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Abstract—This paper describes a multimodal methodology
for evolutionary optimization of neural networks. In this
approach, we use Differential Evolution with parallel subpop-
ulations to simultaneously train a neural network and find
an efficient architecture. The results in three classification
problems have shown that the neural network resulting from
this method has low complexity and high capability of general-
ization when compared with other methods found in literature.
Furthermore, two regularization techniques, weight decay and
weight elimination, are investigated and results are presented.

I. INTRODUCTION

The use of evolutionary-based algorithms to optimize
artificial neural networks (ANNs) has been a popular ap-
proach when addressing the shortcomings of a tedious
process of trial and error while looking for efficient network
architecture and an appropriate training algorithm. In an
empirical setting, the eventual success of an ANN project
greatly depends on professional experience, which guides
the appropriate selection of network architecture, training
algorithm, learning rates, etc. Both training and architecture
design can be considered optimization problems, so the use
of stochastic optimization methods has been found to be a
promising alternative for optimizing ANNs.

Evolutionary approaches for optimizing ANNs can be
classified into two major types [1]: noninvasive and invasive.
The first one refers to approaches where evolutionary selec-
tion is used but some gradient training is required for fitness
evaluation. On the other hand, an invasive approach tries to
optimize weights and architecture in the evolution process.
The latter, which refers to invasive approaches, is better for
the generation of efficient networks, avoiding gradient-based
fitness evaluation, resulting in a more robust search coverage
[1].

Nevertheless, optimization of ANNs weights and architec-
ture by stochastic methods may lead to an efficient ANN in
an extended convergence speed. According to our review of
literature, two typical methodologies which concern simul-
taneous optimization of weights and architectures involve
constructive and pruning methods [2] [3] [1]. Construc-
tive methods tend to build small networks due to their
incremental learning nature while pruning methods need to

know a priori how large the original network should be
[4]. However, some constructive approaches may need to re-
initialize the entire population when the architecture grows
up, discarding valuable search information from the previous
search, and demanding more time to converge.

This paper presents a methodology for the simultaneous
optimization of feedforward network weights and selection
of an appropriate architecture, in a constructive way, using
differential evolution. The main contribution of the proposed
methodology focuses on developing a systematic procedure
for optimizing weights, attempting to maintain the diversity
while simultaneously evaluating and exchanging different
architectures in multiple populations. The implicit multi-
modal measure, called island model [5], is used to grow
the network architecture when necessary while the operators
of differential evolution optimize weights. As an attempt
to improve the generalization performance, 2 techniques of
regularization are investigated (weight decay and weight
elimination), and results are compared.

In experiments to validate the method, simulations in
three well-known classification problems are performed: (1)
Breast Cancer data set; (2) Diabetes diagnosis in Pima
Indians and (3) Thyroid dysfunction data set.

The next section describes the differential evolution train-
ing algorithm. The proposed methodology is present in
Section 3. The experiments performed and discussions are
presented in Section 4. Section 5 contains the final remarks.

II. DIFFERENTIAL EVOLUTION TRAINING ALGORITHM

Differential Evolution (DE) is a population-based and
direct search method proposed by Storn and Price [6] in
1995. It is a heuristic algorithm for global optimization, and
operates with decision variables in real number form. As
such, it can be applied to global searches within the weight
space of a typical feed-forward neural network [7] [8]. In
standard training processes, both the input vector X and the
output vector Y are known, and the synaptic weights in W
are adapted to obtain appropriate functional mappings from
the input X to the output Y . The optimization goal is to
minimize the objective function by optimizing the values of
the network weights.
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Differential evolution resembles the structure of an evolu-
tionary algorithm (EA) and starts with a randomly generated
initial population vector. In this study we used the classical
DE (DE/rand/1/BIN). The following process will be exe-
cuted as long as the termination condition is not fulfilled:
for each individual in the population, an offspring is created
by adding the weighted difference of two randomly selected
vectors to a third randomly selected vector. Through the
computation of the distance between two randomly selected
individuals, DE determines a function gradient in a given
area, instead of in a single point. The main operators of DE
are:

A. Mutation.

Let us assume that xri,G(i = 1, 2, ...Np) are solution
vectors in generation G, where Np is the population size. On
optimization of neural networks, each position of the vector
represents a weight or bias of the neural network. For each
xri,G, a mutant vector is defined by

Vri,G = Xr1,G + F × (Xr2,G −Xr3,G) (1)

where i = 1, 2, , Np and r1, r2, r3, are mutually different,
randomly selected indices. F is the mutation factor, which
provides the amplification to the difference between two
individuals Xr2,G −Xr3,G so as to avoid search stagnation
and it is usually taken in the range of [0, 1].

B. Crossover.

DE utilizes the crossover operation in order to generate
new solutions and also to increase the diversity of the
population. A vector of solutions is randomly selected from
the mutant individuals when a random number is less than
a crossover constant Cr ∈ [0, 1].

Uji,G =
{

Vji,G if randj(0, 1) < Cr ∨ j = k
Xji,G

(2)

j = 1, 2, ..., D, where D is the dimension of problem.
DE’s selection scheme also differs from other evolutionary

algorithms. If the trial vector Uji,G has a better fitness
value than that of its target vector, Uji,G replaces the target
vector in the next generation. Assuming that the objective
function is to be minimized, the vector with the lower
objective function value wins a place in the next generations
population.

III. OPTIMIZATION METHODOLOGY

Recently, several studies investigated the use of DE in the
training of neural networks [7] [8]. One of the most detailed
is the study of Ilonen et al., 2003 [7], which concludes
that the results of training ANNs with DE did not reveal
distinct advantage in time or quality of solution compared
to methods of training by gradient, but convergence to a
global minimum can be expected. However, as the author

concludes, it is clear that the use of DE can be successfully
applied in different cases:

• When the network is very large;
• When the problem often shows local minimum;
• When there is much noise in the data.

Another valuable information, but seldom explored by [7],
is the influence of DE operators in the training of neural
networks. The weights of RNA are very sensitive to sudden
changes, which occur when the amplification parameter F is
very high. Otherwise, lower values cause faster convergence,
but the diversity of the population falls rapidly, undermining
the evolutionary process. To avoid premature convergence, a
multimodal approach can be used to explore different regions
of the search space.

DE, like other EAs, is easily parallelized due to the
fact that each member of the population is individually
evaluated. Moreover, this implicit measure, the so called
island model [5], becomes attractive for high-performance
scientific computing. This acceptance has been facilitated by
two major developments: massive parallel processors and the
widespread use of distributed computing [9]. Furthermore,
in this approach we explore how Differential Evolution can
train ANNs and select an appropriate architecture using
parallel populations.

Figure 1. Representation of the population

A. Representation.

In this paper, all ANNs topologies have a single hidden
layer, containing only connections between adjacent layers.
The ANN topology contains N1 input nodes, N2 hidden
nodes, and N3 output nodes. N1 and N3 are problem-
dependent, according to data preprocessing and to the num-
ber of input features and outputs.

Assume that there exists Np solution vectors in each K
subpopulation, as shown in Fig. 1. The proposed model
specifies, for each subpopulation, a population of ANNs
whose architectures differ from others. The subpopulation
P1 is initially formed by Np neural networks with minimal
architecture, i.e. only 1 neuron in the hidden layer. The
subpopulation P2 will have a population with 2 neurons in
the hidden layer and so on.
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Each solution i is composed by the vector W containing
real numbers which represent the network weights w:

W ≡ (W1,W2). (3)

W1 ≡ (w1, w2, ..., wNmax1,s), wj ∈ �, j = 1, 2, , Nmax1,s.
(4)

W2 ≡ (w1, w2, ..., wNmax2,s), wj ∈ �, j = 1, 2, , Nmax2,s.
(5)

where Nmax1,s = N1 × N2,s and Nmax2,s = N2,s × N3,
and N2,s is the number of neurons in the hidden layer on
the island s.

B. Migration.

Similar to all parallel population-based algorithms, each
subpopulation evolves independently toward a solution. To
promote information sharing, the best individual of each
subpopulation is moved to other subpopulations, according
to a predefined topology. This operation is called "migration"
[9]. After a fixed number of epochs, a number of individuals
are selected from each subpopulation to be exchanged with
neighboring subpopulations.

When using subpopulations with individuals of different
sizes, this process cannot be achieved directly. To address
this problem, we propose the use of unidirectional migration,
changing individuals of each subpopulation to the immedi-
ately subsequent one (with one more neuron), as shown in
Fig. 2. Before migration, selected individuals will receive an
inactive neuron in its architecture, i.e new connections set
to zero:

Wnew = (W1, Z1,W2, Z2). (6)

Z1 ≡ (w1, w2, ..., wN1), wj ∈ {0}, j = 1, 2, ..., N1. (7)

Z2 ≡ (w1, w2, ..., wN3), wj ∈ {0}, j = 1, 2, ..., N3. (8)

Figure 2. Unidirectional migration of S ∈ 1, 2, ..., k subpopulations

In each subpopulation, n individuals are selected. A neu-
ron is added with synaptic connections with zero (Eq: 6) and

then migrates to the immediately subsequent subpopulation
with higher architecture representation. This unusual proce-
dure ensures the growth of the network without losing its
ability to generalize. It is easy to see that the individuals of
the last subpopulation (which has the largest representation
of architecture) do not migrate, and that the subpopulation
P1 (with individuals with small architecture) will be the only
one that does not receive individuals from others.

C. Network growth.

Through the representation of heterogeneous architec-
tures, the evolutionary process can train and measure the
performance of the architecture contained in subpopulations
within range [P1, Pk]. The best fitness of each subpopulation
informs to the evolutionary process an estimate on the
complexity of the network needed for the problem. The
network growth, in addition to representation contained in
individuals of the Pk, is explained as follows.

The evolutionary process can maintain the diversity of
the population by exchanging individuals between subpopu-
lations at intervals of pre-defined epochs. Thus, an estimate
of the necessary architecture size for the convergence of the
neural network is given according to the best individual of
the best subpopulation. However, this pre-set approach limits
the search for architectures in the range [P1, Pk], which may
be insufficient to solve a particular problem.

After the convergence of the evolutionary process accord-
ing to the stopping criterion, we know what are the best
individual of the entire population and the best individual of
each subpopulation. Under the context of this methodology,
if the best individual of the subpopulation P1 (with minimal
network architecture) is the worst when compared to the
best individuals from other subpopulations, probably this
architecture is not good enough to generalize the problem.
Thus, the population P1 is excluded and a new subpopulation
PK+1 is created. Thus, the first subpopulation P1 now has
two neurons in the hidden layer, P2 will have three neurons
and so on.

This process is repeated until the best individual of the
subpopulation P1 is not the worst if compared to the best
individuals of all subpopulations. The pseudo code of this
process is described in Algorithm 1.

D. Stopping criterion.

The stopping criterion is based on the proposal by [1].
To avoid overfitting, at the end of every ten-generation the
stopping criterion is measured on the validation set. If there
is overfitting in 20 consecutive intervals (200 generations)
in each subpopulation, the training stops.

E. Cost Function

The qualitative measure during the optimization process
is given by:

E(T ) = CEP +MSE. (9)
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where T is the training set, MSE is the mean square error
and CEP is the classification error percentage, defined by:

CEP =
100
#T

∑
x∈T

ε(x). (10)

where #T is the number of patterns in the set T and ε(x)
is the correctly classified training pattern.

Additionally, we combined the error measure with two
well-known regularization techniques, in an attempt to im-
prove the generalization. A bias term β is added to the
original cost function E(T )0:

E(T ) = E(T )0 + μβ. (11)

where μ is the parameter for the importance of the bias term
β, defined as follows.

Weight Decay (WD) tries to decrease all weights uni-
formly adding a penalty term on the error function. The
weight decay penalty term (Eq. 12) causes the weights to
converge to smaller absolute values than they otherwise
would. Excessive large weights may lead to the output
function being too rough and can cause excessive variance
of the output.

β =
‖w‖2
ψ

. (12)

where w is the vector of weights. Assuming we are evalu-
ating different architectures simultaneously, we divide this
penalty term to the number of connections of the network
ψ, avoiding superior errors on larger architectures.

On the other hand, Weight Elimination (WE) [10] uses a
cost function to reduce the number of synaptic connections.
It is possible to decay small weights more rapidly than large
weights [11]. According to [12], these small weights result in
a poor generalization, given the high probability of assuming
completely arbitrary values. The weight elimination is given
by:

β =
∑

i∈total

(wi/w0)2

1 + (wi/w0)2
. (13)

where w0 is a pre-defined parameter.

IV. EXPERIMENTS AND RESULTS

In order to validate the hybrid methodology for optimiza-
tion of neural networks, we used 3 well-known classification
problems. Our results are compared with other studies that
used the same methodology of experimentation. In this work,
we also performed the experiments with 2 regularization
techniques, WD and WE. The data sets are: breast cancer
with 699 examples and 2 classes; thyroid with 7200 exam-
ples and 3 classes; diabetes with 768 examples and 2 classes,
both available in [13].

For each experiment, the data sets were randomly par-
titioned with stratification, i.e., maintaining the same pro-
portions of the number of classes for the training (50%),
validation (25%) and test sets (25%). Exceptionally for the

Algorithm 1 Multimodal optimization pseudocode
1: k ← Number of populations, with k > 1
2: n← Initial number of neurons in hidden layer
3: Np ← number of individuals in each subpopulation
4: m← migration step
5: repeat
6: n′ ← n
7: n← n+ 1
8: for s = 1 to k do
9: if Ps+1 not exists then

10: Initialize population Ps with Np individuals with
n′ neurons

11: else
12: Ps ← Ps+1

13: end if
14: n′ ← n′ + 1
15: end for
16: while stopping criterion not reached do
17: Perform a DE step at each population
18: Evaluate all individuals of all subpopulations
19: if epoch is a multiple of m then
20: Perform unidirectional migration
21: end if
22: end while
23: worst ← 1
24: best′ ← fitness of fittest individual of subpopulation

P1

25: for s = 1 to k do
26: bests ← fitness of fittest individual of subpopula-

tion Ps

27: if bests > best′ then
28: worst ← s
29: best′ ← bests
30: end if
31: end for
32: until worst �= 1

cancer data set, the 3 permutations suggested by [13] were
used, in order to achieve similar comparisons to the results
of this author and with the work of [1], using the same
procedure.

The neural network has only one hidden layer and all
neurons have the tangent transfer function. The parameters
used in the experiments were:

• Number of subpopulations: 3;
• Number of individuals on each subpopulation: 30;
• Step for migration: 50 seasons;
• Number of individuals who migrate: 5 best selected;
• F: 0.3 (Equation 1);
• Cr: 0.7 (Equation 2);

Experiments with the cancer datasets were performed 30
times each one. With diabetes and thyroid we performed 30∗
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Table I
MEAN CEP AND THE NUMBER OF HIDDEN NEURONS FOR RESULTS OF THE CANCER DATA SET, USING THE 3 PERMUTATIONS SUGGESTED BY [13].

text L-BP P-BP N-BP MGNN DE Multimodal

Cancer 1 Class.(%) 2.93 1.47 1.38 3.14 1.11
σ 0.18 0.60 0.49 0.01 0.68

Cancer 2
Class.(%) 5.00 4.52 4.77 6.41 4.50
σ 0.61 0.70 0.94 0.01 0.80

Cancer 3 Class.(%) 5.17 3.37 3.70 4.61 3.31
σ 0.00 0.71 0.52 0.01 0.83

10 cross-validation. In all experiments the results refers to
the average classification error percentage (CEP) on the test
set. Statistical t-test were performed to evaluate the results.

Table I shows the results compared with the invasive
technique MGNN proposed by [1] and with 3 types of
architectures investigated by [13]: L-BP (Linear Backpropa-
gation), P-BP (Pivot Backpropagation) , N-BP (No shortcut
Backpropagation). While MGNN is more reliable, with stan-
dard deviation of 0.1 in all the permutations, the proposed
approach achieved significantly lower errors. In the best
result on the proposed methodology, the permutation cancer1
obtained classification error of 1.11%, better result according
t-test with 95% confidence interval. In permutation cancer2
we obtained a mean error of 4.50% and 3.31% in permu-
tation cancer3. Both statistically similar to the best results
found in [13] experiments according to the t-test with 95%
confidence level. In all cancer experiments we achieved
lower errors and smaller networks than [1].

Table II
MEAN CEP AND THE NUMBER OF HIDDEN NEURONS FOR RESULTS OF

DIABETES AND THYROID.

Ludermir et al,
2006 [14]

Multimodal
Methodology

Diabetes
Class.(%) 25.87 24.14
hidden 4.53 3.23

Thyroid Class.(%) 7.32 3.08
hidden 7.05 5.6

The results expressed in Table II refer to results in 2
problems of classification partitioned randomly with strat-
ification. The results are compared with the noninvasive
technique of [14], that combines tabu search, simulated an-
nealing and backpropagation for both training and adjusting
the architecture of an neural network. The proposed method
achieved lower errors in both data sets, with 3.08% error
in the thyroid data set and 24:14% in the diabetes data set.
The resulting architecture was also smaller, reinforcing the
hypothesis that constructive methods tend to result in smaller
networks. The proposed method obtained a solution with an
average of 3.23 neurons in hidden layer on the diabetes data
set and 5.6 neurons on the thyroid data set.

The use of weight elimination (WE) in the proposed

optimization methodology did not present interesting results
in any experiments, as well as weight decay (WD) also fail in
thyroid and diabetes dataset, as shown on table III. Perhaps
better results can be achieved by selecting an appropriate
trade-off between generalization error and complexity of
architecture.

Table III
MEAN (CEP) AND STANDARD DESVIATION (σ) FOR THE

METHODOLOGY PROPOSED WITH AND WITHOUT REGULARIZATION.

DE DE:WD DE:WE

Cancer 1 Class.(%) 1.57 1.11 1.95
σ 0.66 0.68 0.66

Cancer 2 Class.(%) 4.50 4.51 4.85
σ 0.80 0.71 1.02

Cancer 3
Class.(%) 3.63 3.31 3.78
σ 0.98 0.83 0.87

Diabetes Class.(%) 24.14 24.31 24.33
σ 2.37 2.54 2.32

Thyroid Class.(%) 3.08 6.77 6.65
σ 1.76 1.57 1.79

V. FINAL REMARKS

This paper presented a multimodal methodology for op-
timizing neural networks using differential evolution. The
results indicate that the evolutionary optimization of weights
and architecture of neural networks is a viable alternative
considering the limitations of most traditional methods.
However, this approach does not perform exhaustive search,
i.e., does not have to restart the training as the network
grows, losing previous search information. The results indi-
cate that constructive methods tend to get smaller networks
than pruning methods, without loss of generalization quality.

Most of the current structural evolutions are governed by
static rules that are refined to a particular problem but may
be inefficient to another one [1]. The proposed model allows
a parallel search of architectures based on estimation of the
best individuals of each subpopulation while improving the
diversity of the population.

Future investigations should consider the search for any
multilayer architecture. The current model uses only one
hidden layer. Furthermore, we intend to review an efficient
adaptable parameter for WE and WD cost function, allowing
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an efficient trade-off between residual error and model
complexity.
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