

Hyperbolic Tangent Basis Function Neural Networks Training by
Hybrid Evolutionary Programming for Accurate Short-Term Wind

Speed Prediction (*)

C. Hervás-Martínez1, P.A. Gutiérrez1, J.C. Fernández1, S. Salcedo-Sanz2, A. Portilla-Figueras2,
A. Pérez-Bellido2 and L. Prieto3

1Department of Computer Science and Numerical Analysis,
University of Córdoba, Campus de Rabanales, 14071, Spain

{chervas, pagutierrez,jcfernandez}@uco.es,
2Department of Signal Theory and Communications.

Universidad de Alcalá, Campus Universitario, 28871, Spain
sancho.salcedo@uah.es

3Department of wind resource, Iberdrola Renovables Inc.

Abstract

This paper proposes a neural network model for
wind speed prediction, a very important task in wind
parks management. Currently, several physical-
statistical and artificial intelligence (AI) wind speed
prediction models are used to this end. A recently
proposed hybrid model is based on hybridizations of
global and mesoscale forecasting systems, with a final
downscaling step using a multilayer perceptron
(MLP). In this paper, we test an alternative neural
model for this final step of downscaling, in which
projection hyperbolic tangent units (HTUs) are used
within feed forward neural networks. The architecture,
weights and node typology of the HTU-based network
are learnt using a hybrid evolutionary programming
algorithm. This new methodology is tested over a real
problem of wind speed forecasting, in which we show
that our method is able to improve the performance of
previous MLPs, obtaining an interpretable model of
final regression for each turbine in the wind park.

1. Introduction

The use of alternative sources of energy such as wind
and solar energy is becoming more and more important
in developed countries, as an important factor to
mitigate the impact of the current crisis and the impact
of petroleum's high prices. One of the main problems
that arise in wind power generation is the accurate
forecasting of the power that will be injected in the
distribution network: a good forecasting of the power
produced is crucial for the management of wind parks.
Recently, several models which hybridize weather

forecasting models (global and mesoscale), and
statistical techniques have been proposed in the
literature [1]. The majority of these models use a
global forecasting model and one or several mesoscale
and local-scale models to obtain wind speed
predictions at specific points of a wind park [2].
Moreover, in many cases, these systems use statistical
down-scaling processes including auto-regressive
models [3], artificial neural networks (ANNs) [4,5] or
support vector machines [6] as a final step to improve
the wind speed forecasting of the system. Two works
[7, 8] have been presented in 2009, in which the
authors propose the hybridization of a mesoscale
model (MM5) [9] with neural networks to obtain a
robust system for wind speed forecasting at wind parks
in short-time horizons. Specifically, the authors use the
predictions of a global forecasting model (Global
Forecasting System from the National Center for
Environmental Prediction, USA) [10], and some local
data from atmospheric soundings as initial and
boundary conditions for the MM5 model. The MM5
model performs an initial physical downscaling of the
data from the global model, to obtain a prediction of
the wind speed with better spatial resolution. The
output of the MM5 model, together with other local
variables, is processed by a neural network in order to
obtain the wind speed prediction in each turbine of the
park, by means of solving a regression problem.

Different types of ANNs are nowadays being used
for regression purposes [11], including, among others:
multilayer perceptron neural networks (MLPs) where
the transfer functions are logistic or hyperbolic tangent
functions, these last ones being referred in this paper
as Hyperbolic Tangent Unit (HTU) basis functions;
Radial Basis Function (RBF), General Regression

(*)This work has been partially supported by TIN 2008-06681-C06-03 project of the Spanish Ministerial Commission of Science
and Technology (MICYT), FEDER funds, the P08-TIC-3745 project of the “Junta de Andalucía” (Spain) and CCG08-
UAH/AMB-3993 project of the Universidad de Alcalá and Comunidad de Madrid (Spain).

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.30

193

Neural Networks (GRNN) proposed by Specht [12];
Product Unit Neural Networks (PUNNs) [13], etc. The
performance of the complete forecasting system
depend much on the specific network used, so
different models have been tested in the literature
[2,6,7]. An additional problem related to the
application of ANN models is the selection of the most
appropriate net architecture to be used. Classical
neural network training algorithms assume a fixed
architecture; however it is very difficult to establish
beforehand the best structure of the network for a
given problem. In the last few years, Evolutionary
algorithms (EAs) [15], have demonstrated great
accuracy in designing near optimal architectures, with
different networks [14,16].

This paper investigates on the performance of
hybrid evolutionary-based neural networks as final
statistical down-scaling techniques in wind speed
forecasting systems. Specifically, we present a hybrid
evolutionary programming algorithm for automatically
obtaining the structure and weights of a HTU neural
network, and how this model can be inserted in the
hybrid forecasting model described in [7], for
predicting wind speed in several turbines of a wind
park. The proposed method is compared to the
previous method used in the system described in [7], in
order to assess its performance. The paper is organized
as follows: Section 2 introduces data regression by
ANNs; Section 3 explains the proposed hybrid
algorithms; Section 4 describes the experiments
carried out; and Section 5 states the conclusions of the
paper.

2. Data Regression by ANNs

Data regression is a mayor research topic in the area of
function approximation. The regression problem
involves determining the relationship between some
response dependent variable and a set of
independent variables

y

1 2 ,
k

(, ...,)kx x x=x . The most
common form of structural assumption is that the
responses are assumed to be related to the predictor
through some deterministic function f and some
additive random error component , so that: ε

()y f ε= +x , (1)
where is a zero mean error distribution. ε

Our aim is to determine the f function so that we
can uncover the true relationship between the response

 at the predictor location x, given by . The
true regression function
y ()y f= x

f is unknown and we have
no way of determining its analytic form exactly, even

if one actually exists. We must content ourselves with
finding approximations to it which are close to the
truth. To do this we must make use of the observed
training dataset, , which consist of n observed
responses at some known predictor locations so

D

{ },i iD y= x for . 1,= 2,...,i n
It is often the case that a number of competing

theories or models exist to describe the process that
generated y . In our case we can use different ANN
models, these models may have different basis sets, as
well as different non linear structures, but in this case
we use a linear hyperbolic tangent basis structures in
the form

1

m

j =
�()= = (j jy f Bβ ,)jx; � x w, w (2)

where and is the k =�D∈ ⊂x R 1 2(, ,..., Tβ β)mβ
vector of components of the hidden-output layers
weights, that coefficients are associated to the
hyperbolic tangent basis functions

())1 2,B B(,x w) (,),1 2x w ..., (, T
mB mx w=B and

jw is the vector of input-hidden layers weights for the
jth hidden node. The network has k inputs that
represent the independent variables of the model, m
nodes in the hidden layer, and one node in the output
layer. The activation of the jth node in the hidden layer
is

1 ex
1 ex

p(2
p(2

− −
+ −

T
j
T
j

w x
w x

)
(,)

)jB =jx w (3)

For the determination of the wind speed, an
approximation based on a one hidden layer neural
network has been used, since a considerable number of
papers have appeared in the literature [17-18]
discussing that an ANN with two layers of weights and
sigmoidal or HTU hidden units can approximate
arbitrarily any functional (one-one or many-one)
continuous mapping from one finite-dimensional space
to another, provided that the number of hidden units

 is sufficiently large. The fact that the neural
networks can approximate any given function with the
desired accuracy is a powerful basis for the application
of neural networks to regression. This capacity of
ANNs for approximating any continuous function and
the quick development of the computational power has
motivated other researchers to adopt ANNs as an
alternative method to predict the values of the response
variable . Although most ANN models share a
common goal of performing functional mapping,
different networks architectures vary greatly in their
ability to handle different types of problems. The MLP

m

y

194

with the efficient back-propagation training algorithm is
probably the most frequently used type of neural network
model in practical applications. However, owing to its
multilayer structure and the limitations of the slow back-
propagation algorithm, the training process often settles
in undesirable local minima of the error surface or
converges too slowly.

3. Hybrid Evolutionary Programming
Algorithms

In this work, different variants of hybrid EAs have
been applied, as can be seen in [13], all of them based
on an evolutionary programming (EP) algorithm.

3.1. Evolutionary Programming Algorithm

The EP algorithm is an EA similar to the proposed

in [13,19]. The algorithm begins with the random
generation of NP individuals; then the evolution
process starts and a population-update algorithm is
applied, where the population is subjected to the
replication and mutation operations, but crossover is
not considered, as this operation is usually regarded as
being less effective for ANNs evolution. It uses two
types of mutations: structural and parametric
mutations. The structural mutation implies a
modification of the structure of the function performed
by the network and allows an exploration of different
regions of the search space. The parametric mutation
modifies the coefficients of the model using a
simulated annealing algorithm;The general structure of
the applied EA is detailed next:

Evolutionary Programming (EP)
1. Generate a random population of size NP.
2. Repeat until the stopping criterion is fulfilled

2.1. Apply parametric mutation to the best 10% of
individuals

2.2. Apply structural mutation to the remaining 90%
of individuals.

2.3. Calculate the fitness of every individual in the
population.

2.4. Add best fitness individual of the last generation
(elitist algorithm).

2.5. Rank the individuals with respect to their fitness.
2.6. Best 10% of population individuals are

replicated and substitute the worst 10% of
individuals.

3. Select the best individual of the population in the
last generation and return it as the final solution.

The algorithm begins with the random generation
of a larger number of networks than the number used
during the evolutionary process. 10NP networks are
generated, from which the best NP best individuals are
considered to form the initial population to be trained
during the evolutionary process. Two error
measurements are used for determining the precision
of the neural network model, the mean squared error
(MSE):

2

1

1() (())
Tn

l l
lT

MSE f y f
n =

= −� x , (4)

where is l-th observed value, and is the
predicted value for pattern , and the standard error
of prediction (SEP):

ly ()lf x

lx

 100() ()SEP f MSE f
y

= , (5)

where y is the average output of all patterns in
dataset.

The fitness function ()A f is defined by means of a
strictly decreasing transformation of the MSE:

1() , 0 () 1
1 ()

A f A f
MSE f

= <
+

≤ (6)

The adjustment of both weights and structure of the
ANNs is performed by the complementary action of
two mutation operators: parametric and structural
mutation. Parametric mutation implies a modification
in the coefficients (jβ and) of the model, using a
self adaptive simulated annealing algorithm. Structural
mutation modifies the topology of the neural nets,
helping the algorithm to avoid local minima and
increasing the diversity of the trained individuals. Five
structural mutations are applied sequentially to each
network: node deletion, connection deletion, node
addition, connection addition and node fusion. When
node deletion is applied, number of hidden nodes to be
removed is obtained as a uniform value in a previously
specified interval. Apart from this mutation, if
connection deletion is applied, the number of
connections to be deleted in the neural net is also
obtained as a uniform value, but in this case, as the
mutation is less disruptive, the selected interval is
selected to be a wider one. More details about this EP
algorithm can be found in [13].

jiw

3.2. Hybrid Evolutionary Programming Algorithms
We apply a hybrid evolutionary algorithm based on the
use of a clustering algorithm for deciding which
individuals are subject to local optimization. The basic
aim of this methodology is the minimization of the
number of times the local optimization algorithm is

 195

applied without reducing the performance of the
algorithm. This is especially important when the
algorithm involves a high computational cost. On the
other hand, removing the local optimization procedure
usually yields a worse performance, as we will show in
the experimental section. Thus, this method offers a
good trade-off between performance and efficiency,
since we apply the optimization algorithm to a reduced
number of individuals. Moreover, the clustering
process allows us to select a subset of individuals with
different features. In this way, the optimization
algorithm is more efficient. The local optimization
algorithm used in our work is the Levenberg-
Marquardt (L-M) optimization method. This algorithm
is designed specifically for minimizing a sum-of-
squares error [20]. In any case, any other local
optimization algorithm can be used in a particular
problem. As we have mentioned, the hybrid
evolutionary algorithms are based on the combination
of an evolutionary algorithm, a clustering process and
a local search procedure.

In the hybrid EP (HEP), the EP is run without the
local optimization algorithm and then it is applied to
the best solution obtained by the EP in the final
generation. This allows the precise local optimum
around the final solution to be found. Another version
of hybrid EA is the HEP with the clustering algorithm
(HEPC), which applies the clustering process over a
large enough subset of the best individuals in the final
population. The number of individuals in this subset
and the number of clusters to be created are critical
parameters of the clustering process. Once clusters
have been determined, the best individual in each
cluster is selected and then optimized using the local
search algorithm. The main objective of these
methodologies is to reduce the number of times it is
necessary to apply the local optimization procedure,
since local search algorithms commonly involve a high
computational cost. The clustering process selects the
most representative groups of the population,
providing a subset of individuals with different
features. The selected clustering method selected is k-
means clustering, using a distance measure defined for
the vectors of the different values obtained for each
individual over the training dataset. Further
information can be found in Martínez-Estudillo et al.
[13]. The hybrid algorithms applied are detailed next:

Hybrid Evolutionary Programming (HEP)
1. Generate a random population of size NP.
2. Repeat EP algorithm until the stopping criterion is

fulfilled
3. Apply L-M algorithm to best solution obtained in

the EP algorithm.

4. Return the optimized individual as the final
solution.

Hybrid Evolutionary Programming with Clustering
(HEPC)
1. Generate a random population of size NP.
2. Repeat EP algorithm until the stopping criterion is

fulfilled
3. Apply k-means process to best NC individuals of

the population in the last generation and assign a
cluster to each individual.

4. Apply L-M algorithm to best solution obtained in
each cluster.

5. Select the best individual among optimized ones
and return it as the final solution.

4. Experiments

As previously stated, we are facing a wind speed
prediction problem in this paper. A first process of
downscaling (physical downscaling) can be carried out
from these initial and bounding data, using the fifth
generation Mesoscale Model (MM5 model) [21]. The
result of this physical downscaling is a forecast of the
wind speed and direction in a more realistic orography
than the one giving by the global forecasting model.
The MM5 model interpolates the values of wind speed
to obtain mean hourly predictions. The output of the
MM5 model, integrated using the initial and bounding
conditions specified by the global model and local
conditions, will not properly cover the complete
surface of a wind park. The input variables of the ANN
must be selected with care. In our case, we have
chosen as input of the neural network the following:
the wind speed series at two grid points surrounding
the park (the procedure for the selection of the two
point of the park can be seen in [8]); the wind direction
and temperature at one of the previous points and two
temporal series to obtain a measure of the solar cycle,
strongly related to atmospheric circulation. Note that
all these data are collected from the MM5 results at a
given height, approximately equal for all the turbines,
considering the orography of the park. We use the
following equations to express the solar cycle:

 1
2sin()
24

S H π= , (7)

 2
2cos()
24

S H π= (8)

where is an integer vector. [0, 23]H =
The experimental design was conducted using a

holdout cross-validation procedure with approximately
 instances for the training dataset, 6284 patterns, 3 / 4n

 196

and instances for the generalization dataset, 1572
patterns, where is the size of the dataset. We tested
the methodology for three turbines of the wind park
“La Fuensanta”, located in Albacete, Spain (Figure 1).
All parameters of the hybrid evolutionary algorithms
are common for the three turbines, for all
methodologies: the coefficients are initialized in the [–
5, 5] interval; the maximum number of hidden nodes is

; the size of the population is . The
number of nodes that can be added or removed in a
structural mutation is within the [1, 3] interval,
whereas the number of connections that can be added
or removed in a structural mutation is within the [1, 7]
interval. The only parameter of the L–M algorithm is
the tolerance of the error to stop the algorithm; in our
experiment, this parameter has the value 0.01. The k-
means algorithm is applied to best individuals in
the population. The number of clusters is 4 for the
HEPC algorithm. The input variables were scaled in
the interval [0.1,0.9], and the output variable (the wind
speed) in the interval [0.1,0.9]. Results obtained with
the different algorithms were evaluated by using both
MSE and SEP. Table 1 shows the statistical results,
mean value and standard deviation (Mean±SD) of the
generalization errors obtained by the models in the 30
runs for three turbines, using the EP and the other two
hybrid algorithms (HEP and HEPC). The results also
include the best MSE model obtained in the 30 runs,
which is compared to the best model obtained by using
the neural network in [8]. From a purely descriptive
point of view, the best result is obtained using the
HEPC methodology for the three turbines.

/ 4n

9

n

m = P 1,000N =

250

According to this study, the following final
optimal network model for turbine 1 were those
reported in Table 2; in which quantitative equation
systems are presented for the direct determination of
accurate wind speed predictions including: (a) the wind
speed series at two grid points surrounding the park,
the wind direction and temperature at one of the
previous points, and only one measure of the solar
cycle, S2, because the x5 independent variable does not
appear in the model; (b) the optimized network
weights; and (c) the hyperbolic tangent transfer
functions for the MLP models. According to the MSE
values, this model can be readily used for the
determination of the wind speed for turbine 1. It can be
seen in Table 2, that HTUs enable a neural network to
form function of inputs with increased information
capacity and smaller network architecture.

5. Conclusions

This study demonstrated the potential of HTU
neural networks models trained using a hybrid
evolutionary algorithm for a problem of short-term
wind speed prediction. We hybridized HTU neural
networks models with global and mesoscale physical
forecasting models, in such a way that the neural
networks tackle the final statistical downscaling
process. We have described the characteristics of the
different hybrid algorithms used, and the complete
system of forecasting including the evolutionary
artificial neural network implemented. We have
applied our models for three turbines in the short-term
wind speed prediction in a wind park in Spain, with
absolutely competitive results when compared to other
neural network methodologies.

Table 1. Statistical results of generalization SEP
and MSE errors for several turbines, for 30
executions of the EP, HEP, and HEPC algorithms,
statistical results of the #links of the EP and HEPC
algorithms and best MSE model generalization
error of the EP and the MLP in [8] algorithms. The
best result for the MSE and the #links has been
represented in bold face.

 Mean± SD
Method Turbine 1 Turbine 15 Turbine 21
SEPEP 41.50±0.75 41.83±0.64 41.57±0.47
SEPHEP 40.54±0.71 40.79±1.09 40.69±0.73
SEPHEPC 40.40±0.79 40.94±1.10 40.69±0.83
MSEEP 6.07±0.22 5.77±0.18 5.55±0.13
MSEHEP 5.79±0.20 5.49±0.29 5.38±0.19
MSEHEPC 5.75±0.23 5.53±0.30 5.32±0.22
MSEBest
(HEPC)

5.36
(3 nodes)

5.05
(4 nodes)

4.95
(6 nodes)

MSEBest
(MLP [8])

5.53
(14 nodes)

5.10
(15 nodes)

5.06
(12 nodes)

 # links
EP 18.13±5.85 17.27±5.26 17.33± 5.67
HEPC 17.93±6.15 16.93±5.64 17.26± 5.96

6. References

[1] M. C. Alexiadis, P.S. Dokopoulos, H. Sahsamanoglou, I.

M. Manousaridis, Short-term forecasting of wind speed
and related electrical power, Solar Energy 63 (1) 61-
68. 1998

[2] L. Landberg, Short-term prediction of local wind
conditions, J. Wind Eng. Ind. Aerodyn. 89 235-245.
2001.

[3] M. Khashei, M. Bijari, G. Raissi-Ardali, Improvement
of auto-regressive integrated moving average models
using fuzzy logic and artificial neural networks
(ANNs), Neurocomputing, 2008,

 197

[13] A. C. Martínez-Estudillo, F. J. Martínez-Estudillo, C.
Hervás-Martínez, and N. García-Pedrajas,
Evolutionary Product Unit based Neural Networks for
Regression, Neural Networks 19 477-486. 2006

[4] T. G. Barbounis, J. B. Theocharis, Locally recurrent
neural networks for wind speed prediction using
spatial correlation, Neurocomputing 70 1525-1542.
2007

[14] X. Yao, Evolving artificial neural networks,
Proceedings of the IEEE, 87(9) 1423-1447. 1999

[5] S. Li, C. D. Wunch, A. O'Hair, G. M. Giesselmann,
Using neural networks to estimate wind turbine power
generation, IEEE Trans. Energy Conversion 16 (3)
276-281. 2001

[15] Z. Michalewicz, Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, New York.
1994 [6] M. A. Mohandes, T. O. Halawani, S. Rehman, A.

A. Hussain, Support vector machines for wind
speed prediction, Renewable Energy 29 939-947. 2004

[16] A. C. Martínez-Estudillo, C. Hervás-Martínez, F. J.
Martínez-Estudillo, N. García-Pedrajas. Hybridization
of evolutionary algorithms and local search by means
of a clustering method. IEEE Trans. Syst. Man
Cybernetics 36 (3), 534-545. 2006

[7] S. Salcedo-Sanz, Á. M. Pérez-Bellido, E. G. Ortiz-
García, A. Portilla-Figueras L. Prieto, F. Correoso.
Accurate short-term wind speed prediction by
exploiting diversity in input data using banks of
artificial neural networks Neurocomputing 72 1336-
1341. 2009

[17] K.Funahashi, On the approximate realization of
continuous mappings by neural networks. Neural Net.
2 (3), 183-192. 1989

[18] K. Hornick, M. Stinchcombe, and H. White. Multilayer
feedforward network are universal approximators.
Neural Net. 2 (5), 359-366. 1989

[8] S. Salcedo-Sanz, Á. M. Pérez-Bellido, E. G. Ortiz-
García, A. Portilla-Figueras, L. Prieto, D. Paredes.
Hybridizing the fifth generation mesoscale model with
artificial neural networks for short-term wind speed
prediction. Renewable Energy 34 1451-1457. 2009

[19] P. J. Angeline, G. M. Saunders, J. B. Pollack. An
evolutionary algorithm that constructs recurrent neural
networks. IEEE Trans. Neural Networks 5 (1), 54-65.
1994.

[9] J. A. Dudhia nonhydrostatic version of the Penn State-
NCAR mesoscale model: validation, tests and
simulation of an Atlantic cyclone and cold front.
Monthly Weather Review. 121, 1493-513. 1993

[20] M. Bishop. Neural networks for pattern recognition.
Oxford University Press, UK. 1995

[21] J. A. Dudhia nonhydrostatic version of the Penn State-
NCAR mesoscale model: validation, tests and
simulation of an Atlantic cyclone and cold front.
Monthly Weather Review. 121, 1493-513. 1993

[10] J.C. Alpert, K.A.Campana, P.M. Caplan, D.G. Deaven,
M. Iredell, B. Katz. Recent changes implemented into
the global forecast system at NMC. M. Kanamitsu.
Weather and Forecasting. 6 (3), 425-35. 1991

. [11] S. Haykin. Neural Networks and learning machines.
Third Edition. Prentice Hall. 2009

[12] D. F. Specht. A general regression neural network. IEEE
Transactionson Neural Networks, 2(6), 568-576. 1991.

Table 2. Best model obtained with a feed forward neural network with hyperbolic tangent basis function
trained by the HEPC algorithm.

Best Model Turbine 1 Hyperbolic Tangent Unit
WS(HTU)= 0.78-0.30*HTU1+3.17*HTU2+2.55*HTU3

HTU1= (exp[2(4.84*x4-5.92*x3-1.56*x1+0.75]-1) / (exp[2(4.84*x4-5.92*x3-1.56*x1+0.75]+1)
HTU2= (exp[2(0.05*x6+1.31*x4+0.31*x2-2.55]-1) / (exp[2(0.05*x6+1.31*x4+0.31*x2-2.55]+1)
HTU3= (exp[2 -2.97*x3+0.41*x1+3.67]-1) / (exp[2(-2.97*x3+0.41*x1+3.67]+1)
hidden nodes: 3; #parameters : 15; SEPG= 39.02; MSEG=5.36; HEPC. #gen=400

Figure 1. Wind park orography (La Fuensanta, Albacete, Spain) and location of the wind turbines in this study.

198

