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Abstract

Uncertainty and vagueness play a central role in �nan-
cial models and fuzzy numbers can be a pro�table way to
manage them. In this paper we generalize the Black and
Scholes option valuation model (with constant volatility) to
the framework of a volatility supposed to vary in a stochas-
tic way. The models we take under consideration belongs to
the main classes of stochastic volatility models: the endoge-
nous and the exogenous source of risk. Fuzzy calculus for
�nancial applications requires massive computations and
when a good parametric representation for fuzzy numbers
is adopted, then the arithmetic operations and fuzzy calcu-
lus can be ef�ciently managed.
Good in this context means that the shape of the resulting

fuzzy numbers can be observed and studied in order to state
fundamental properties of the model.

1 Introduction

The history of fuzzy numbers in �nance starts with some
very interesting papers like [1], [3] and [10] where the ad-
vantages and the critical aspects of the applications are ap-
proached.
In this paper we are mainly interested in the research of

the option value when volatility is supposed to have a sto-
chastic nature. In paper [5] the case of a plain vanilla has
been analyzed, but now we take under consideration the sto-
chastic volatility model deeply investigated in [4] and we
de�ne its fuzzy version. We believe that the introduction
of fuzzy numbers helps to overcome some problems in re-
producing empirical �nancial facts. Fuzzy numbers, in fact,
are adopted in order to model the uncertainty about some
key variables of �nancial models, and in particular of op-
tion pricing models with stochastic volatility.
We can take advantage of the parametric representa-

tion of fuzzy numbers (introduced in [11]) that is based

on the use of parametrized monotonic functions to model
the � � cuts or the membership functions. We call it the
LU representation, as it models directly and works with the
Lower and the Upper branches of the fuzzy numbers in-
volved in the operations and in the fuzzy calculus. The LU-
fuzzy numbers can also be viewed as a parametrized exten-
sion of the standard LR-fuzzy numbers and are related to
this extension by a one-to-one correspondence. In [12] we
show the advantages of the use of LU-fuzzy numbers in the
principal applications of fuzzy calculus: they generalize the
LR-fuzzy setting in the direction of the shape preservation
but also they allow easy error-controlled approximations in
fuzzy calculus.
A �rst attempt in the study of LU fuzzy numbers in

volatility models is in [6] and now we extend the approach
in a more speci�c way.
In section 2 we recall some fundamental properties of

fuzzy calculus we shortly describe the LU model for fuzzy
numbers trying to focus on its advantages.
The core of the paper is in section 3: we describe the

stochastic volatility models and we investigate the most rel-
evant properties of fuzzy stochastic differential equations in
the framework of the LU parametrization. Section 4 col-
lects some �rst attempt of empirical investigation; some �-
nal considerations and challenging observations conclude
with section 5.

2 LU-fuzzy calculus

Fuzzy set theory has started by its invention due to Zadeh
[13] in 1965. When an exact quanti�cation of variables
is not possible, fuzzy numbers represent a rigorous way
to model such variables; properties of fuzzy numbers have
been extensively studied since the pioneering contribution
in [2] and the following [7] and [8].
The representation of fuzzy numbers is fundamental in

what we are going to deal.
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De�nition 1 An LR (Left Right)-fuzzy quantity (number or
interval) u has membership function of the form

�u(x) =

8>><>>:
L( b�xb�a ) if a � x � b
1 if b � x � c
R(x�cd�c ) if c � x � d
0 otherwise

(1)

where L;R : [0; 1] ! [0; 1] are two non-increasing shape
functions such that R(0) = L(0) = 1 and R(1) = L(1) =
0: If b = c we obtain a fuzzy number.

If L and R are invertible functions, then the �� cuts are
obtained by

[u]� = [b� (b� a)L�1(�); c+ (d� c)R�1(�)] (2)

The usual notation for an LR-fuzzy quantity is u =
ha; b; c; diL;R for an interval. We refer to functions L(:)
and R(:) as the left and right branches (shape functions) of
u, respectively.
On the other hand, the level-cuts of a fuzzy number are

"nested" closed intervals and this property is the basis for
the LU representation (L for lower, U for upper).

De�nition 2 An LU-fuzzy quantity (number or interval)
u is completely determined by any pair u = (u�; u+)
of functions u�; u+ : [0; 1] �! R, de�ning the end-
points of the � � cuts, satisfying the three conditions:
(i) u� : � �! u�� 2 R is a bounded monotonic non-
decreasing left-continuous function 8� 2]0; 1] and right-
continuous for � = 0; (ii) u+ : � �! u+� 2 R is a
bounded monotonic nonincreasing left-continuous function
8� 2]0; 1] and right-continuous for � = 0; (iii) u�� � u+�
8� 2 [0; 1] :

The support of u is the interval [u�0 ; u
+
0 ] and the core is

[u�1 ; u
+
1 ]. If u

�
1 < u

+
1 we have a fuzzy interval and if u

�
1 =

u+1 we have a fuzzy number. We refer to the functions u
�
(:)

and u+(:) as the lower and upper branches on u, respectively.
The obvious relation between u�; u+ and the member-

ship function �u is

�u(x) = supf�jx 2 [u�� ; u+� ]g: (3)

In particular, if the two branches u�(:) and u
+
(:) are continu-

ous invertible functions then �u(:) is formed by two contin-
uous branches, the left being the increasing inverse of u�(:)
on [u�0 ; u

�
1 ] and the right the decreasing inverse of u

+
(:) on

[u+1 ; u
+
0 ].

The LR and the LU representations of fuzzy numbers
require to use appropriate (monotonic) shape functions to
model either the left and right branches of the membership
function or the lower and upper branches of the � � cuts.

The basic elements of a parametric representation of the
shape functions are introduced in [12] and [11]: the para-
metric representations, based on monotonic Hermite-type
interpolation, can be used both to de�ne the shape func-
tions and to calculate the arithmetic operations by error con-
trolled approximations.
To model the monotonic branches u�� and u�� we start

with an increasing shape function p such that p(0) = 0 and
p(1) = 1 and a decreasing function q such that q(0) = 1
and q(1) = 0, with the four numbers u�0 � u�1 � u+1 � u+0
de�ning the support

�
u�0 ; u

+
0

�
and the core

�
u�1 ; u

+
1

�
and

we de�ne

u�� = u�1 � (u�1 � u�0 )p(�) and (4)
u+� = u+1 � (u+1 � u+0 )q(�) for all � 2 [0; 1] .

The two shape functions p and q are selected in a family
of parametrized monotonic functions where the parameters
are related to the �rst derivatives of p and q in 0 and 1; there
are many ways to de�ne p and q. The use of the mentioned
parametrization allows easy arithmetic operations. In cases
where u�� and u+� are required to be more �exible than a sin-
gle shape function, we can always proceed piecewise over
a decomposition of the interval [0; 1] into N sub-intervals
[�i�1; �i] for i = 1; 2; :::; N . For each decomposition we
require (in the differentiable case) 4(N + 1) parameters
u = (�i;u

�
i ; �u

�
i ; u

+
i ; �u

+
i )i=0;1;:::;N satisfying the fol-

lowing conditions for the data and the slopes:

u�0 � u�1 � ::: � u�N � u
+
N � u

+
N�1 � ::: � u

+
0 (5)

�u�i � 0; �u+i � 0.

and on each sub-interval [�i�1; �i] we use the data u�i�1 �
u�i � u+i � u+i�1 and the slopes �u

�
i�1; �u

�
i � 0 and

�u+i�1; �u
+
i � 0: In this way we can obtain a wide set of

fuzzy numbers.
The simplest representation is obtained on the trivial de-

composition of the interval [0; 1], with N = 1 (without in-
ternal points) and �0 = 0; �1 = 1: In this simple case, u
can be represented by a vector of 8 components

u = (u�0 ; �u
�
0 ; u

+
0 ; �u

+
0 ;u

�
1 ; �u

�
1 ; u

+
1 ; �u

+
1 ) (6)

where u�0 ; �u
�
0 ; u

�
1 ; �u

�
1 are used for the lower branch u�� ,

and u+0 ; �u
+
0 ; u

+
1 ; �u

+
1 for the upper branch u+� .

For N � 1 , an array of 4 (N + 1) parameters is avail-
able for the lower branch u�� (monotonic increasing) and
the upper branch u+� (monotonic decreasing).
The set of LU-fuzzy numbers (for a �xed monotonic-

shaped model) is denoted by

FN=
�
(u�i ; �

�
i ; u

+
i ; �

+
i )i=0;1;:::;N j u�i %; u

+
i &; �

�
i � 0; �

+
i � 0

	
:

The arithmetic operations, the Zadeh's fuzzy extensions,
the fuzzy integral and derivative and other elements of fuzzy
calculus can be de�ned in FN .
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As an example, the fuzzy multiplication is obtained
by a relatively simple algorithm: denote uv = w =�
w�i ; f

�
i ; w

+
i ; f

+
i

�
i=0;1;:::;N

, and

(uv)
�
i = minfu

�
i v

�
i ; u

�
i v

+
i ; u

+
i v

�
i ; u

+
i v

+
i g (7)

(uv)
+
i = maxfu

�
i v

�
i ; u

�
i v

+
i ; u

+
i v

�
i ; u

+
i v

+
i g; (8)

let (p�i ; q
�
i ) be the pair associated to the combination of +

and - of u�i v
�
i giving the minimum for (uv)

�
i in (7), and

similarly let (p+i ; q
+
i ) be the pair associated to the combina-

tion of + and - of u�i v
�
i giving the maximum for (uv)

+
i in

(8), then (for the values and the slopes of w = uv)(
w�i = u

p�i
i v

q�i
i , w+i = u

p+i
i v

q+i
i

f�i = �
p�i
i v

q�i
i + u

p�i
i e

q�i
i , f+i = �

p+i
i v

q+i
i + u

p+i
i e

q+i
i :

Analogous simple rules are valid for the other operations.
In [12] we show that LU-fuzzy numbers generalize the

LR-fuzzy setting in the direction of the shape preservation
but also they allow easy error-controlled approximations in
fuzzy calculus. We provide an extensive list of applications
of LU-fuzzy numbers and we show the computational ad-
vantages associated to their adoption. It is argued that they
are very �exible and rich in the shapes that are representable
and it is extremely easy to implement algorithms of fuzzy
calculus that reproduce shape-preserved results.

3 Fuzzy stochastic differential equations

We believe that the study of fuzzy stochastic differen-
tial equation of the most general form have a lot to say in
terms of modelling of �nancial objects, and that the LU-
parametric representation can simplify the numerical ap-
proximation of the solution.
In [6] we show some examples of fuzzy random vari-

ables that have properties not far from those of the Brown-
ian motion and that suggest a link between stochastic dif-
ferential equations and fuzzy numbers.
We refer to [9] for additional references about stochastic

integrals.
Given a Brownian motion Bt and two fuzzy functions

de�ned as follows:

G (t; u) : R+�FX �! FX

F (t; u) : R+�FX �! FX

the following FSDE can be de�ned�
dXt = F (t;Xt) dt+G (t;Xt) dBt
X0 = x0 2 FX (!)

and it can be written in the equivalent integral form:

Xt = X0 +

tZ
0

F (s;Xs) ds+

tZ
0

G (s;Xs) dBs (9)

where the �rst one is an ordinary fuzzy integral and the sec-
ond one is a stochastic fuzzy integral.
In terms of the � � cuts the FSDE in (9) can be written

as follows:

[Xt]� = [X0]�+

24 tZ
0

[F (s;Xs)]
�
� ds;

tZ
0

[F (s;Xs)]
+
� ds

35+
+

24 tZ
0

[G (s;Xs)]
�
� dBs;

tZ
0

[G (s;Xs)]
+
� dBs

35
or in the equivalent form (8! 2 
 and 8� 2 [0; 1])

8>>>>>><>>>>>>:
x�t;� (!) = x

�
0;� (!)+

tZ
0

F (s; xs (!))
�
� ds+

tZ
0

G (s; xs (!))
�
� dBs

x+t;� (!) = x
+
0;� (!)+

tZ
0

F (s; xs (!))
+
� ds+

tZ
0

G (s; xs (!))
+
� dBs

(10)

Consider now an LU-model for the fuzzy numbers in
(10):

u (t) =
�
�i;u

�
i (t) ; �

�
i (t) ; u

+
i (t) ; �

+
i (t)

�
i=0;1;:::;N

based on the ��decomposition

0 = �0 < �1 < ::: < �N = 1

then it is possible to write, for i = 0; 1; :::; N

8>>>>>><>>>>>>:
x�t;i (!) = x

�
0;i (!)+

tZ
0

F (s; [xs]i)
�
i ds+

tZ
0

G (s; [xs]i)
�
i dBs

x+t;i (!) = x
+
0;i (!)+

tZ
0

F (s; [xs]i)
+
i ds+

tZ
0

G (s; [xs]i)
+
i dBs

(11)

and if
[xs]i =

�
x�s;i; x

+
s;i

�
is the �i � cut interval of the fuzzy number xs then

�F (s; [xs]i)
�
i ; �F (s; [xs]i)

+
i
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and
�G (s; [xs]i)

�
i ; �G (s; [xs]i)

+
i

are the slopes corresponding to F (s; [xs]i)
�
i
; F (s; [xs]i)

+
i

and G (s; [xs]i)
�
i
; G (s; [xs]i)

+
i
respectively, we also have8>>>>>>>>>><>>>>>>>>>>:

�x�t;i (!) = �x
�
0;i (!)+

+

tZ
0

�F (s; [xs]i)
�
i ds+

tZ
0

�G (s; [xs]i)
�
i dBs

�x+t;i (!) = �x
+
0;i (!)+

+

tZ
0

�F (s; [xs]i)
+
i ds+

tZ
0

�G (s; [xs]i)
+
i dBs

(12)
The differential form for (11) and (12) can be written as

follows:8>>><>>>:
dx�t;i = F (t; [xt]i)

�
i dt +G (t; [xt]i)

�
i dBt

dx+t;i = F (t; [xt]i)
+
i dt +G (t; [xt]i)

+
i dBt

d
�
�x�t;i

�
= �F (t; [xt]i)

�
i dt +�G (t; [xt]i)

�
i dBt

d
�
�x+t;i

�
= �F (t; [xt]i)

+
i dt +�G (t; [xt]i)

+
i dBt

i = 0; 1; :::; N

They are 4(N + 1) (crisp) stochastic differential equations
that are independent for different values of i (different �i�
cuts) and can be solved by using ordinary numerical SDE-
solvers.
Some conditions have to be satis�ed in order to obtain a

fuzzy solution of the system.
Euler scheme is the simplest strong Taylor approxima-

tion. Given an Ito process:

X = fXt; t0 � t � Tg (13)

that satis�es the scalar SDE in the general form:

dXt = b (t;Xt) dt+ � (t;Xt) dBt (14)

on the time interval t0 � t � T , with initial value Xt0 =
X0 and given a discretization:

t0 = �0 < �1 < : : : < �n < : : : < �N = T (15)

of the time interval [t0; T ], an Euler approximation is a
stochastic process in continuous satisfying the iterative
scheme:

Yn+1 = Yn + b (�n; Yn) (�n+1 � �n) + (16)
+� (�n; Yn)

�
B�n+1 �B�n

�
y0 = x0

for n = 0; 1; 2; : : : ; N � 1

In general the time discretization points are considered
equidistant:

�n = t0 + n�;

� =
(T � t0)
N

A linear interpolation is often adopted to connect the ap-
proximation points computed via Euler scheme.
The random increments of the Brownian motion are ob-

tained as usual by generating a sequence of pseudo-random
numbers.
Euler scheme has strong order of convergence 
 = 0:5

and a weak order of convergence � = 1. Euler scheme
produces good numerical results when the drift and diffu-
sion coef�cients have good properties, but the use of higher
order schemes is often recommended.
Milstein scheme can be written by adding the following

term of the Ito-Taylor expansion:

1

2
��0

n
(4Bn)2 �4n

o
(17)

so that the iterative scheme takes the form:

Yn+1 = Yn + b�n + b�Bn ++
1

2
��0

n
(4Bn)2 �4n

o
(18)

Under the hypothesis of continuity of the �rst derivative
of drift coef�cient b and of continuity of the �rst and sec-
ond order derivative of diffusion coef�cient, it is possible
to show that Milstein scheme has a strong order of conver-
gence equals to 1.0. So by adding only one term of the
Ito-Taylor expansion is possible to augment the order from
0.5 to 1.0.

4 Financial Examples

Fuzzy modelling adds a source of uncertainty to the clas-
sical stochastic modelling of volatility and option value.
Option pricing models in continuous time are generally

introduced in a simple setting in which only one risky asset
(a stock) is available. They describe the stock price dynam-
ics by means of a stochastic differential equation (SDE) of
the following type:

d lnSt = �(t; St)dt+ �(t; St)dBt (19)

where St is the stock price at time t, � is the drift function
and � is the so called volatility function of the price process.
Each model is characterized by the functional form of � and
�; for example, in Black and Scholes model, � and � are
constant parameters. Note that in most cases the stochastic
differential equation in (19) is autonomous (i.e. � and � do
not depend explicitly on time).
The models which take into account random volatility can
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be divided into two broad classes: the level dependent,
where volatility is considered as a function of the stock price
level St (i.e. �(t; St) = �(St)), and the exogenous stochas-
tic volatility (SV), where another SDE is introduced, driven
by a second source of risk, to describe the randomness of
the volatility process.
In the assumption of a volatility that evolves as a sto-

chastic process, the standard framework assumes a bivariate
diffusion process in which the processes of the underlying
asset S and of the volatility � have to be jointly speci�ed.
In [4] we study the capability of Hobson and Rogers model
(more details in [?]) to capture option price. Hobson and
Rogers model can be viewed as a good compromise be-
tween the level-dependent and the SV approaches; it sug-
gests that the random volatility � may depend on the entire
path of the stock price St:

�t = �(Su; u � t):

This assumption allows for more �exibility in the volatility
process, without the need of a new source of randomness.
More precisely, Hobson and Rogers specify the volatil-
ity as a function of a vector of state variables�
X
(1)
t ; X

(2)
t ; :::; X

(d)
t

�
, which are called offsets, de�ned as

follows:

X
(m)
t =

1Z
0

�e��u
�
ln

�
e�rtSt

e�r(t�u)St�u

��m
du (20)

where � is a positive constant parameter referred to as the
feedback parameter.
The state variables in (20) represent the exponentially
weighted moments of the historical logreturns according to
different time scales. In practice the logreturn for the time
interval (t�u; t) becomes less signi�cant in the de�nition of
the offsets as long as the time-lag u increases; the feedback
parameter � represents the rate at which past information on
logreturns is actually discounted.
The integral in (20) can be simpli�ed as follows when the
order of offsets, as the authors suggest, is considered equal
to one:

Xt =

1Z
0

�e��u ln

�
e�rtSt

e�r(t�u)St�u

�
du =

=

1Z
0

�e��u [�rt+ lnSt + r (t� u)� lnSt�u] du =

= lnSt

1Z
0

�e��udu�r
1Z
0

�ue��udu�
1Z
0

�e��u lnSt�udu

(21)

Due to the fact that the �rst ad second integral in (21) have
values respectively 1 and 1

� and that the third integral in (21)
can be approximated by a Gauss-Laguerre quadrature for-
mula , after the transformation x = �u it follows:

1Z
0

�e��u lnSt�udu =

1Z
0

e�x lnSt� x
�
dx �=

nX
i=1

wi lnSt� xi
�

where (wi; xi) can be given in a table for n =
5; 10; 15; 20; :::
The offset in (20) assumes then the following approximat-
ing form:

Xt �= lnSt �
r

�
�

nX
i=1

wi lnSt� xi
�

(22)

The risk neutral dynamics in Hobson and Rogers model is
described as follows:

d lnSt = rdt+ �(Xt)dBt

� (Xt) = min

�
�
q
1 + �X2

t ;M

�
whereM is a constant which is introduced in order to avoid
the explosion of the diffusion Xt.
Hobson and Rogers explain that this simple setting ac-

counts for the possibilities of smiles and skews in the im-
plied volatility structure; in particular, the size of the smile
in the term structure of volatility is directly related to the pa-
rameter � and inversely to the parameter � (larger values of
� are associated with a shorter half-life lookback period).
We notice that an exact analytical pricing formula is not
available for options for this model speci�cation.
The fuzzy extension of the two logaritmic terms in (22)

is simple to obtain due to the monotonicity of the function
x! lnx.
In this context we are not interested in the calibration of

the model, we take parameters as constant values and we
simulate the fuzzy version of the model.
The key parameters of the model are: the feedback para-

meter � and the two volatility parameters � and �: Their
value is not known and we assume them to be triangu-
lar (linear shaped) symmetric fuzzy numbers, centered at
the crisp values and with the support being the interval
[crisp � 0:1crisp; crisp + 0:1crisp], corresponding to a
symmetric uncertainty of 10% of the values of the parame-
ters.
The properties of the LU parametric representation make

possible the implementation of the stochastic volatility
model because arithmetic operations and required fuzzy cal-
culus can be ef�ciently solved. The crisp values for the pa-
rameters �; � and � vary depending on the data set consid-
ered for the research of option prices. Including fuzziness
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avoids the calibration of the parameters that has shown to
have some critical aspects in robustness.
We test the pricing performance of the fuzzy Hobson and

Rogers model on the S&P500 options, using the same data
as in [4]. The crisp value for the feedback parameter � is
chosen equal to 12:6; obtained with the econometric pro-
cedure described in [4]. The crisp values for the volatility
parameters are again estimated by simulating the volatility
behavior of real data.
The call option price is a nonlinear fuzzy number; in fact,

due to the calculus involved, the linear input produce an
output with a not trivial shape to be analyzed.

5 Conclusions

We study the peculiarities of LU parametric representa-
tion in the fuzzy version of the Hobson and Rogers stochas-
tic volatility model. In details we show the advantages of
LU-fuzzy numbers when �nding the call option price where
some input variables are taken as fuzzy numbers.
This paper starts a research area that we believe will

become fertile in the scenario of �nancial models; we are
working on the numerical solution of fuzzy stochastic dif-
ferential equations and we observe that the desirable prop-
erties of the LU representation improve the performance of
the scheme. It is well known how large is the �eld of �-
nancial applications of SDE and how relevant can be the
introduction of uncertainty variables in many models.
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