
Combining Uncertainty Sampling Methods for Active
Meta-Learning

Ricardo B. C. Prudêncio and Teresa B. Ludermir

Abstract— Meta-Learning has been applied to acquire useful
knowledge to predict learning performance. Each training
example in Meta-Learning (i.e. each meta-example) is related to
a learning problem and stores features of the problem plus the
performance obtained by a set of candidate algorithms when
evaluated on the problem. Based on a set of such meta-examples,
a meta-learner will be used to predict algorithm performance
for new problems. The generation of a set of meta-examples
can be expensive, since for each problem it is necessary to
perform an empirical evaluation of the candidate algorithms.
In a previous work, we proposed the Active Meta-Learning, in
which Active Learning was used to reduce the set of meta-
examples by selecting only the most relevant problems for
meta-example generation. In the current work, we proposed
the combination of different Uncertainty Sampling methods for
Active Meta-Learning, considering that each individual method
will provide useful information that can be combined in order
to have a better assessment of problem relevance for meta-
example generation. In our experiments, we observed a gain
in Meta-Learning performance when the proposed method was
compared to the individual active methods being combined.

I. INTRODUCTION

Meta-Learning is a framework developed in supervised
Machine Learning with the aim of relating features of
the learning problems to the performance of the learning
algorithms [1]. The knowledge in Meta-Learning is acquired
from a set of meta-examples, in which each meta-example
stores the experience obtained from the application of a set
of candidate algorithms in a particular problem. The Meta-
Learning process can automatically capture the expertise
gained on different problems, which will be used to predict
learning performance and support algorithm selection.

In the Meta-Learning framework, each meta-example
stores: (1) the features used to describe a problem; and (2) in-
formation about the performance obtained by the algorithms
in the problem. By receiving a set of such meta-examples,
another learning algorithm (the meta-learner) is applied to
acquire knowledge relating the performance of the candidate
algorithms and the descriptive features of the problems.

Generating a good set of training examples for Meta-
Learning may be a costly process, depending on the context.
In fact, in order to produce a single meta-example, it is
necessary to perform an empirical evaluation (e.g. cross-
validation) of the candidate algorithms on a problem. Hence,
the cost of generating a whole set of meta-examples may be
high, depending, for instance, on the number and complexity

Ricardo B. C. Prudêncio, Teresa B. Ludermir - Center of Informatics,
Federal University of Pernambuco, 50732-970, Recife (PE), Brazil; email:
{rbcp, tbl}@cin.ufpe.br.

of the candidate algorithms, the methodology of empirical
evaluation and the amount of available problems.

In a previous work [2], we proposed the Active Meta-
Learning in which Active Learning techniques [3] were used
to support the generation of meta-examples. Active Learning
is a paradigm of Machine Learning which aims to reduce the
number of training examples, at same time maintaining (or
even improving) the performance of the learning algorithm.
Active Learning is ideal for learning domains in which the
acquisition of labeled examples is an expensive process,
which is the case of Meta-Learning.

In [2], we presented the first experiments performed to
evaluate the viability of Active Meta-Learning. In that work,
different active methods based on Uncertainty Sampling were
used to select meta-examples for an instance-based meta-
learner. Uncertainty Sampling is a well established Active
Learning approach, and it has been widely used in a variety
of domains [4]. The experiments performed in [2] showed
a significant gain in Meta-Learning performance when the
Uncertainty Sampling methods were used. However, in these
experiments, the performance of the evaluated active methods
varied a lot during the selection of meta-examples. Each
method presented a distinct behavior depending on the num-
ber of meta-examples generated at each moment. Based on
these results, we envisioned whether the combination of the
active methods would eventually produce better results.

Considering the above motivation, in the current work
we extend our previous research by combining different
Uncertainty Sampling methods for Active Meta-Learning.
In our proposal, each method being combined is initially
used to generate a ranking for the problems avaliable to
generate meta-examples. The ranks assigned by the different
methods are then averaged in order to provide a final score of
relevance for each problem. Finally, the problems with better
average ranks are selected to generate new meta-examples.

The combining procedure was evaluated in a case study
which consisted of predicting the performance of Multi-
Layer Perceptron (MLP) networks [5] for regression prob-
lems. In the performed experiments, the proposed solution
was used to combine the same active methods evaluated
in [2]. The obtained results revealed a gain in the Meta-
Learning performance when the combining procedure was
used to generate meta-examples.

Section II brings a brief presentation of Meta-Learning,
followed by section III which presents the Active Meta-
Learning proposal. Section IV describes the developed work,
followed by section V which presents the experiments and
results. Finally, section VI concludes the paper.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.160

220

II. META-LEARNING

Meta-Learning predicts the performance of learning al-
gorithms based on features of the learning problems [1].
It acquires knowledge from a set of meta-examples, which
store the experience obtained from applying the algorithms
to different problems in the past. According to [6], Meta-
Learning can be defined by considering four aspects:

• the problem space, P , representing the set of instances
of a given problem class (usually classification and
regression problems);

• the meta-feature space, F , that contains characteristics
used to describe the problems (e.g., number of training
examples, correlations between attributes, ...);

• the algorithm space, A, that is a set of one or more
candidate algorithms to solve the problems in P ;

• a performance information, Y , that characterizes the
performance of an algorithm on a problem (e.g., classi-
fication accuracy estimated by cross-validation).

In this framework, Meta-Learning receives as input a set
of meta-examples, in which each meta-example is derived
from the empirical evaluation of the algorithms in A on a
given problem in P . More specifically, each meta-example
stores: (1) the values of the meta-features F extracted from
a problem; and (2) the performance information Y estimated
for the problem. Hence, the meta-learner is another learning
technique that relates a set of predictor attributes to the
performance information.

Different Meta-Learning approaches have been proposed
in the literature. In a strict approach (e.g., [7]), each meta-
example stores as performance information a class attribute
associated to the candidate algorithm which obtained the
highest accuracy in the learning problem. In this formulation,
the meta-learner just becomes a classifier in which the meta-
features correspond to predictor attributes for the class label
associated to the best candidate algorithm.

Other approaches have been proposed in order to add
new functionalities in the Meta-Learning process. The Meta-
Regression approach [8], for instance, tries to directly predict
the accuracy (or alternatively the error) of the learning algo-
rithms instead of simply predicting the class that corresponds
to the best algorithm. In [9], [10], the authors proposed
different Meta-Learning approaches to generate rankings of
algorithms. More detailed reviews of these techniques can be
found in recent textbooks [1], [11].

III. ACTIVE META-LEARNING

As seen in section 2, in order to generate a meta-example
from a given problem, it is necessary to perform an empirical
evaluation of the candidate algorithms on the problem. The
empirical evaluation is performed in order to collect the
performance information of the algorithms, and hence, to
define the target attribute in the Meta-Learning process (e.g.
the class corresponding to the best algorithm).

Although the proposal of Meta-Learning is to perform
the empirical evaluation of the algorithms only in a limited

Input

Problem

� FE �

Meta-

Attributes
ML

�
�

�
�
��

Current

Knowledge

�

DB of
Meta-

Examples

Meta-

Examples

� Performance

Information

AL

New Meta-

Example�

�
Problems

DB of

Problems

Fig. 1. Active Meta-Learning Architecture.

number of problems, the cost of generating a set of meta-
examples may be high depending on a number of aspects,
including the methodology of empirical evaluation and the
number and complexity of the candidate algorithms. In
this context, the use of Active Learning may improve the
Meta-Learning process by reducing the number of required
meta-examples, and consequently the number of empirical
evaluations on the algorithms.

Fig. 1 presents the architecture of system following our
proposal, which has three phases. In the meta-example gen-
eration, the Active Learning (AL) module selects from a base
of problems, those ones considered the most relevant for the
Meta-Learning task. The selection of problems is performed
based on a pre-defined criteria implemented in the module,
which takes into account the features of the problems and the
current knowledge of the Meta-Learner (ML). The candidate
algorithms are then empirically evaluated on the selected
problems, in order to collect the performance information
related to the algorithms. Each generated meta-example
(composed by meta-features and performance information)
is then stored in an appropriate database.

In the training phase, the Meta-Learner acquires knowl-
edge from the database of meta-examples generated by the
AL module. This knowledge associates meta-features to
the performance of the candidate algorithms. The acquired
knowledge may be refined as more meta-examples are pro-
vided by the AL module. In the use phase, given a new
input problem, the Feature Extractor (FE) module extracts
the values of the meta-features. According to these values,
the ML module predicts the performance information of
the algorithms. For that, it uses the knowledge previously
acquired as a result of the training phase.

IV. DEVELOPED WORK

In [2], we presented the initial experiments performed to
evaluate the viability of the proposed solution. In this work,
two different Uncertainty Sampling methods were evaluated
in an implemented prototype. Experiments performed in case
studies revealed that no active method was steadily better

221

than the other. In the current work, we proposed to combine
different active methods, aiming to have a better assess-
ment of the relevance of each learning problem available
in the generation of meta-examples. Combining different
techniques is a very common approach in Machine Learning,
and it is motivated by both theoretical and empirical results
[12]. In this work, we deployed a combining procedure in a
problem which was not investigated yet.

In order to evaluate the viability of our proposal, we
implemented a prototype which was applied in a case study.
In this prototype, the k-Nearest Neighbors (k-NN) algorithm
was used to predict the performance of MLPs for regression
problems. Two different Uncertainty Sampling methods were
used in isolation and also being combined by the proposed
solution. In the next sections, we provide more details of the
implemented prototype.

A. Meta-Learner

The Meta-Learner in the prototype corresponds to a con-
ventional classifier, applicable to tasks in which the perfor-
mance information is formulated as a class attribute (e.g. the
class associated to the best algorithm or the class related to
patterns of performance). In the implemented prototype, we
used the k-NN algorithm which has some advantages when
applied to Meta-Learning [10]. For instance, when a new
meta-example becomes available, it can be easily integrated
without the need to initiate re-learning [10]. In this section,
we provide a description of the meta-learner based on k-NN.

Let E = {e1, . . . , en} be the set of n problems used to
generate a set of n meta-examples ME = {me1, . . . , men}.
Each meta-example is related to a problem and stores the
values of p features X1, . . . , Xp (implemented in the FE
module) for the problem and the value of a class attribute
C, which is the performance information

Let C = {c1, . . . , cL} be the domain of the class attribute
C, which has L possible class labels. In this way, each meta-
example mei ∈ ME is represented as the pair (xi, C(ei))
storing: (1) the description xi of the problem ei, where
xi = (x1

i , . . . , x
p
i) and xj

i = Xj(ei); and (2) the class label
associated to ei, i.e. C(ei) = cl, where cl ∈ C.

Given a new input problem described by the vector
x = (x1, . . . , xp), the k-NN meta-learner retrieves the k
most similar meta-examples from ME, according to the
distance between meta-attributes. The distance function (dist)
implemented in the prototype was the unweighted L1-Norm,
defined as:

dist(x, xi) =
p∑

j=1

|xj − xj
i |

maxi(x
j
i) − mini(x

j
i)

(1)

The prediction of the class label for the new problem is
performed according to the number of occurrences (votes)
of each cl ∈ C in the class labels associated to the retrieved
meta-examples.

B. Active Learning

As seen, the Meta-Learner acquires knowledge from a
set of labeled meta-examples associated to a set of learning

problems. The Active Learning module, in turn, receives a
set of unlabeled meta-examples, associated to the problems
in which the candidate algorithms were not yet evaluated and,
hence, the class labels are not known. Therefore, the main
objective of this module is to incrementally select unlabeled
meta-examples to be labeled.

In our prototype, we evaluated three different methods for
uncertainty sampling. The first two methods described in
this section deployed different criteria for assigning degrees
of classification uncertainty to the unlabeled meta-examples.
The third method deploys a combining procedure, aiming to
explore the eventual advantages of the first two methods.

1) Uncertainty Method A: The uncertainty of k-NN was
defined in [13] as the ratio of: (1) the distance between the
unlabeled example and its nearest labeled neighbor; and (2)
the sum of the distances between the unlabeled example and
its nearest labeled neighbors of different classes. A high
value of uncertainty indicates that the unlabeled example
has nearest neighbors with similar distances but conflicting
labeling. Hence, once the unlabeled example is labeled, it is
expected that the uncertainty in its neighborhood should be
reduced.

In our context, let E be the set of problems associated to
the labeled meta-examples, and let Ẽ be the set of problems
used to generate unlabeled meta-examples. Let El be the
subset of labeled problems associated to the class label cl,
i.e. El = {ei ∈ E|C(ei) = cl}. Given E, the classification
uncertainty of k-NN for each ẽ ∈ Ẽ is defined as:

S(ẽ|E) =
minei∈E dist(x̃, xi)∑L

l=1 minei∈El
dist(x̃, xi)

(2)

In the above equation, x̃ is the description of problem ẽ.
The AL module then selects, for generating a new labeled
meta-example, the problem ẽ∗ ∈ Ẽ with highest uncertainty:

ẽ∗ = argmaxẽ∈ẼS(ẽ|E) (3)

Finally, the selected problem is labeled (i.e. the class value
C(ẽ∗) is defined), through the empirical evaluation of the
candidate algorithms using the avaliable data of the problem.

2) Uncertainty Method B: In the second active method,
we adopted the concept of entropy to define classification
uncertainty. Assume that the k-NN can predict for each given
example a probability distribution over the possible class
values. Formally, the probability distribution for an unlabeled
problem ẽ can be represented as:

pC(ẽ|E) = (p(C(ẽ) = c1|E), . . . , p(C(ẽ) = cL|E)) (4)

According to [14], the entropy of the probability distribu-
tion reflects the uncertainty of the classifier in the predicted
class value. The entropy of the probability distribution is
computed as:

Ent(ẽ|E) = −
L∑

l=1

p(C(ẽ) = cl|E) ∗ log2 p(C(ẽ) = cl|E)

(5)

222

If the probability distribution is highly spread, the value
of entropy will be high, which indicates that the classifier
is not certain in its prediction. On the other hand, if the
distribution is highly focused on a single class label, the
entropy is low, indicating a low degree of uncertainty in
predicted class value.

As in the previous section, in this method, the AL module
selects the problem ẽ∗ ∈ Ẽ with highest uncertainty defined
by the entropy measure:

ẽ∗ = argmaxẽ∈ẼEnt(ẽ|E) (6)

In our work, the class probability distribution for a given
example is estimated by using the number of votes that each
class label received among the retrieved meta-examples.

3) Combining Method: In this section, we described a
method to combine the uncertainty criteria described in the
previous subsections. The combining method was adapted
from a previous work which used the concept of average
ranks originally applied to active construction of user profiles
in recommending systems [15].

In the combination, each uncertainty method being com-
bined is initially used to generate a ranking of unlabeled
meta-examples. Following, the rankings provided by the dif-
ferent methods are averaged and the unlabeled meta-example
with the best average rank is selected. The combining method
can be formally described as follows.

Let rA(ẽ) and rB(ẽ) be the ranks of the unlabeled
meta-example ẽ, by respectively considering the uncertainty
methods A and B (i.e., by using the measures S(ẽ|E) and
Ent(ẽ|E) to sort the meta-examples in a decreasing order
and to assign the respective ranks). Hence, the lower is the
rank of a meta-example, the higher is its uncertainty. The
two ranks can be combined using the equation:

r(ẽ) = wA ∗ rA(ẽ) + wB ∗ rB(ẽ) (7)

where wA, wB ∈ [0; 1] and wA+wB = 1. In this equation,
r(ẽ) is the average rank of ẽ, weighted by the numerical
values wA and wB . Finally, the unlabeled meta-example ẽ∗ ∈
Ẽ with lowest average rank is selected:

ẽ∗ = argminẽ∈Ẽr(ẽ|E) (8)

We highlight that the combining method described above
can be easily generalized to combine more than two methods.
Also, different values can be assigned to wA and wB in order
to control the importance of each method being combined.
In our work, for simplicity, we define wA = wB = 0.5,
although different configurations of weights can be evaluated
in the future.

V. CASE STUDY

In the case study, the prototype was evaluated in a meta-
learning task which consisted in predicting the performance
of Multi-Layer Perceptron (MLP) networks for regression
problems. The set of meta-examples was generated from
the application of MLP to 50 different regression problems,

available in the WEKA project1. Each meta-example was
related to a regression problem and stored: (1) the values
of p = 10 meta-attributes describing the problem; and (2) a
class attribute C which categorized the performance obtained
by the MLP network on the problem.

The first step to generate a meta-example from a problem
is to extract its meta-features. In the case study, a total
number of p = 10 meta-features adopted in [2] was used
to describe the datasets of regression problems:

1) X1 - Log of the number of training examples;
2) X2 - Log of the ratio between number of training

examples and attributes;
3) X3, X4, X5 and X6 - Minimum, maximum, mean and

standard deviation of the absolute values of correlation
between predictor attributes and the target attribute;

4) X7, X8, X9 and X10 - Minimum, maximum, mean and
standard deviation of the absolute values of correlation
between pairs of predictor attributes.

The meta-feature X1 is an indicator of the amount of
data available for training, and X2, in turn, indicates the
dimensionality of the dataset. The meta-features X3, X4,
X5 and X6 indicate the amount of relevant information
available to predict the target attribute. The meta-features X7,
X8, X9 and X10, in turn, indicate the amount of redundant
information in the dataset.

The second step to generate a meta-example is to estimate
the performance information on the problem being tackled.
In our case study, this step consists of evaluating the per-
formance of one-hidden layer MLPs trained by the standard
BackPropagation (BP) algorithm 2. In order to define the
performance information of each problem, the following
methodology of evaluation was applied.

The problem’s dataset was divided in the training, val-
idation and test sets, in the proportion of 50%, 25% and
25%. As usual, the training set was used to adjust the MLP’s
weights, the validation set was used to estimate the MLP
performance during training, and the test set was used to
evaluate the performance of the trained MLP. The optimal
number of hidden nodes was defined by testing the values 1,
2, 4, 8, 16 and 32. For each number of nodes, the MLP was
trained 10 times with random initial weights. In the training
process, we adopted benchmarking rules [16]: early stopping
was used to avoid overfitting with the GL5 stopping criterion
and a maximum number of 1000 training epochs (see [16]
for details of these rules). The optimal number of nodes was
chosen as the value in which the MLP obtained the lowest
average NMSE (Normalized Mean Squared Error) on the
validation set over the 10 runs. The NMSE is defined as:

NMSE =
∑nv

i=1(ti − oi)2∑nv

i=1(ti − t)2
(9)

1These datasets are specifically the sets provided in the files numeric and
regression available to download in http://www.cs.waikato.ac.nz/ml/weka/

2The BP algorithm was implemented by using the NNET Matlab toolbox.
Learning rates were defined by default.

223

In the equation, nv is the number of examples in the
validation set, ti and oi are respectively the true and the
predicted value of the target attribute for example i, and t is
the average of the target attribute. The NMSE values have
no scale and are comparable across different datasets, which
is adequate to Meta-Learning [17]. Values of NMSE lower
than 1 indicate that the MLP provided better predictions than
the mean value at least.

Finally, the performance information C related to a prob-
lem was defined in our prototype as a binary attribute
assigned to 1 if the observed NMSE is lower than 0.5 and
assigned to 0 otherwise. Hence, the meta-examples with class
label 1 were those problems in which the MLP obtained the
best performance patterns.

A. Experiments and Results

The experiments performed in our work were motivated
by different aims. First, we intended to evaluate whether
the active methods considered in our work were useful to
overcome a passive (random) procedure for selecting meta-
examples. Also, we evaluated the performance of the pro-
posed combining method compared to the individual methods
being combined.

1) Experiments: The prototype was evaluated for different
configurations of the k-NN meta-learner (with k = 3, 5,
7, 9 and 11 nearest neighbors). For each configuration,
a leave-one-out experiment was performed to evaluate the
performance of the meta-learner, also varying the number
of meta-examples provided by the Active Learning module.
This experiment is described just below.

At each step of leave-one-out, one problem is left out
for testing the ML module, and the remaining 49 problems
are considered as candidates to generate meta-examples. The
AL module progressively includes one meta-example in the
training set of the ML module, up to the total number of 49
training meta-examples. At each included meta-example, the
ML module is judged on the test problem left out, receiving
either 1 or 0 for failure or success. Hence, a curve with 49
binary judgments is produced for each test problem. Finally,
the curve of error rates obtained by ML can be computed by
averaging the curves of judgments over the 50 steps of the
leave-one-out experiment.

The above procedure was applied for each uncertainty
sampling method considered in the AL module (see section
IV-B). As a basis of comparison, the same above experiment
was applied to each configuration of k-NN, but using in the
AL module a Random Sampling method for selecting unla-
beled problems. According to [13], despite its simplicity, the
random method has the advantage of performing a uniform
exploration of the example space. Finally, we highlight that
the experiments were performed in 30 different runs for each
configuration of the k-NN meta-learner.

Fig. 2, 3 and 4 show the curve of error rate of each
uncertainty method compared to the curve obtained by using
Random Sampling. In the most part of the curves, the
error rates achieved by using the three uncertainty methods
were lower than the rates observed by using the random

procedure. The Uncertainty Method A, B and the Combining
Method achieved lower error rates compared to the Random
Sampling in 39, 32 and 37 points in the curves respectively
(about 79.6%, 65.3% and 75.5% of the 49 points). The good
results of the uncertainty methods were also observed to be
statistically significant. A t-test (95% of confidence) applied
to the difference of error rates indicated that the Uncertainty
Method A obtaining a gain in performance compared to the
Random Method in 31 points in the curve of error rates
(about 63.3% of the 49 points). The Uncertainty Method
B in turn obtained a statistical gain in performance in 22
points in the curve of error rates (about 44.9% of the points).
Finally, the Combining method was statistically better than
the Random Method in 35 points (about 71.4% of the points),
which was the best result among the uncertainty methods.

The Uncertainty Method A and B yielded different perfor-
mance patterns considering different segments of the error
curves (see Fig. 5). In fact, in the first half of the curves
the performance of the entropy-based method was steadily
better than the Uncertainty Method A. However, there is
a turning point in the second half of the curves of error
rates, in such a way that the Uncertainty Method A became
better than method B. The combination of the two methods,
in turn, yielded a more consistent performance along the
curve. By ranking the three methods in each point of the
curves (i.e., rank = 1 for the best method, rank = 2 for
the second method and rank = 3 for the worst method), we
observed an average rank over the 49 points equal to 2.0
and 2.1 for the Uncertainty Methods A and B, respectively.
The average rank of the Combining Method was 1.8 in
turn, which indicates that in average the Combining method
obtained better positions compared to both the Uncertainty
Methods A and B.

VI. CONCLUSION

In this paper, we presented the proposal of combining
different Uncertainty Sampling techniques for Active Meta-
Learning using the concept of average ranks. We can point
out contributions of our work to both fields of Meta-Learning
and Active Learning. We believe that the current research will
result in new developments in the future.

Experiments performed on a case study revealed that
the three active methods were significantly better than a
random passive procedure for generating meta-examples. The
combining method obtained the best results if we consider
the statistical significance of the results in comparison to the
random method. Also, the combining method obtained the
best average position along the curve of error rates, compared
to the individual methods being combined.

In future work, we intend to investigate the combination of
a higher number of active methods. In the current work, we
combined the active methods using an equal weight to each
method, thus assuming that each method is equally important
in the combination. In future work, we intend to propose
procedures to adapt the combining weights in order to assign
different contributions for each method. Finally, experiments
will be performed in new case studies.

224

0 5 10 15 20 25 30 35 40 45 50
15

20

25

30

35

40

45

50

No. of Meta−Examples in the Traning Set

A
ve

ra
ge

 E
rr

or
 (

%
)

Uncertainty A
Random

Fig. 2. Curve of error rates: Uncertainty method A vs. Random method

0 5 10 15 20 25 30 35 40 45 50
15

20

25

30

35

40

45

50

No. of Meta−Examples in the Training Set

A
ve

ra
ge

 E
rr

or
 (

%
)

Uncertainty B
Random

Fig. 3. Curve of error rates: Uncertainty method B vs. Random method

Acknowledgments: The authors would like to thank CNPq
(Brazilian Agency) for its financial support.

REFERENCES

[1] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta, Meta-
Learning: Applications to Data Mining. Springer, 2008.

[2] R. B. C. Prudêncio and T. B. Ludermir, “Selective generation of
training examples in active meta-learning,” International Journal of
Hybrid Intelligent Systems, vol. 5, pp. 59–70, 2008.

[3] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with
active learning,” Machine Learning, vol. 15, pp. 201–221, 1994.

[4] I. Muslea, S. Minton, and C. Knobrock, “Active learning with multiple
views,” Journal of Artif. Intel. Research, vol. 27, pp. 203–233, 2006.

[5] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations
by backpropagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[6] K. Smith-Miles, “Cross disciplinary perspectives on meta-learning for
algorithm selection,” ACM Computing Surveys, 2008.

[7] R. Leite and P. Brazdil, “Predicting relative performance of classifiers
from samples,” in 22nd Inter. Conf. on Machine Learning, 2005.

[8] H. Bensusan and K. Alexandros, “Estimating the predictive accuracy
of a classifier,” in 12th European Conf. on Machine Learning, 2001,
pp. 25–36.

0 5 10 15 20 25 30 35 40 45 50
15

20

25

30

35

40

45

50

No. of Meta−Examples in the Training Set

A
ve

ra
ge

 E
rr

or
 (

%
)

Combining
Random

Fig. 4. Curve of error rates: Combining method vs. Random method.

0 10 20 30 40 50

20

30

40

50

No. of Meta−Examples in the Training Set

A
ve

ra
ge

 E
rr

or
 (

%
)

Uncertainty A
Uncertainty B
Combining

Fig. 5. Curve of error rates for the three uncertainty methods.

[9] A. Kalousis, J. Gama, and M. Hilario, “On data and algorithms -
understanding inductive performance,” Machine Learning, vol. 54,
no. 3, pp. 275–312, 2004.

[10] P. Brazdil, C. Soares, and J. da Costa, “Ranking learning algorithms:
Using IBL and meta-learning on accuracy and time results,” Machine
Learning, vol. 50, no. 3, pp. 251–277, 2003.

[11] C. Koepf, in Meta-Learning: Strategies, Implementations, and Evalu-
ations for Algorithm Selection, 2006.

[12] L. Kuncheva, Combining Pattern Classifiers - Methods and Algo-
rithms. John Wiley and Sons, New Jersey, 2004.

[13] M. Lindenbaum, S. Markovitch, and D. Rusakov, “Selective sampling
for nearest neighbor classifiers,” Machine Learning, vol. 54, pp. 125–
152, 2004.

[14] L. Todorovski and S. Dzeroski, “Combining classifiers with meta
decision trees,” Machine Learning, vol. 50, no. 3, pp. 223–249, 2003.

[15] I. Teixeira, “Active cp: A method for speeding up user preferences
acquisition in collaborative filtering systems,” in 16th Brazilian Sym-
posium on Artificial Intelligence, 2002, pp. 237–247.

[16] L. Prechelt, “A set of neural network benckmark problems and
benchmarking rules,” Universitä Karlsruhe, Tech. Report 21/94, 1994.

[17] C. Soares, P. Brazdil, and P. Kuba, “A meta-learning approach to select
the kernel width in support vector regression,” Machine Learning,
vol. 54, no. 3, pp. 195–209, 2004.

225

