
Dynamic Clan Particle Swarm Optimization

C. J. A. Bastos-Filho, D. F. Carvalho, E. M. N. Figueiredo and P. B. C. de Miranda
Department of Computing and Systems, University of Pernambuco, Brazil
cjabf@dsc.upe.br, dfc@dsc.upe.br, emnf@dsc.upe.br, pbcm@dsc.upe.br

Abstract

Particle Swarm Optimization (PSO) has been widely
used to solve many different real world optimization prob-
lems. Many novel PSO approaches have been proposed to
improve the PSO performance. Recently, a communication
topology based on Clans was proposed. In this paper, we
propose the Dynamic Clan PSO topology. In this approach,
a novel ability is included in the Clan Topology, named mi-
gration process. The goal is to improve the PSO degree
of convergence focusing on the distribution of the particles
in the search space. A comparison with the Original Clan
topology and other well known topologies was performed
and our results in five benchmark functions have shown that
the changes can provide better results, except for the Rast-
rigin function.

1 Introduction

Particle Swarm Optimization (PSO) is a class of bio-
inspired algorithms that can be used to solve optimization
and search problems. In general, PSO is used to tackle with
problems in hyperdimensional spaces where the variables
are continuous. PSO was proposed by Kennedy and Eber-
hart in 1995, inspired by the social behavior of flocks of
birds [5].
Each particle i represents a possible solution to a prob-

lem and has three main attributes: the position in the search
space �xi(t), the current velocity �vi(t) and the best position
ever found by the particle during the search process �pi(t)
so far. Besides, the particles change information by using
a specific communication scheme. The information flows
depending on a predefined neighborhood for each particle.
The neighborhood defines the communication topology.
The particles move through the search space performing

movements based on the best solution already found indi-
vidually, and the best solution found by the neighborhood
which they belong �pig(t).
During each algorithm iteration, the particle´s velocities

are updated according to the velocity equation. There are,

at least, three different equation to update the velocity. The
one used in this paper was developed by Clerc [3] and in-
volves the constriction factor presented in the equation be-
low:

−→vi (t + 1) = χ[−→vi (t) + c1ε1(−→pi(t) − −→xi(t))
+ c2ε2(−→pig(t) − −→xi(t))] , (1)

where

χ =
2κ∣∣∣∣2 − ϕ −
√
ϕ2 − 4ϕ

∣∣∣∣
, ϕ = c1ε1 + c2ε2 , (2)

where c1 and c2 are positive constants, ε1 and ε2 are two
random numbers generated by an uniform distribution in
the interval [0,1]. The constriction factor χ assumes a
value between 0 and 1, which implies a velocity reduc-
tion at each time step. Under the conditions ϕ ≥ 4 and
χ ∈ [0, 1], the constriction approach can avoid an unsta-
ble state. The parameter κ, in equation (2), controls the
exploration-exploitation tradeoff of the swarm. κ ≈ 1 values
are used in order to provide a high degree of exploration but
with a slow convergence. Lower values of κ are used for
faster convergence. However, it leads to a higher degree of
exploitation.
The first term in the right side of equation 1 takes into

account the current velocity taken by the particle and pre-
vents drastic changes of directions. The second term is the
cognitive component and the last one is called the social
component.
Another important issue that deserves attention, is the

communication topology used to spread information inside
the swarm. Many topologies have been proposed and im-
proved to accelerate the convergence process with accuracy.
The most common topologies are shown in Fig. 1.
In the star topology (Fig. 1(a)), particles can share infor-

mation globally through a fully-connected structure. This
topology uses a global neighborhood mechanism known as
gbest to share information.
On the other hand, there are topologies based on a lo-

cal neighborhood, such as Fig. 1(b). This topology is called
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ring or lbest. In this approach, the particles only share infor-
mation with their direct neighbors defined based on indexs.
One should note thar the neighborhood is not based on the
spatial information. The ring topology provides better solu-
tions for multi-modal problems than the star topology [4].
Despite of this, the ring topology needs more iterations to
converge.
Some topologies have been proposed to balance the ex-

treme behavior of the gbest and lbest approaches, such as
the Von Neumann topology [6, 8] and clusters [7]. In the
Von Neumann topology (presented in Fig. 1(c)), particles
are connected by a grid creating a social structure very use-
ful for many optimization problems.

(a) (b) (c)

Figure 1. Standard structures: (a) Star topol-
ogy used in gbest, (b) Ring topology used in
lbest. and (c) Von Neumann Topology.

PSO has been widely used in real world applications
due to its simplicity and capacity to deal with optimization
problems. However, in some cases the swarm gets trapped
in local minima. To avoid this problem, dynamic topolo-
gies forming peculiar types of particle grouping, such as
rings [1] and clans [2], have been considered to dynamically
change the information flows inside the swarm in order to
increase the diversity when a stagnation process occurs.
This paper aims to include some extra abilities to the

Clan Particle Swarm Optimization. The paper is organized
as follow. In section 2, we present the basic concept of Clan
PSO. In section 3 we present our contributions in order to
allow migration processes among the clans. In section 4
and 5 we present the simulation setup and the results, re-
spectively. In section 6 we give our conclusions.

2 Clan Particle Swarm Optimization

This section reviews briefly a recently proposed topology
called Clan Particle Swarm Optimization (Clan PSO) [2].
These concepts will be necessary to explain the novel abili-
ties included in this approach.
Clan PSO was inspired by social behaviour of Clans and

was developed to improve the PSO performance. The clans
are formed by groups of particles in a fully-connected struc-
ture to share information globally (gbest). The structure

presented in Fig. 2 is an example with four Clans (A, B,
C and D) of 5 particles.
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Figure 2. Clan topology: distribution of clans.

In each iteration, each clan performs a search and marks
the particle with the current best position −→pi(t) of the entire
clan. These particles are the current Leaders. The delega-
tion process uses the gbest information to directly delegate
the leader. Therefore, no additional processing is necessary
to perform the delegation.
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Figure 3. Clan topology: marked leaders of
each clan.

After that, the leaders of each clan are put together in
a “conference”, and another PSO solely with the leaders is
ran. The Leader’s Conference is performed using a PSO
and can use either gbest or lbest information sharing mech-
anism as presented in Fig. 4. After the conference, the new
information acquired by the leaders in the conference will
be used inside each clan to adjust the velocities of the other
particles. One should note that the leaders do not acquire
the best position found by the other leaders so far. Indeed,
the leaders solely adjust their positions based on the best
position found by the other leaders.

3 Dynamic Clan Particle Swarm Optimiza-
tion

In the original Clan Particle Swarm Optimization, it is
necessary to define the number of particles in each Clan.
Each set of particles that compose a Clan will remain in the
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Figure 4. Leader’s conference: (a) global con-
ference and (b) local conference.

same Clan until the end of the algorithm execution. Further-
more, the number of particles in each Clan impacts on the
performance of the algorithm and the optimum number of
particles per Clan depends on the problem.
Considering that some particles are not necessarily spa-

tially close to its own Clan, it would be interesting for these
particles to be influenced by other Clans. Besides, as the
particles will be free to move out and join different Clans,
under certain conditions, the number of particles in a de-
termined Clan can increase, leading to a high degree of ex-
ploitation in the region covered by the Clan.
Because of these reasons, we are proposing to create a

mechanism to allow particles to migrate from one Clan to
another Clan during the search process. We call this new
abilityMigration Process, which was included into the Clan
PSO algorithm. The Dynamic Clan PSO pseudo-code is
presented in Algorithm 1.

Algorithm 1: Dynamic Clan algorithm search process
pseudo-code.
Initialize Swarm1

while step <= number Of Steps do2

foreach clan of the swarm do3

foreach particle of the clan do4

Update Velocity And Position5

Calculate Fitness6

Update Information7

end8

Delegate Clan Leader9

end10

Perform Leaders’ Conference11

Perform Particles’ Migration12

end13

return Best Position Found14

3.1 Migration Process

Consider that the particle P belongs to a Clan Ci in the
search space containing n clans. During the migration pro-
cess, the euclidian distance in the search space d(P, Li) be-
tween particle P and the leader Li of its own clan (Ci) will
be computed. If d(P, Li) > d(P, Lj) where j ∈ {0, 1, . . . , n}
and i � j, P will migrate to the clan whose leader is spa-
tially closer, i.e. the clan j. It aims to reorganize the Clans
with particles which are spatially close.
The migrations just can occur in predefined iterations

called epochs. This article proposes two different modes
of operation. The exploration mode and the exploitation
mode. In the exploration mode, the predefined iterations
(exploration epoch) in which the particles can migrate have
higher values, tipically 1,000 iterations. In the exploita-
tion mode, the predefined iterations (exploitation epoch) in
which the particles can migrate have lower values, tipically
100, 200 or 400 iterations. The exploration epoch is used
during the most part of the PSO algorithm execution, and
the exploitation epoch is used mostly in the end of the sim-
ulation. Another parameter used in our algorithm is the it-
eration in which the algorithm switches from exploration
mode to exploitation mode.
A problem can arise from the migration process. After

some epochs, all particles can be close to each other. In this
case, the Dynamic Clan topology tends to behave like a star
topology. Thus, we define the minimum number of particles
per Clan smin to avoid this problem. It means that clans can
not lose particles when the smin threshold has been reached.
One should note that it can avoid an extreme behaviour.

4 Experiments

To perform the experiments, five benchmark functions
were chosen to be used in simulations andmany simulations
were performed to analyse which values would be better for
the parameters smin, exploration epoch and the exploitation
epoch.

4.1 Benchmark Functions

Five benchmark functions were used in the simulations.
All five functions are used for minimization problems. Two
of these functions, Rosenbrock ( f1) and Schwefel 1.2 ( f5),
are simple unimodal problems, and the others, Rastrigin
( f2), Griewank ( f3), and Ackley ( f4), are multimodal func-
tions that contain many local optima. Table 1 shows the
search space, initialization range, and the optimum for each
function. All the simulations were performed using 30 di-
mensions for all functions.
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Table 1. Used functions, search space, initial-
ization range, and optimum.

Function Search space Initialization Opt.
f1 −30 ≤ xi ≤ 30 15 ≤ xi ≤ 30 1.0D
f2 −5.12 ≤ xi ≤ 5.12 2.56 ≤ xi ≤ 5.12 0.0D
f3 −300 ≤ xi ≤ 600 300 ≤ xi ≤ 600 0.0D
f4 −32 ≤ xi ≤ 32 16 ≤ xi ≤ 32 0.0D
f5 −100 ≤ xi ≤ 100 50 ≤ xi ≤ 100 0.0D

4.2 Simulations setup

The equation used to update the particle´s velocities is
the constricted PSO. We used κ = 1 and c1 = c2 = 2.05.
All the simulations were performed using 30 particles and
10, 000 iterations.
The parameters involved in the migration process were

chosen based on preliminar simulation results. In general,
the parameters are: smim = 4, the exploration epoch is
1, 000 iterations until the 8, 000th iteration and the exploita-
tion epoch is 200 iterations from the 8, 000th iteration until
the end of the algorithm execution.
All the results presented in next section were run 30

times. In all the cases, the mean value and standard devi-
ation of the fitness values were evaluated after 30 trials.

5 Results

We performed two sets of experiments to determine the
best values for the parameters used in the migration pro-
cess. After that, we performed a comparison between our
approach and previous approaches.

5.1 Analysis of the Parameters Influence

The first analysis aims to define the best values for the ex-
ploration epochs, the exploitation epochs and the iteration
to switch from exploration mode to exploitation mode. The
results are shown in Table 2. The mean value and the stan-
dard deviation are presented for five benchmark functions,
two types of leaders conference and four different epochs
configuration. The second row presents the parameters used
to define the frequency of the migration process. These sim-
ulations used smin = 3.
Considering the cases presented in Table 2, there are

no significant variations in the results by changing the
exploration epochs, the exploitation epochs and the it-
eration to switch from exploration mode to exploitation
mode. Thus, we adopted in the rest of this paper explo-
ration epochs=1, 000, the exploitation epochs=200 and the

=8, 000th iteration to switch from exploration mode to ex-
ploitation mode.
The second analysis was performed in order to define the

best value for smin. Table 3 shows the results for smin = 2, 3,
4 and 5. The same explanation used for Table 2, can be ap-
plied to Table 3. However, in the column Fitness, the mean
and standard deviation were evaluated for different values
of smin. Again, we detected that smin is not a critical param-
eter. Despite of this, we checked that in general the algo-
rithm achieves satisfactory results for smin = 4. Therefore,
we will use this value in the rest of the paper.

5.2 Comparison to other Topologies

In this subsection we present a comparison between
the Dynamic Clan PSO, using the parameters which were
defined above (smin, exploration epoch and exploitation
epoch), and other topologies such as Global, Local, Von
Neumann and original Clan topology. The results of mean
values and standard deviation for the fitness are shown Ta-
bles 4, 5, 6, 7 and 8.
As can be seen in Table 4, the Dynamic Clan PSO

with Global Leaders conference achieved the best results
(mean = 2.64 and standard deviation = 2.76). The Dy-
namic Clan PSO with Local Leaders conference obtained
results similar to original Clan PSOwith Local Leaders con-
ference and Star topology.

Table 4. Topologies comparation for Rosen-
brock function.

Simulation Fitness
Function Topology Mean S. D.

Rosenbrock

DynClan-Global 2.64 2.76
DynClan-Local 4.49 4.15
Clan-Global 7.39 18.20
Clan-Local 4.54 4.11
Star 4.50 12.54
Ring 9.79 7.82

Von Neumann 6.92 5.24

The results for Rastrigin function were not as good as the
results for the Original Clan PSO, as shows the Table 5. De-
spite of this, both the Dynamic Clan PSO with Global and
Local Leaders conference outperformed the other topolo-
gies. A possible solution to improve the Dynamic Clan
convergencewould be to increase the exploratory epoch, al-
lowing the particles to explore the search space and escape
from local minima.
The results for the Schwefell 1.2 function (see Table 6)

show that the Dynamic Clan PSO outperformed the original
Clan PSO. Despite the Global topology achieved the best
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Table 2. Dynamic-Clan simulation results for epoch values variation.
Fitness

Exploration/Exploitation/Switch 1,000/200/8,000 1,000/400/8,000 1,000/100/9,000 1,000/200/9,000
Function Topology Mean S. D. Mean S. D. Mean S. D. Mean S. D.

Rosenbrock DynClan-Global 2.49 2.88 2.63 3.44 1.79 2.59 5.05 13.79
DynClan-Local 7.08 12.40 9.76 19.09 4.20 3.90 5.41 4.14

Rastrigin DynClan-Global 35.93 12.17 33.75 14.21 35.30 14.78 33.92 11.09
DynClan-Local 28.75 11.07 30.53 15.81 28.80 12.81 25.61 9.08

Schwefel
1.2

DynClan-Global 7.4E-18 1.9E-17 1.6E-17 4.5E–17 1.0E-18 2.5E-18 1.2E-17 4.2E-17
DynClan-Local 1.9E-13 3.8E-13 4.4E-13 9.3E-13 1.9E-13 5.5E-13 8.8E-13 3.3E-12

Ackley DynClan-Global 12.19 8.99 15.64 7.84 18.02 5.73 17.78 7.12
DynClan-Local 13.48 9.82 11.46 9.25 10.99 9.71 12.77 9.52

Griewank DynClan-Global 0.02 0.02 0.03 0.06 0.02 0.03 0.01 0.02
DynClan-Local 0.01 0.03 0.02 0.04 0.01 0.01 0.02 0.02

Table 3. Dynamic-Clan simulation results for smin variation.
Fitness

Minimum Number of Particles 2 3 4 5
Function Topology Mean S. D. Mean S. D. Mean S. D. Mean S. D.

Rosenbrock DynClan-Global 2.58 2.91 2.49 2.88 2.64 2.76 4.31 12.39
DynClan-Local 7.91 14.02 7.08 2.40 4.49 4.15 4.43 4.14

Rastrigin DynClan-Global 44.50 17.19 35.93 12.17 33.97 16.16 23.55 10.65
DynClan-Local 34.09 12.28 28.75 11.07 24.65 9.24 20.83 7.80

Schwefel
1.2

DynClan-Global 5.3E-181.4E-177.1E-181.9E-173.5E-171.2E-163.6E-17 8.5E-17
DynClan-Local 1.4E-132.5E-131.9E-133.8E-134.7E-122.0E-111.1E-12 1.4E-12

Ackley DynClan-Global 11.23 9.44 12.19 8.99 14.91 8.44 13.62 9.16
DynClan-Local 14.76 8.66 13.48 9.25 12.94 9.31 16.67 7.36

Griewank DynClan-Global 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.11
DynClan-Local 0.01 0.02 0.01 0.03 0.01 0.01 0.01 0.01

Table 5. Topologies comparation for Rastri-
gin function.

Simulation Fitness
Function Topology Mean S. D.

Rastrigin

DynClan-Global 33.97 16.16
DynClan-Local 24.65 9.24
Clan-Global 11.84 7.75
Clan-Local 6.10 3.67
Star 52.26 14.34
Ring 37.98 6.58

Von Neumann 34.75 9.52

results in this case, the Dynamic Clan PSO overcame Von
Neumann and Ring topologies.
The results for the Ackley function (see Table 7) show

that, on average, the Dynamic Clan PSO outperformed the

Table 6. Topologies comparation for Schwefel
1.2 function.

Simulation Fitness
Function Topology Mean S. D.

Schwefel
1.2

DynClan-Global 3.5E-171.2E-16
DynClan-Local 4.7E-122.0E-11
Clan-Global 4.3E-122.3E-11
Clan-Local 4.8E-10 1.1E-9
Star 1.5E-213.6E-21
Ring 3.0E-4 2.0E-4

Von Neumann 6.9E-9 1.1E-8

other topologies. However, the higher standard deviation
values indicate that in some trials the Dynamic Clan PSO
got trapped in local minima. The number of times that the
Dynamic Clan PSO gets trapped on local minima is lower
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than the number of times that the Original Clan PSO gets
trapped on local minima. One should note that the other
topologies are not able avoid the local minima in all the
trials.

Table 7. Topologies comparation for Ackley
function.

Simulation Fitness
Function Topology Mean S. D.

Ackley

DynClan-Global 14.91 8.44
DynClan-Local 12.94 9.31
Clan-Global 17.31 6.66
Clan-Local 15.99 7.90
Star 19.91 0.03
Ring 19.91 0.03

Von Neumann 19.93 0.01

The results for the Griewank function (see Table 8) show
that the Dynamic Clan PSO achieved similar results when
compared to the original Clan PSO. Although the best re-
sults for this function were achieved by the Von Neumann
topology, the Clan based topologies outperformed the Ring
and Star topologies.

Table 8. Topologies comparation for
Griewank function.

Simulation Fitness
Function Topology Mean S. D.

Griewank

DynClan-Global 0.02 0.02
DynClan-Local 0.008 0.01
Clan-Global 0.01 0.01
Clan-Local 0.008 0.01
Star 0.03 0.04
Ring 0.77 0.86

Von Neumann 0.005 0.006

6 Conclusions

In this paper we proposed to include a novel ability to
a recently proposed communication topology for Particle
Swarm Optimization, the Clan Particle Swarm Optimiza-
tion. This ability allows the particles of one Clan to migrate
to another Clan. We believe that this process can help to
automatically increase the exploitation capacity of a sub-
swarm when it is necessary.
This migration process can occur in some moments dur-

ing the algorithm execution, called epochs. Besides, we
divided the search process in two phases, the exploration

mode and the exploitation mode. Three parameters controls
the migration process scheme: the exploration epochs, the
exploitation epochs and the iteration to switch from explo-
ration mode to exploitation mode. The simulation results
indicated that these parameters are not critical in the stud-
ied range.
The simulation results also showed that the proposed

topology achieved similar or superior performance in al-
most all the benchmark functions considered in this paper.
Furthermore, the migration process improved the perfor-
mance of the Clan PSO in three cases. The only exception
occured for Rastrigin function. However, we believe that
further investigations on the relationship between the pa-
rameters involved in the migration process can mitigate this
problem.
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