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Abstract—High computational cost for solving large
engineering optimization problems point out the design of
parallel  optimization  algorithms. Population  based
optimization algorithms provide parallel capabilities that can
be explored by their implementations done directly in
hardware. This paper presents a hardware implementation of
Particle Swarm Optimization algorithms using an efficient
floating-point arithmetic which performs the computations
with high precision. All the architectures are parameterizable
by bit-width, allowing the designer to choose the suitable
format according to the requirements of the optimization
problem. Synthesis and simulation results demonstrate that the
proposed architecture achieves satisfactory results obtaining a
better performance in therms of elapsed time than
conventional software implementations.
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L

Heuristics are important tools for nonlinear optimization
problems in which the algorithms neither require continuity
or differentiability of the objective function. Particle Swarm
Optimization (PSO) is one of the heuristic algorithms that
can be applied to nonlinear optimization problems [1].

PSO is a stochastic technique, bio-inspired on the social
behavior of bird flocking, which provides several desired
attributes, such as, simplicity, less computational
requirements, parallelism [2], [3] and easy implementation
without calculations of the gradient [4].

Although non-gradient based optimization algorithms
present low computational cost, requiring only primitive
mathematical operators, these techniques have a high elapsed
time to solve large-scale engineering problems. Therefore,
parallel implementations of population based optimization
algorithms can increase the throughput and improve their
performance.

Modern Field Programmable Gate Arrays (FPGAs) have
hundred of thousand of logic elements, allowing the
designers to develop, directly in hardware, complex
algorithms that are commonly implemented in software.
Hardware implementation of optimization algorithms can
decrease the computation time by expressive processing
speed-up and by performing simultaneous computations.

INTRODUCTION
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Most of the previous works regarding parallel
implementations of the PSO algorithm consider clusters of
networked personal computers [3], [5], [6]. Alternatively,
FPGA implementations are a feasible and cheap solution for
performing parallel optimization algorithms. Previous works
covering FPGA implementations of the PSO algorithm
consider the conventional fixed-point arithmetic; however,
several optimization problems require to operate with a high
degree of precision. Therefore, an FPGA implementation of
parallel PSO algorithms using floating-point arithmetic is of
great importance due to the large dynamic range for
representing large and small real numbers, flexibility of
architectures and customizable approaches, which allow the
involved algorithms for a better performance.

This paper presents an FPGA implementation of a
parallel floating-point PSO algorithm. All the architectures
have been developed in Hardware Description Language
(VHDL) and are based on the IEEE-754 standard. Also, the
architectures are parameterizable by bit-width, allowing the
designer to chooses the suitable format according to the
precision requirements of the optimization problem. A
detailed analysis over the performance and precision aspects
of the floating-point operators involved in the PSO algorithm
has been presented in [7] and [8], which must be considered
in the hardware design, especially in the fitness function
implementation. The proposed PSO architecture has been
validated using well-known unimodal and multimodal
benchmark functions, showing the effectiveness of the
hardware parallel PSO algorithm.

Section II describes the PSO operation. Section III
presents the related works. Section IV describes the
hardware parallel PSO implementation and, before
concluding, Section V presents synthesis and simulation
results.

II.  Tue PSO OPERATION

The particle swarm optimization (PSO) is a heuristic and
stochastic algorithm, introduced in 1995 by Kennedy and
Eberhart [9]. The PSO is based on the social behavior of
social populations when adapting to the environment, in
which the individual tends to return to the place that most
satisfied it in the past [9].
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In the PSO operation, the population is called swarm and
each individual is called particle (mass-less and volume-
less). Each particle i has a current velocity vector v, a
personal best position vector y; in the search space and a
position vector x;, that represents a possible solution of the
optimization problem. Considering a N-dimensional
evaluation function and a swarm size of S particles, the
position of the i” particle of the swarm in the j* dimension is
updating by executing equations (1) and (2).
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where r; and r; are uniformly random numbers between 0
and 1, y; is the personal best position found by the particle i
around the j* dimension and y; is the global best position
amongst all the particles. There are three parameters: the
inertia (w), the cognitive (c;) and the social (c;) coefficients.

The velocities v; are clamped to the range [-Via V]
avoiding the particles leave the search space. Large values
for cognitive coefficient (c;) indicate particles with a high
self confidence on their experience and large values for
social coefficient (c;) provide a particle with a high
confidence on the swarm [10]. For unimodal functions is
desirable a small cognitive coefficient and a large social
coefficient; however for multimodal functions it can be
usefully a trade-off between the cognitive and the social
coefficients in order to improve the performance.

The inertia weight coefficient w is setting up for
decreasing linearly from 1 to O until the stopping criteria is
met. The inertia controls the exploration capabilities of the
particles. Large values for w result in a global search and
small values for w allow the particles to a local search [10].

1.

The standard PSO algorithm has several desired
attributes such as, non-gradient calculation and easy
implementation using only multiplication and add/sub
operators. However, large computational times are required
when solving large-scale problems. This problem can be
solved by implementing parallel PSO algorithms, taking
advantage of the intrinsic parallelism of this technique.

Several previous works regarding parallel PSO
algorithms have been developed using a networked array of
master/slave CPUs, demonstrating a faster convergence and
improving the computational time of the algorithm [3], [5],
[6], [11]. However, these solutions are expensive, taking
into account that the PSO requires only primitive
operations, where, the most computational cost is the
evaluation of the fitness function.

An FPGA implementation of the PSO allows the
algorithm to improve the performance: (1) by using parallel
particles and (2) by performing as many as possible
simultaneous operations in both the update process and the
fitness function evaluation.

Previous works covering FPGA implementation of PSO
algorithms demonstrate the feasibleness of the hardware PSO
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for solving large-scale optimization problems. Reference
[12] implements a PSO algorithm in FPGAs for inversion of
large neural networks and shows that the computing time in
an FPGA is approximately 6 times faster than conventional
computers. A high parallel PSO was implemented in [13] for
dynamic optimization of array antennas. A matrix structure
for synchronizing the particles to the fitness module was
developed on FPGAs, achieving a high degree of parallelism
of the PSO algorithm. Reference [14] presents a population-
oriented hardware architecture for PSO with Discrete
Recombination, validating the architecture with two 32-
Dimensional fitness functions (Sphere and Rastrigin). An
FPGA implementation of Simultaneous Perturbation PSO
(SPPSO) is presented in [15], increasing the operation speed
effectively by using the parallelism of the PSO. In [4] an
FPGA architecture of wavelet neural networks with PSO is
applied to a prediction problem, showing that the
performance of the PSO is better than the SPPSO by
working with a suitable number of particles.

Most of the previous works covering hardware
architectures of the PSO algorithm perform the computations
using a fixed-point arithmetic. However, many of the
engineering applications require to represent numbers in a
dynamic range, performing the computations with high
precision, for instance using floating-point arithmetic.

This work presents an FPGA implementation of a
parallel floating-point PSO algorithm. The floating-point
arithmetic provides a dynamic range for representing large
and small numbers, guaranteeing that saturation will not
occur for general purpose applications in comparison with
the fixed-point arithmetic in which, the designer must
chooses the suitable bit-width for the integer and fractional
parts. Synthesis results show that the scalability of the PSO
architecture depends on the complexity of the fitness
function. The proposed PSO architecture was validated using
the unimodal Sphere and Quadric functions and the
multimodal Rastrigin and Rosenbrock functions. The results
were contrasted with Matlab®, showing that the hardware
parallel PSO achieves satisfactory results and a less elapsed
time than software implementations.

IV. HARDWARE IMPLEMENTATIONS

The proposed parallel PSO architecture operates with a
floating-point arithmetic and is based on the IEEE-754
standard to represents binary real numbers. This standard is
characterized by three components: a sign S, a biased
exponent E with Ew bit-width and a mantissa M with Mw
bit-width, as shown in Fig. 1.

1 —Ew M
[s] E ] M |
* e+ bias mantissa = 1. M
Figure 1. The IEEE-754 standard

A zero bit sign denotes a positive number and an one bit
sign denotes a negative number. A constant (bias) is added to
the exponent in order to make the exponent’s range non
negative. The mantissa represents the magnitude of the
number. This standard allows the user to work not only with



the 32-bit single precision and 64-bit double precision, but
also with a suitable precision according to the application.

A. The Hardware Parallel PSO

The following nomenclature is used: x,; means the
current position of the i” particle in the j’h dimension, Yy
means the individual best position of the i particle in the ;"
dimension and y, means the global best position. The fitness
value of the current position of the i” particle is represented
by fix,;) and its respective fitness value of the individual best
position is represented by f(y,).

Fig. 2 shows the general hardware architecture of the
parallel PSO. It can be observed a swarm of § particles
updating their positions simultaneously in order to optimize
a cluster of S fitness functions that represent an
N-dimensional optimization problem.
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Figure 2. General hardware parallel PSO architecture

The architecture is composed of five main components:
(A) swarm unit, (B) evaluation unit, (C) individual best
detection unit, (D) global best detection unit and (E) a Finite
State Machine (FSM). The swarm unit executes, for each
particle, (1) and (2) equations in order to update the velocity
and the position. The evaluation unit performs the fitness
function evaluations in a parallel approach. Notice that each
fitness function requires that all the positions in each
dimension have been updated. The individual best detection
unit compares the current fitness values of the particles with
the respective best fitness values previously found. If the
current fitness value f{x,;) is lower than the fitness value of
the individual best position fy,:), the individual best position
(vector y;) is replaced by the current vector position (vector
x;) and then, the individual best position is stored in a RAM.
The global best detection unit calculates the minimum value
among the S best fitness values and stores the corresponding
global best position in a RAM. The FSM unit synchronizes
all the hardware components.

B. The Swarm Unit

As stated by equations (1) and (2), the update process of
each particle requires five multiplications, four add/sub
operations and two random number generators. In this work,
the cognitive (c¢;) and social (c;) coefficients are constants,
and then, two multiplications are avoided by setting-up the
random number generator in the range [0 to ¢/] or [0 to ¢2].
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Fig. 3 presents the hardware architecture of one particle.
The update process is performed on five stages (so to si),
sharing one floating-point multiplier (FPmul), one floating-
point add/sub unit (FPadd) and one floating-point LFSR
unit for implementing the random number generator
(explained below). All the operations in each stage are
performed simultaneously.
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Figure 3. Particle architecture
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C. The Floating-point Random Number Generator

A random number generator is required to maintain the
stochastic behavior on the movement process of each
particle. In this work an uniform pseudo-random floating-
point number generator is performed by using two Linear
Feedback Shift Register (LFSR), as shown in Fig. 4.
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Figure 4. Floating-point random number generator
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The LFSR is a shift register based technique, in which
several bits, called faps, are chosen as a feedback function
obtaining a new state. By selecting the appropriate 7aps, the
bit sequences work as a pseudo-random number generator.
Also, by selecting the register bits in both, the exponent and
mantissa words, the random number generator works in the
desired range. In this work the range U[0 to c/] and
U[0 to ¢2] were used, avoiding additional multiplications.

D. The Evaluation Unit
In the evaluation unit the following well-known

benchmark functions were implemented in hardware and
were used in order to validate the proposed hardware parallel
PSO architecture.

1) The Sphere function: it is a continuous and unimodal
function as shown in (3). The global minimum is f{x)=0,
x(i)=0, i=1...N.

(€)

It was implemented using two parallel FPmul units and
one FPadd unit. An N-dimensional Sphere function can be



easily accomplished by sharing and synchronizing these
hardware components.

2) The Quadric function: It is a continuous and
unimodal function as defined by (4). The global minimum is
Ax)=0, x(i)=0, i=1..N

f(?c)=2( > x,

i=1

(4)

It was implemented using one FPmul unit, one FPadd
unit and a Finite State Machine (FSM) for synchronizing
these hardware components over a number of states that will
depend on the dimensionality of the problem.

3) The Rosenbrock function: it is a multimodal function
as stated by (5). The global minimum is Ax)=0, x(i)=1,
i=1..N

NI2

f(}):z100-(x2i—x;7])2+(1—x2i71)2 (5)

It was implemented using one FPmul unit, one FPadd
unit, several registers and a Finite State Machine (FSM).
Obviously, the number of states and latency will depend on
the dimensionality of the problem.

4) The Rastrigin function: it is a highly multimodal
function, as shown in (6). The global minimum is f{x)=0,
x(i)=0, =1..N

f(%):i(xf—locos(znx,.)ﬂo) (6)

It was implemented using two FPmul units, one FPadd
unit, two reduction argument units, two floating-point cosine
units and a FSM for synchronizing all the hardware
components. The cosine unit computes the cosine function
using a Taylor series expansion as described in [8].

V. REsuLts

The proposed hardware parallel PSO architecture was
validated for a swarm composed of four parallel particles
(S=4) optimizing a simple two-dimensional problem (N=2).
Table I lists the experiment conditions.

TABLE L. ExpeRIMENT CONDITIONS
Parameter Value
Max. number of iterations 500

Inertia weight Linearly decrease [0.9 to 0.1]

Initial velocity 0.5
Maximum velocity 3
Domain range of the| [-16to 16] Rosenbrock function

fitness functions [-5.12 to 5.12] remain functions

A. Synthesis results

The hardware Parallel PSO was described in VHDL and
synthesized for a Xilinx Virtex 5 family FPGA (xc5vIx330).
Different bit-width representations were analyzed, taking
into account the domain range of the fitness functions and

their largest possible values. Synthesis results are important
data in order to evaluate the feasibleness of the proposed
circuits. This data summarize the resources consumption
(area cost) and performance (frequency of operation) of the
implemented circuits.

Table II presents the synthesis results for a swarm with
four particles and a two-dimensional problem working with a
simple precision format (32 bit-width).

TABLE II. SyNTHESIS RESULTS. 32 BiTS, 4 PARTICLES, 2 DIMENSIONS
Implemented Slices Max LUTs Max DSP MUL | Freq.
FP-core 207360 207360 Max 192 | MHz
Particle 358 (0.17%) | 1298 (0.63%) | 2 (1.04%) | 97.5
PSO-Sphere 4246 (2.05%) | 12058 (5.81%) | 26 (13.5%) | 90.5

PSO-Quadric
PSO-Rosenbrock

4441 (2.14%)
3377 (1.63%)
8474 (4.09%)

12578 (6.07%)
8423 (4.06%)
27067 (13.1%)

18 (9.38%) | 91.8
10 (5.21%) | 94.7

PSO-Rastrigin 42 (21.9%) | 90.6

As showed in Table II, all the proposed architectures are
effectively implemented in hardware. At the worst case (PSO
optimizing the Rastrigin function problem) there are
available more than 70% of the FPGA resources for future
implementations. The most critical parameter is the
embedded multipliers consumption, for which the Rastrigin
problem requires about 22%. However, these multipliers can
be implemented using the logic blocs available resources in
the FPGA. The frequency of the implemented cores is about
90 MHz.

In this architecture the dimensionality of the optimization
problem has a minor effect in the area cost than the number
of particles in the swarm. Notice that a new particle will
require not only to implement the operations presented in
Fig. 3 but also a new fitness function implementation and
several connecting signals in the general architecture (Fig.
2). In contrast, a new dimension will require only several
connecting signals in the particle architecture and in the
general architecture; however, the latency of one iteration of
the PSO algorithm is increased.

B.  Simulation Results

The proposed hardware parallel PSO, in double
precision, was simulated using the ModelSim® simulator tool
and the results were contrasted with a Matlab®
implementation using the same conditions listed in Table 1.
The double precision format (64 bit-width) was chosen to
simulate the hardware parallel PSO, given that Matlab® uses
the double precision format to perform the computations.

For each one of the benchmark functions, the hardware
PSO was simulated over 10 runs. The same initial position of
each single run was used in both hardware and software
simulations. Figs. 5, 6, 7 and 8 show the evolution of the best
fitness value against the number of iterations of the hardware
PSO algorithm. The black line represents the average of the
best fitness value. Figs. 9, 10, 11 and 12 present a
comparison between the average of the best fitness values for
hardware and software simulations.
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In order to validate the hardware implementations, both
the hardware and software implementations were simulated
without the random component of the algorithm. In this case,
the best fitness function results were identical, demonstrating
the correctness of the proposes architecture. Afterwards, the
random component was included for the respective
simulations.

As expected, for both the hardware and software
implementations, the PSO algorithm optimizing unimodal
problems achieves better results than optimizing multimodal
problems. The hardware parallel PSO presents satisfactory
results, about 1E-38 of the best fitness value, achieving this
result faster than the software implementation (see Fig. 9). In
the case of the Quadric function (see Fig. 10), the fitness
function evolution is similar between the hardware and the
software implementations, achieving the best results about
1E-21 and 1E-22 respectively; however the software
implementation requires small iterations for achieving this
results.

In the case of multimodal functions, the hardware parallel
PSO achieves better and faster results (1E-4, 140 iterations)
than the software implementation (1E-2, 200 iterations)
when solving the Rosenbrock function (see Fig. 11).
However, in the case of the Rastrigin function, both the
hardware and software approaches present sub-optimal
solutions.

Table III presents a comparison of the elapsed time of
one PSO iteration (micro-seconds), between the proposed
hardware parallel PSO and the software implementation. It
can be observed that the elapsed time of the FPGA
implementation, working at S0OMHz, is about 78 times faster
than the Matlab® implementation, working on a Intel Core
Duo at 1.6 GHz and 1GB of RAM memory.

TABLE III. Erapsep TIME COMPARISON - ONE ITERATION.
Case problem Hardware Software Times faster
PSO-sphere 0.94 us 120.20 us 127
PSO-quadric 0.98 us 127.03 us 129
PSO-rosenbrock 1.10 us 105.74 us 96
PSO-rastrigin 1.64 us 128.40 us 78
VI.  ConcLusioNs

This paper describes an FPGA implementation of a
hardware parallel PSO algorithm using the efficient floating-
point arithmetic. The proposed architecture explores the
parallel capabilities of the PSO by updating the particles and
evaluating the fitness functions in a parallel approach.
Synthesis results show that the scalability of the hardware
parallel PSO depends on the complexity of the fitness
functions.

The proposed PSO architecture was validated using four
parallel particles optimizing two-dimensional benchmark
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functions, demonstrating the effectiveness of the hardware
parallel PSO. The better results were achieved in case of the
unimodal Sphere function and the multimodal Rosenbrock
function, requiring less iterations than the software
implementation. Also, simulation results demonstrate than
the hardware implementation is about 78 times faster than
the Matlab” implementation.

As future works we intend to implement a hardware
adaptive architecture of the parallel PSO, as well as, to
perform a scalability study of the FPGA implementation of
the parallel PSO algorithm using floating-point arithmetic.
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