of uncertainty.

5.0.1 Results for Test1

As expected, the greatest uncertainty in �� occurs in the
Allfuzzy case, when all the fuzzy quantities are considered
to be fuzzy; but it is interesting to observe that in the Kcrisp
case the generated uncertainty is less then in the Kfuzzy
case, i.e. the uncertainty in the values of only K produces
more uncertainty on �� then the uncertainty in the values
of �; � and r.
Table 1, Table 2 and Table 3 report values of the �� cut

for Test1 in the Allfuzzy, Kcrisp and Kfuzzy case respec-
tively.

Table 1
� �� �+ S

1:0 994:28 994:28 1
0:75 953:16 1037:56 1:05
0:5 913:97 1083:26 1:11
0:25 876:50 1131:69 1:17
0 840:58 1183:25 1:23

Results for Test1, Allfuzzy case

Table 2
� �� �+ S

1:0 994:28 994:28 1
0:75 977:60 1012:25 1:08
0:5 962:07 1031:67 1:16
0:25 947:56 1052:74 1:25
0:0 933:98 1075:68 1:35

Test1, Kcrisp case

Table 3
� �� �+

1:0 994:28 994:28
0:75 969:43 1019:14
0:5 944:57 1043:99
0:25 919:71 1068:86
0 894:86 1093:71

Results for Test1, Kfuzzy case.

Observe that in the Kfuzzy case (Table 3) the thresh-
old value �� displays a symmetric shape in all analyzed
projects because �� depends linearly on K (S = 1). In
the Allfuzzy and Kcrisp cases, instead, we can observe an
asymmetric pattern, due to the nonlinear dependence of ��
with respect to the other variables.

At level 0.5 the average values are 998.615 in Allfuzzy
and 996.87 in Kcrisp, which are larger than the crisp value
994.28. Since on average the fuzzy threshold value is larger
then without fuzziness, just considering the crisp value the
decision to invest would be too early. Figure 4 shows the
graphical behavior of the fuzzy function V (�) in the All-
fuzzy case; the little crosses point the optimal values of �
corresponding to the levels of�� for � = 0; 0:25; 0:5; 0:75;
1.

It is evident that fuzziness implies a certain degree of
freedom in the choice of��: Figures 1 and 2 illustrate V (�)
as a fuzzy function (a "sequence" of fuzzy numbers).

Figure 1. A case of fuzzy function V (�)
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Figure 2. A second case of fuzzy function V (�)

Obtaining V (�) is the part where massive computation
(i.e. repeated application of the DE algorithm) is required.

5.0.2 Results for Test2

Table 4 and Table 5 report the values of the � � cut of
�� in the Allfuzzy and Kcrisp case for Test2. Again the
biggest uncertainty occurs in the Allfuzzy case, when all the
quantities are fuzzy; but we observe that in the Kcrisp case
(dotted line), when �; �; r are the sources of uncertainty and
K is the unique crisp value, the uncertainty in �� is bigger
then in the Kfuzzy case, i.e. the same level of uncertainty
in K produses less uncertainty on�� then the uncertainty in
the other parameters. With respect to Test1, there is here un
inversion.

Table 4
� �� �+ S

1:0 22249:62 22249:62 1
0:75 20686:18 23997:55 1:12
0:5 19277:60 25967:74 1:25
0:25 18000:33 28209:16 1:40
0 16835:43 30786:48 1:58

Result for Test2, Allfuzzy case.
Table 5

� �� �+ S

1:0 22249:62 22249:62 1
0:75 21216:59 23412:24 1:12
0:5 20292:21 24731:18 1:27
0:25 19459:82 26241:08 1:43
0 18706:04 27987:71 1:62

Results for Test2, Kcrisp case
If we compute again the average values at level 0.5, they

are 22622.67 in Allfuzzy and 22511.695 in Kcrisp, which
are larger than the crisp value 22249.62. It follows that in
the Test2 project it is con�rmed the suggestion to wait for
the decision to invest.
The parameter S is again always bigger than 1, indicat-

ing that bigger values are more possible than smaller values.
This aspect is recurring in all simulations and it probably

derives from the shape of the function V that assumes big-
ger values always on the right part of its graph.

6 Concluding remarks

Some further considerations concerning the �� cut val-
ues in all the data set enable us to state that our model al-
lows us to describe how the investment decision is actually
affected by a perceived increase in "fuzziness". For a pes-
simistic (optimistic) �rm an increase in fuzziness decreases
(increases) the perceived value of the project in compari-
son with the crisp value. On average - for most decision
makers- an increase in fuzziness has a positive impact on
the investment opportunity, i.e. it increases the perceived
value of the project. As a consequence, the decision to in-
vest is delayed in comparison with the absence of fuzziness.
However, for pessimistic decision-makers imprecise infor-
mation about the project value becomes available over time,
which makes waiting with investment less valuable. Thus,
for pessimistic �rms higher fuzziness erodes the subjective
value of the investment opportunity. Notice that this result
is in keeping with the literature on real options and ambigu-
ity aversion. It contrasts with the impact of volatility in the
standard real option theory.
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