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Abstract

This paper presents a multiobjective optimization al-
gorithm based on Particle Swarm Optimization (MOPSO-
CDR) that uses a diversity mechanism called crowding dis-
tance to select the social leaders and the cognitive leader.
We also use the same mechanism to delete solutions of the
external archive. The performance of our proposal was
evaluated in five well known benchmark functions using
four metrics previously presented in the literature. Our
proposal was compared to other four multi objective opti-
mization algorithms based on Particle Swarm Optimization,
called m-DNPSO, CSS-MOPSO, MOPSO and MOPSO-
CDLS. The results showed that the proposed approach is
competitive when compared to the other approaches and
outperforms the other algorithms in many cases.

1 Introduction

Many optimization problems may have to deal with mul-
tiple objectives and in some cases these objectives are con-
flicting. In this case, the problem will not have an unique
solution. Instead of it, there will be several optimum so-
lutions regarding on the compromise between the different
objectives. The use of evolutionary algorithms and swarm
intelligence algorithms have increased in recent years re-
sulting in a wide variety of algorithms.

Particle Swarm Optimization (PSO) is a class of algo-
rithms designed to solve optimization and search problems.
PSO was proposed by Kennedy and Eberhart in 1995 [5],
inspired by the social behavior of flocks of birds. In gen-
eral, PSO is used to tackle with problems with one objective
in hyper dimensional spaces where the variables are contin-
uous. Despite the PSO was conceived to solve mono ob-
jective problems, due to its simplicity, some papers have
proposed to extend the PSO to be applied to multi-objective
problems.

This papers aims to improve a recently proposed ap-
proach by including a diversity mechanism called crowd-
ing distance to select the social and cognitive leaders and to
delete solutions of the external archive.

This paper is organized as follow. In section 2 we present
the basic concepts of Particle Swarm Optimization and
Multi-objective optimization. In section 3 we review some
Multi-objective Particle Swarm Optimization approaches.
In section 4 we introduce our contribution. In sections 5
and 6 we present the simulation setup and the obtained re-
sults, respectively. In section 7 we give our conclusions.

2 Basic Concepts

In this section, we briefly review some basic concepts
related to Particle Swarm Optimization and Multi objective
Optimization. These concepts are crucial to understand our
proposal.

2.1 Particle Swarm Optimization

Particle Swarm Optimization is a swarm intelligence
population based algorithm [5]. The population is called
swarm and the individuals are called particles. Each par-
ticle moves in the search space with an adaptable velocity
looking for promising regions. Each particle i represents a
possible solution to a problem and has three main attributes:
the position in the search space x⃗i(t), the current velocity
v⃗i(t) and the best position found by the particle during the
search process p⃗i(t) so far. The particles move through the
search space performing movements based on the best solu-
tion already found individually, and the best solution found
by the neighborhood which they belong p⃗ig(t).

During each algorithm iteration, the particle´s velocities
and positions are updated according to the equations (1) and
(2), respectively. There are, at least, three different equation
to update the velocity. The one used in this paper was devel-
oped by Shi and Eberhart [7] and involves the inertia factor
w presented in the equation (1).
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v⃗i(t+ 1) = wv⃗i(t) + c1r1(p⃗i − x⃗i(t)) +

c2r2(p⃗ig(t) − x⃗i(t)),
(1)

x⃗i(t+ 1) = x⃗i + v⃗i(t+ 1), (2)

where i = 1, ..., N ; c1 and c2 are two parameters called
the cognitive and the social parameter that determine the
relative influence of the social and cognition components;
r1 and r2 are two random numbers generated by an uniform
distribution in the interval [0,1].

2.2 Concepts of Multi Objective Opti-
mization

A general multi-objective optimization minimization
problems can be defined as:

minimize f⃗(x⃗) := [f1(x⃗), f2(x⃗), ..., fk(x⃗)] (3)

subject to:
gi(x⃗) ≤ 0 i = 1, 2, ...,m, (4)

ℎj(x⃗) = 0 j = 1, 2, ..., p, (5)

where x⃗ = (x1, x2, ..., xn) ∈ ℝn is the vector on the de-
cision search space; and gi(x⃗) and ℎj(x⃗) are the constraint
functions of the problem.

Given two vectors x⃗, y⃗ ∈ ℝn, x⃗ dominates y⃗ (denoted
by x⃗ ≺ y⃗) if x⃗ is better than y⃗ in at least one objective and
x⃗ is not worse than y⃗ in any objective. x⃗ is not dominated
if does not exist another current solution x⃗i in the current
population, such that x⃗i ≺ x⃗. The set of nondominated
solutions in the objective space is known as Pareto Front
(Pℱ∗).

3 Related Work

Some approaches have been proposed to extend the PSO
for multiple objective problems. In this section we present
some previous approaches that we used to compare with our
proposal.

3.1 m-DNPSO

The m-DNPSO was proposed by Hu and Eberhart et.
al [4]. In this algorithm, only one objective is optimized
at each time step by using a scheme similar to lexographic
ordering [2].

The multiple objectives are divided into two groups: f1
and f2. f1 is defined as the neighborhood objective, f2 is
defined as the optimization objective. The selection of f1
and f2 is arbitrary.

To select the social leader, the algorithm has to evaluate
the distance of the current particle to the other particles con-
sidering f1. Using this information, the nearest m particles
are selected (m is neighborhood size). Finally, the social
leader is defined by the best solution in terms of f2 values
among the m neighbors.

The cognitive leader is updated only when a new solution
dominates its current solution. An external archive (called
“extend memory”) is used to store the nondominated solu-
tions.

This approach has two main drawbacks: Lexographic or-
dering tends to be useful only for two objectives and the
performance may be sensitive to the order of the objectives.

3.2 MOPSO

This algorithm was proposed by Coello Coello et. al [3].
It is based on the idea of having an external archive in
which every particle will deposit its experiences after each
iteration. The external archive is updated considering a
geographically-based system defined in terms of the objec-
tive function values for each particle. In this approach, the
objective space explored is divided in hypercubes. Each hy-
percube receives a fitness value that depends on the number
of particles inside the hypercube. A roulette-wheel selec-
tion is used to select a leader for each particle of the swarm.
Once a hypercube is selected, one of the particles inside
the hypercube is randomly chosen to be the leader. This
approach also uses a mutation operator on the particles po-
sitions.

3.3 CSS-MOPSO

This algorithm was proposed by Chiu et. al [1]. In this
algorithm, although there is no cognitive leader, there are
two social leaders.

The gBest1 selection is performed based on the angle �
between the datum line, which connects the archive member
and datum point c, and the line that connects the particle and
the archive member that will be figured out. The archive
member that presents the smallest angle with the itℎ particle
will be assigned as their local guide gBest1.

The gBest2 selection is done according to the fitness
value of a randomly selected objective fi in each iteration.
All the particles are sorted by their fi fitness value. The CSS
will assign the gBest2 using the following rule. For particles
with even indexs, the archive member whose fi fitness value
is higher and nearest will be assigned as gBest2. For parti-
cles with odd indexs, the archive member whose fi fitness
value is lower and nearest will be assigned as gBest2.
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3.4 MOPSO-CDLS

This algorithm was proposed by Tsou et. al [8] and is
based on the approach proposed by Raquel et. al [6].

In this proposal, the crowding distance (CD) is used as a
mechanism to select the leaders from the external archive.
There are two possible situations: The social leader of a
particle is randomly chosen among the 10% less crowded
solutions, if the particle is dominated by these solutions; the
leader is randomly chosen from the entire external archive,
otherwise.

The cognitive leader of each particle is updated if the
new position dominates the current cognitive leader. If these
solutions are incomparable, the cognitive leader is ran-
domly selected between these two options. This approach
uses a local search mechanism in the external archive to im-
prove the exploration abilities and to speed up the conver-
gence.

4 Multiple Objective Particle Swarm Op-
timization with Crowding Distance and
Roulette Wheel (MOPSO-CDR)

Our proposed algorithm is based on the approach pro-
posed by Tsou et. al [8]. However, It incorporates the
crowding distance mechanism and roulette wheel to select
the social leader (gBest) and to prevent an excessive num-
ber of non dominated solutions in the external archive. Fur-
thermore, MOPSO-CDR presents a novel procedure to up-
date the cognitive leader (pBest). The pseudo code of our
approach is presented in algorithm 1. The following sub-
sections show the main features of our proposal.

Algorithm 1 Pseudo code for MOPSO-CDR
Initialize swarm
Initialize leaders in an external archive
Qualify leaders by using crowding distance
while stop criteria is not met do

for each particle do
Apply turbulence [3]
Select leader (using crowding distance and roulette)
Update velocity and position
Evaluate fitness
Update pBest (binary tournament)

end for
Update leaders in the external archive
Qualify leaders by crowding distance

end while
Report results (External archive)

4.1 Social Leader Selection

For multiple objectives problems, a proper choice of the
social leader (gBest) is crucial. It affects the convergence
capability and the distribution of non dominated solutions
along the Pareto front. The candidates for social leader are
in the external archive. Each particle is enabled to seek for
a different guide.

In MOPSO-CDR, the external archive is sorted by
crowding distance before each iteration. For each particle,
a social leader is selected by applying a roulette wheel in
the external archive. Solutions in less crowded regions have
more chance to be selected.

4.2 Cognitive Leader Selection

The cognitive leader (pBest) replacement rule is also
important to the convergence and efectiveness of the algo-
rithm. In the MOPSO-CDR, we developed a novel strat-
egy to determine pBest. The cognitive leader of each parti-
cle is updated if the new position of the particle dominates
pBest. If the new position and the pBest are incompara-
ble, the choice is made using the external archive. The al-
gorithm search in the external archive for the solutions with
minimum Euclidean distance for the pBest and for the new
position. If the closer solution to the new position in the
external archive is in a less crowded region than the closer
solution to the pBest in the external archive, the new posi-
tion will be chosen as the new pBest. Otherwise, the old
pBest remains.

4.3 Turbulence

PSO is known to have a good convergence speed. How-
ever, it may be harmful for multi objective optimization,
because a PSO-based algorithm may converge to a false
Pareto front (local optimum). Therefore, a mutation opera-
tor can help to avoid this problem by increasing the explo-
ration ability of the particles.

The mutation operator used in our approach is the same
used in the MOPSO [3] and it is applied at each iteration
with a bounded influence. In the beginning, all the parti-
cles in the population are affected by the mutation operator.
As the number of iterations increases, the percentage of af-
fected particles decreases.

4.4 External archive

The main objective of the external archive is to record
nondominated solutions found along the search process.
The algorithm has to decide whether a certain solution
should be added to the archive or not. The controller pro-
cess used in MOPSO-CDR works as follows.
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Initially, nondominated solutions are added to the exter-
nal archive. After each iteration, nondominated solutions
of the swarm are compared with the solutions in the ex-
ternal archive. The candidate solutions that are not domi-
nated by the solutions of the external archive are added to
it. Then, the dominated solutions are removed from the ex-
ternal archive.

The external archive has a maximum number of solu-
tions. If this number is exceeded after the end of each iter-
ation, solutions in more crowded regions are removed from
the repository using the crowding distance criterion.

5 Simulation Setup

5.1 Benchmark functions

Zitzler et al. [10] proposed a set of benchmark test prob-
lems which can be used to compare multi-objective opti-
mization approaches. We used the following test functions
of this benchmark ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6.
We did not used the ZDT5 function since it is designed to
deal with string of binary numbers and PSO is not suitable,
in principle, for this type of application.

5.2 Metrics

There are some metrics that can be used to quantify the
quality of the Pareto Fronts obtained by the algorithms. The
following metrics will be used in this paper: Hypervolume,
Spacing, Maximum spread and Coverage. One should at-
tempt that each metric highlight a different aspect of the
Pareto Front.

5.2.1 Hypervolume

The hypervolume (HV) was proposed by Zitzler and
Thiele [9].

In order to explain this concept, consider an optimization
problem with two objectives. The hypervolume is defined
by the area in the objective search space covered by the ob-
tained Pareto front (P∗

a ) (i.e., the “area under the curve”).
Consider a rectangle bounded by one point

(f1(x⃗); f2(x⃗)) that belongs to the Pareto front and the
origin. Suppose that each point in the Pareto front gener-
ates a rectangle in the objective space. The hypervolume
corresponds to the area formed by the union of all those
rectangles.

It is also possible to generalize this concept to problems
with n-objectives, by using the following equation:

HV =

{∪
i

ai ∣xi ∈ P∗
a

}
, (6)

where xi is a non dominated vector in P∗
a and ai is the Hy-

pervolume determined by the components of xi and the ori-
gin.

5.2.2 Spacing

The goal is to measure the spread (distribution) of non dom-
inated solutions throughout the Pareto front. Actually, it
measures the variance of the distance between adjacent non-
dominated solutions and can be evaluated by equation (7).

S =

√√√⎷ 1

n − 1

n∑
i=1

(d̄ − di)2, (7)

where di = minj(∣f i1(x⃗) − f j1 (x⃗)∣ + ∣f i2(x⃗) − f j2 (x⃗)∣),
i, j = 1, ..., n, d̄ is the mean distance between all the adja-
cent solutions and n is the number of non dominated solu-
tions in the Pareto front.

A value equal to zero means that all the solutions are
equidistantly spaced in the Pareto front.

5.2.3 Maximum Spread

This metric was proposed by Zitzler et. al [10] and evalu-
ates the maximum extension covered by the nondominated
solutions in the Pareto front. In a two objectives problem,
the Maximum Spread corresponds to the Euclidean distance
between the two farther solutions.

MS =

√√√⎷ M∑
m=1

(maxni=1f
i
m − minni=1f

i
m)2, (8)

where n is number of solutions in the Pareto front and M
is the number of objectives in a given problem. One should
note that higher values indicate better performance.

5.2.4 Coverage

The two set coverage metric (C) proposed by Zitzler et.
al [11] [12] [9] maps the ordered pair (A, B) to the inter-
val [0,1] using the following equation:

C(A,B) =
∣ {b ∈ B; ∃a ∈ A : a ર b} ∣

∣B∣
(9)

The value C(A,B) = 1 means that all solutions in B
are weakly dominated byA. On the other hand,C(A,B) =
0 means that none of the solutions in B are weakly domi-
nated by A.

One should note that both C(A,B) and C(B,A) have
to be evaluated, since C(A,B) is not necessarily equal to
1 − C(B,A).
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If 0 < C(A,B) < 1 and 0 < C(B,A) < 1, then
neither A weakly dominates B nor B weakly dominates A.
Thus, the sets A and B are incomparable, it means that A is
not worse than B and vice-versa.

5.3 Parameter Settings

Each algorithm has its own set of parameters.
In the MOPSO, the mutation rate is 0.5, the number of

divisions for the adaptive grid is 30 and inertia factor lin-
early decreases from 0.4 to 0.0 [3].

In the MOPSO-CDLS, sigma is equal to 0.2 in the local
search operator and inertia factor linearly decreases from
0.9 to 0.4 [8].

In the m-DNPSO, the most simple objective function
was assigned to f1 and the most complex to f2. m = 10
and the inertia factor is randomly generated for each itera-
tion in the interval [0.5,1.0] [4].

In the CSS-MOPSO, the standard deviation for the Gaus-
sian mutation is 0.01 and inertia factor linearly decreases
from 0.9 to 0.4 [1].

MOPSO-CDR used a mutation rate of 0.5. Since our
proposal is based on MOPSO-CDLS, one could expect the
same inertia factor scheme. However, we observed that the
scheme linearly decreasing the inertia factor from 0.4 to 0.0
performed better.

In all the cases, we used 20 particles, a maximum of 200
solutions in the external archive. 200,000 fitness evalua-
tion were executed in each trial. We used the cognitive and
social acceleration constants equal to 1.49445, when it is
applied. Each situation was evaluated 30 times. The results
are presented in terms of mean value and standard deviation.

6 Results

Tables I to V show the simulation results for all the algo-
rithms considering the four performance metrics.

From tables 1 and 2, one can note that MOPSO-CDR
and CSS-MOPSO outperformed m-DNPSO, MOPSO and
MOPSO-CDLS in terms of Hypervolume, Spacing and
Coverage for ZDT1 and ZDT2 problems, respectively.
m-DNPSO achieved slightly better Maximum Spreading.
Comparing the coverage of CSS-MOPSO and MOPSO-
CDR, one can see that most part of nondominated solu-
tions of MOPSO-CDR dominates the nondominated solu-
tions of CSS-MOPSO, but none of the MOPSO-CDR non-
dominated are dominated by CSS-MOPSO nondominated.

Table 3 presents the simulation results for ZDT3 prob-
lem. One can note that MOPSO-CDR outperformed the
other algorithms in terms of Hypervolume, Spacing and
Coverage. m-DNPSO achieved slightly better Maximum
Spreading.

Table 1. Mean value and standard deviation -
ZDT 1 problem.

Alg. Hyper Spacing Max. Cover. Cover.
Volume Spread CDR,* *,CDR

MOPSO 0.36 0.0046 1.425 1.0 0.0
(0.002) (5E-4) (0.005) (0.0) (0.0)

m-DNPSO 0.713 0.0457 1.54 1.0 0.0
(0.053) (0.014) (0.065) (0.0) (0.0)

MOPSO 0.39 0.0042 1.44 1.0 0.0
CDLS (0.003) (6E-4) (0.005) (0.0) (0.0)
CSS 0.34 0.0023 1.42 0.99 0.0

MOPSO (0.002) (1E-4) (0.002) (0.003) (0.0)
MOPSO 0.33 0.0033 1.41 - -

CDR (3E-5) (2E-4) (0.0) - -

Table 2. Mean value and standard deviation -
ZDT 2 problem.

Alg. Hyper Spacing Max. Cover. Cover.
Volume Spread CDR,* *,CDR

MOPSO 0.69 0.006 1.396 1.0 0.0
(0.001) (0.001) (0.015) (0.0) (0.0)

m-DNPSO 0.94 0.054 1.29 1.0 0.0
(0.06) (0.017) (0.037) (0.0) (0.0)

MOPSO 0.716 0.006 1.39 1.0 0.0
CDLS (0.0035) (0.001) (0.004) (0.0) (0.0)
CSS 0.674 0.0035 1.41 0.978 0.0

MOPSO (0.001) (7E-4) (8E-4) (0.021) (0.0)
MOPSO 0.66 0.0032 1.41 - -

CDR (3E-5) (1E-4) (0.0) - -

Table 3. Mean value and standard deviation -
ZDT 3 problem.

Alg. Hyper Spacing Max. Cover. Cover.
Volume Spread CDR,* *,CDR

MOPSO 0.950 0.005 1.976 1.0 0.0
(0.004) (4E-4) (0.008) (0.0) (0.0)

m-DNPSO 1.296 0.045 2.068 1.0 0.0
((0.088) (0.016) (0.146) (0.0) (0.0)

MOPSO 1.006 0.006 1.988 1.0 0.0
CDLS (0.009) (9E-4) (0.015) (0.0) (0.0)
CSS 0.953 0.003 1.983 0.999 0.0

MOPSO (0.008) (7E-4) (0.006) (8E-4) (0.0)
MOPSO 0.920 0.003 1.967 - -

CDR (1E-4) (2E-4) (2E-5) - -

Table 4 presents the simulation results for ZDT4 prob-
lem. MOPSO-CDR outperformed the other algorithms
in terms of Hypervolume and Spacing. CSS-MOPSO
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achieved a better Maximum Spreading. From the Coverage
results, one can conclude that MOPSO-CDR and MOPSO
achieved the best sets of nondominated solutions. However,
the MOPSO-CDR nondominated solutions are slightly bet-
ter.

Table 4. Mean value and standard deviation -
ZDT 4 problem.

Alg. Hyper Spacing Max. Cover. Cover.
Volume Spread CDR,* *,CDR

MOPSO 0.631 0.006 1.54 0.51 0.4
(0.526) (0.0014) (0.18) (0.429) (0.49)

m-DNPSO 2.157 0.04 1.94 0.97 0.03
(0.935) (0.037) (0.29) (0.18) (0.18)

MOPSO 4.82 0.005 2.70 1.0 0.0
CDLS (2.174) (9E-4) (0.46) (0.0) (0.0)
CSS 5.38 0.005 2.80 1.0 0.0

MOPSO (2.54) (0.0012) (0.525) (0.0) (0.0)
MOPSO 0.57 0.003 1.52 - -

CDR (0.26) (3E-4) (0.109) - -

Table 5 presents the simulation results for ZDT6 prob-
lem. MOPSO-CDR outperformed the other algorithms in
terms of Spacing. CSS-MOPSO achieved a better Maxi-
mum Spreading. MOPSO and m-DNPSO achieved the best
hypervolumes. From the Coverage results, one can con-
clude that MOPSO-CDR results are better when compared
to the other algorithms.

Table 5. Mean value and standard deviation -
ZDT 6 problem.

Alg. Hyper Spacing Max. Cover. Cover.
Volume Spread CDR,* *,CDR

MOPSO 1.261 0.129 3.180 0.432 0.072
(0.386) (0.122) (1.400) (0.294) (0.073)

m-DNPSO 1.279 0.126 3.203 0.731 0.065
(0.506) (0.108) (1.732) (0.153) (0.064)

MOPSO 1.717 0.186 4.632 0.741 0.102
CDLS (0.519) (0.145) (1.816) (0.150) (0.086)
CSS 2.051 0.234 5.571 0.121 0.013

MOPSO (0.697) (0.153) (2.046) (0.053) (0.049)
MOPSO 1.670 0.088 4.636 - -

CDR (0.300) (0.056) (1.053) - -

7 Conclusion

This paper presented a multi-objective PSO. The rules
used to select the social leader and cognitive leader are
based on the crowding distance and roulette wheel. We de-
veloped a novel strategy to determine the cognitive leader

based on a comparison using the external archive. Accord-
ing to the results, our proposal can generate better nondomi-
nated solutions than the other algorithms. One advantage of
our proposal is the use of few parameters. We believe that
the MOPSO-CDR may perform even better than the other
algorithms in problems with more than two objectives.
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