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Abstract 
 

This paper proposes a novelty neural network 
model by using generalized kernel functions for the 
hidden layer of a feed forward network (Generalized 
Radial Basis Functions, GRBF), where the 
architecture, weights and node typology are learned 
through an evolutionary programming algorithm. This 
new kind of model is compared with the corresponding 
models with standard hidden nodes: Product Unit 
Neural Networks (PUNN), Multilayer Perceptrons 
(MLP) and the RBF neural networks. The methodology 
proposed is tested using six benchmark classification 
datasets from well-known machine learning problems. 
Generalized basis functions are found to present a 
better performance than the other standard basis 
functions for the task of classification. 

1. Introduction 

The simplest method for classification provides the 
class label given its observation via linear functions in 
predictor variables. This process of model fitting is 
quite stable, resulting in low variance but a potentially 
high bias. Frequently, in a real-problem of 
classification, we cannot make the stringent 
assumption of additive and purely linear effects of the 
variables. A traditional technique to overcome these 
difficulties is augmenting/replacing input vector with 
new variables, the basis functions, which are 
transformations of the input variables, and then a linear 
model is used in this new space of derived input 
features. Once the number and structure of the basis 
functions have been determined, the models are linear 

in these new variables and the fitting is a standard 
procedure. 

Different types of neural networks, NNs, are 
nowadays being used for classification purposes [1], 
including, among others: multilayer perceptron neural 
networks (MLP) where the transfer functions are 
Sigmoidal Unit (SU) basis functions; Radial Basis 
Function (RBF) neural networks with kernel functions 
where the transfer functions are usually Gaussian [2]; 
General Regression Neural Networks (GRNN) 
proposed by Specht [3]; and a class of multiplicative 
NNs, namely Product Unit Neural Networks (PUNNs), 
[4,5]. A characteristic that distinguishes all these 
models is the combination of transfer and activation 
functions used in the hidden layer of the neural 
network. In the rest of the paper, this pair of functions 
is referred to as the basis function.  

The RBF network can be considered a local average 
procedure and the improvement in its approximation 
ability as well as in the construction of its architecture 
has drawn a lot of attention. Bishop [2] concluded that 
an RBF network can provide a fast linear algorithm 
capable to represent complex non-linear mappings. An 
RBF classifier is a three-layer neural network model, 
in which an K-dimensional input vector x = (x1, x2,…, 
xK) is broadcast to each of M neurons in the hidden 
layer. The most common RBF is represented by a 
Gaussian function, but when dimensionality grows 
and/or when data is concentrated in boundaries of the 
K dimensional space, standard Gaussian basis function 
lacks its performance. One of the most evident reasons 
is that when dimensionality grows, the distances’ 
average from a RBF to the instances that are covered 
by its corresponding centre grows.  

With the aim of alleviating this problem associated 
to the high dimensionality of the input space, this work 
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evaluates the accuracy obtained by a special class of 
RBF NNs, namely generalized radial basis neural 
networks.  The training of these networks is performed 
by a specific evolutionary algorithm, where the 
principal issue is the stablishment of a method to 
choose adequate values for the principal parameters of 
the generalized basis functions. 

Section 2 introduces the generalized RBF Neural 
Networks. Section 3 formally presents the new 
generalized radial basis function neural network model 
for classification considered in this work. In section 4, 
the main characteristics of the algorithm used for 
training the model are described. Section 5 presents the 
experiments carried out and discusses the results 
obtained. Finally, Section 6 completes the paper with 
the main conclusions and future directions suggested 
by this study. 

2. Neural Networks based on Generalized 
Basis Functions 

RBF neural networks have been used in the most 
varied domains, from function approximation, to 
pattern classification, time series prediction, data 
mining, signals processing, and nonlinear system 
modelling and control. They have some useful 
properties which render them suitable for modelling 
and control. First, such networks are universal 
approximators [6]. In addition, they belong to a class 
of linearly parameterized networks where the network 
output is connected to tuneable weights in a linear 
manner. Due to their functional approximation 
capabilities, RBF networks have been seen as a good 
solution for interpolation problems. They are also able 
to provide regularized solutions for ill-posed problems 
[7]. RBF can be considered a local average procedure, 
and the improvement in both its approximation ability 
as well as in the construction of its architecture has 
been note-worthy [8]. One of the most important issues 
is network learning, i.e., the optimization of adjustable 
parameters, which include centre vectors, radii (or 
widths of the Gaussian distributions), and linear output 
weights connecting the RBF hidden nodes to the 
output nodes. Another important issue is the 
determination of the network’s structure or the number 
of RBF hidden nodes based on the parsimonious 
principle [8,9]. So, the number and positions of basis 
functions, which correspond to the neurons in the 
hidden layer of the network, have an important 
influence on the performance of the RBF neural net. 
Both problems have been tackled using a variety of 
approaches. For instance, the number and position of 

the RBFs may be fixed and defined a priori [9]; they 
may be determined by unsupervised clustering 
algorithms [10]; or through a supervised learning 
scheme that includes growing and pruning procedures 
[11]; or they can be evolved using evolutionary 
algorithms [12,13], or hybrid algorithms [14]. One of 
the most common RBF model is represented by a 
Gaussian function where the output depends on the 
distance between the instance and the centre of the 
RBF. This distance can be formulated in different 
ways; the most common formulation is the Euclidean 
distance, but when dimensionality grows and/or when 
data is concentrated in boundaries of the K 
dimensional space, standard Gaussian basis functions 
lack their performance. To prevent the effects observed 
for standard Gaussian RBFs, these basis functions can 
be generalized by means of replacing the usual 
exponent 2 by a new parameter  which can relax or 
contract the Gaussian. In this way, Generalized 
Gaussian kernels basis functions, GRBF, are defined 
using the following expression [15]:  
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respectively, the centre, the width and the exponent of 
the j-th generalized radial basis function and 
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K  is the 
number of inputs. These basis functions allow a better 
matching between the shape of the kernel and the 
distribution of the distances, since the � parameter 
provokes concavity and or convexity around the point 
where radium =  (see Figure 1). Indeed standard 
Gaussian lacks its performance when the mean of 
distances distribution separates from zero but 
Generalized Gaussian is able to adapt to this difficulty. 

r

3. Generalized Radial Basis Functions for 
Classification 

In a classification problem, measurements ix , 
, of a single individual (or object) are 

taken, and the individuals are to be classified into one 
of the 

1, 2,...,i = K

J  classes based on these measurements. A 
training sample { }( , ); 1, 2,...,n nD n= =x y

1 ,..., )n n kn

N  is available, 
where (x x=x  is the random vector of 
measurements taking values in KRΩ ⊂ , and  is the 
class level of the n-th individual, where the common 
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technique of representing class levels using a “1-of-J” 
encoding vector is adopted, , and 
the Correctly Classified Rate or accuracy of the 

classifier is defined by 

( (1) (2) ( ), ..., Jy y y=y )

1

1 ( ( ) )
N

n n
n

CCR I C
N =

= � x y= , 

where (.)I  is the zero-one lost function. A good 
classifier tries to achieve the highest possible  in 
a given problem. 

CCR

Generalized Radial Basis Functions
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Fig. 1. Generalized Gaussian with r=1, and 
different  values τ
 
 The softmax activation function [4] is considered 
as that  given by: 
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where J  is the number of classes in the problem, 
 the output of the j output neuron for pattern 

 and  is the probability a pattern x  has of 
belonging to class j. The model to estimate the 
function  is given by a kernel basis function 
model: 
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where, if we use a generalized basis function, the 
activation function of the j-th radial basis function, 

can be defined as equation (1). (jB x,w
Taking into account that the outputs of the neurons 

are interpreted from the point of view of probability 
through the use of the softmax activation function in 
equation (2), it can be seen that the class predicted by 
the neural net corresponds to the neuron in the output 

layer whose output value is the greatest. The optimum 
classification rule  is the following: ( )C x

ˆ ˆ ˆ( ) , where argmax ( , ), for  1, 2,...,l lC x l l g x l Jθ= = =  (4) 
The function used to evaluate a classification model 

is the function of cross-entropy error and it is given by 
the following expression for J classes:  
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where 1( ,..., )J=� � � . As can be observed in the next 
section, the proposed algorithm returns to the best 
cross-entropy individuals as feasible solutions. 
Moreover, because of the normalization condition: 

                             (6) ( )
1

,
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and the probability for one of the classes does not need 
to be estimated. 

The error surface associated with the model is very 
convoluted with numerous local optima and the 
Hessian matrix of the error function  is, in general, 
indefinite. Moreover, the optimal number of basis 
functions in the model (i.e. the number of hidden 
nodes in the neural network) is unknown, and, in this 
case, the GRBF are not Mercer kernels, i.e., they are 
not positive semi-definite for all values of the  
parameter [16]. In this way, the optimisation problem 
will generally not be convex. Thus, we determine the 
estimation of the vector parameters  by means of an 
evolutionary algorithm. 

( )l �

�̂

τ

4. Evolutionary Algorithm 

The evolutionary algorithm, EA, designs the structure 
and learns the weights of the GRBF neural networks. 
The search begins with an initial population of GBFR 
neural networks, and, in each iteration, the population 
is updated using a population-update algorithm. The 
population is subject to the operations of replication 
and mutation. The general structure of the EA is 
similar to the structure of the one presented in [16], but 
with several significant modifications. In the current 
approach,  is the error function of an individual ( )l � g  
of the population, where g  is a GRBF neural network, 
which is given by the multivaluated function 

. The fitness measure 
is a strictly decreasing transformation of the entropy 

error  given by 

( ) ) )( 1 1 , Jg g=g x � � �
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mutations depends on the temperature  of the 
GRBF neural network model, which is defined by 

.  

( )T g

r

( ) 1- ( ),    0 ( ) 1T g A g T g= ≤

τ r

≤
For GRBF hidden nodes, the connections between 

the input layer and hidden layer are initialized using a 
clustering algorithm, so the EA can start the 
evolutionary process with well positioned centers. The 
main idea is to cluster input data in M groups, M being 
the number of hidden GRBF neurons. Therefore, each 
hidden GRBF neuron can be positioned in the centroid 
of its corresponding cluster. A first algorithm 
modification consists on GRBF’s radii initialization, 
where the determination of the initial  and  values 
are intimately related to the distribution of the 
distances and can be set according to the specificities 
of that distribution. The method to choose adequate 
values for  and  is based on: largest or “farest” 
distances (dF, the 5-th percentile of the distribution) 
must be mapped to lower values of the probability. 
Then the dF values can be approximately calculated as 

τ

μ   1.645�, where + μ  is the mean of individual´s 
distance to the centroid and � is the standard deviation 
of these distances. Then,  and  can be calculated as 
follows by solving two different equations: 

τ r
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The solution of these equations is: 
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F (- ln(0.05))r d τ=  

The most critical part of these equations is determined 
by the μ  value and the “farest” distance (dF). For that, 
we use estimators of the μ  and dF associated to the 
statistic distribution of the distances between the 
centroids and the individuals in the cluster.  

In every generation, a parametric mutation is 
accomplished for each coefficient jiw  or l

jβ  of the 
model with Gaussian noise, where the variances of the 
normal distribution are updated throughout the 
evolution of the algorithm. Once the mutation is 
performed, the fitness of the individual is recalculated 
and a usual simulated annealing process is applied. 
First, the link weights are mutated by adding a value 

.  is mutated in the same way, 

adding a value . The variance  is 
updated throughout the evolution of the algorithm. 
There are different methods to update the variance. We 
use the 1/5 success rule of Rechenberg, one of the 
simplest methods [17]. The modification of GRBFs is 
very sensible to � variation. Indeed, when � is near to 
the interval [0, 2.5], a � variation changes drastically 
the contraction of GRBF basis function. On the other 
hand, when � >> 2.5, the same � variation does not 
change drastically the generalized Gaussian. Due to 
this behavior, � modification value must depend on the 
desired effect (see Fig. 2). 

( )(0,N T gξ α∈ ⋅ ) r
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Fig. 2. Generalized Gaussian with r= 1, and 
different  values τ

 
To define this desired effect, the � mutation is 

formulated as: 

 1
( tan(

tan( )
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n
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⋅ + Δ
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where e is the Euler’s constant and �  is the angle’s 
variation that must be produced on the tangent of the 
curve associated to the generalized function at the 
point where the radium is  (see fig. 2). r

On the other hand, structural mutation implies a 
modification in the neural network structure and 
allows explorations in different regions in the search 
space while helping to keep up the diversity of the 
population. There are two structural mutations: node 
deletion and node addition. These mutations are 
applied sequentially to each network [16]. 

In order to define the topology of the neural 
networks generated in the evolution process, we 
consider three parameters: , m EM  and IM . They 
respectively correspond to the minimum and the 
maximum number of hidden nodes in the whole 
evolutionary process and the maximum number of 
hidden nodes in the initialization process. In order to 
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obtain an initial population formed by models simpler 
than the most complex model possible, parameters 
must fulfil the condition . I Em M M≤ ≤

I[ , ]m M

We generate networks, where  is 
the number of population networks during the 
evolutionary process. Then we select the best  
neural networks. To generate a network, the number of 
nodes in the hidden layer is taken from a uniform 
distribution in the interval . For hidden nodes, 
the number of connections is always 

P10N P 1,000N =

N

2

P

K + , where K  
is the number of inputs, since these connections 
represent, respectively, the centre, the width and the 
exponent of each generalized radial basis function. The 
number of connections between each hidden node and 
the output layer is determined from a uniform 
distribution in the interval . The stop criterion 
is reached if one of the following conditions is 
fulfilled: a maximum number of generations is reached 
or the variance of the fitness of the best ten percent of 
the population is less than . The number of nodes 
that can be added or removed in a structural mutation is 
within the 

(0, 1]J −

410−

[ ]1, 2  interval.  

5. Experiments 

In order to analyze the performance of the Generalized 
Radial Basis neural networks, six datasets in the UCI 
repository have been tested. The experimental design 
was conducted using a holdout cross-validation 
procedure with instances for the training dataset 
and instances for the generalization dataset, 
where  is the size of the dataset. All parameters of 
the NNEP algorithm are common for all problems, 
except the ,

3 / 4n

I

/ 4n
n

m M , EM  values and the number of 
generations, which are represented in Table 1 together 
the main characteristics of each dataset.  

For each dataset, we will perform an analysis of the 
results obtained using GRBF basis functions and other 
basis functions commonly used in neural network 
models for classification. Table 2 shows the mean 
value and standard deviation for the training and 
generalization sets, of the Correctly Classified Rate 
( CC ) of the nets obtained in 30 runs of the 
experiment. It can be seen in Table 2 that the GRBF 
basis function models present the best results for 

. It is interesting to note that the higher 
differences favouring GRBF models with respect to 
the other models are obtained for those datasets with a 

high number of characteristics (Card, German, 
Ionosphere and Zoo). 

R

GCCR

6. Conclusions 

The models proposed, formed by Generalized 
Radial Basis Functions as transfer functions, are a 
viable alternative for obtaining more accurate 
classifications. These models have been designed with 
an evolutionary algorithm constructed specifically for 
taking into account the characteristics of this kernel 
model. The evaluation of the model and the algorithm 
for the six datasets considered, showed results that are 
comparable to those of other basis function neural 
networks models [18]. GRBF models obtain higher 
accuracy when they are compared to the rest of basis 
functions for those datasets with a high number of 
characteristics.  
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Table 1.  Main characteristics of each dataset tested and non-common parameter values. 

Dataset # Ins. R B N # Inp. Distribution # Clas. m IM  EM  # gen. 
Card 690 6 4 5 51 (307, 383) 2 1 2 3 50 

German 1000 6 3 11 61 (700,300) 2 2 3 4 300 
Glass 214 9 - - 9 (17,76,13,29,70,9) 6 7 8 9 500 
Ionos. 351 33 1 - 34 (126,225) 2 3 4 5 300 

Newthy 215 5 - - 5 (150,35,30) 3 1 1 4 100 
Zoo 101 1 15 - 16 (41,20,5,13,4,8,10) 7 2 3 3 400 

R: Real; B: Binary; N: Nominal; #Ins.: number of instances; #Inp.: number of inputs; #Clas.: number of classes; #gen.: 
number of generations. 

Table 2.  Statistical results in training and generalization CCR for the six datasets considered and 30 executions of the EP 
algorithm using different basis functions. The best result in the generalization set has been represented in bold face.  

Dataset Func. 
Training Generalization 

Dataset Func. 
Training Generalization 

Mean± SD Mean± SD Mean± SD Mean± SD 
Card GRBF 89.10±0.85 87.94±1.38 German GRBF 76.57±1.35 74.33±2.77 
 RBF 78.51±1.90 76.69±3.33  RBF 73.71±0.88 71.69±1.32 
 PU 84.40±2.02 87.50±2.75  PU 74.13±1.37 71.24±1.52 
 SU 86.82±0.94 87.71±1.42  SU 81.21±1.39 73.07±1.64 
Glass GRBF 72.88±2.96 68.93± 5.19 Ionos. GRBF 99.11± 0.47 93.75±1.76 
 PU 75.90±4.74 65.16±4.17  PU 96.79±1.13 91.15±2.20 
 SU 75.22±2.52 67.67±3.49  SU 98.83±0.75 92.61±1.56 
 RBF 66.29±2.81 64.91±4.74  RBF 91.39±1.27 90.42±2.60 
Newth. GRBF 99.94±0.19 97.10±1.93 Zoo GRBF 100±0.00 94.93± 2.77 
 RBF 95.67±0.62 95.00±2.01  RBF 78.46±2.73 75.07±5.00 
 PU 99.25±0.55 96.85±2.71  PU 98.20±1.74 94.80±4.48 
 SU 98.72±0.65 94.88±2.26  SU 99.34±1.02 92.67±4.34 
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