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Abstract—Road Sign Detection is a major goal of Advanced
Driving Assistance Systems (ADAS). Since the dawn of this
discipline, much work based on different techniques has been
published which shows that traffic signs can be first detected
and then classified in video sequences in real time. While
detection is usually performed using classical computer vision
techniques based on color and/or shape matching, most often
classification is performed by neural networks. In this work we
present a novel approach based on both sign shape and color
which uses Particle Swarm Optimization (PSO) for detection.
Remarkably, a single fitness function can be used both to
detect a sign belonging to a certain category and, at the same
time, to estimate its actual position with respect to the camera
reference frame. To speed up execution times, the algorithm
exploits the parallelism offered by modern graphics cards
and, in particular, the CUDA

TM
architecture by nVIDIA. The

effectiveness of the approach has been assessed on a synthetic
video sequence, which has been successfully processed in real
time at full frame rate.

I. INTRODUCTION

Real-time automatic road sign recognition is one of the
goals of Advanced Driver Assistance Systems (ADAS) [1],
[2]. It can both improve safety, letting the driver concentrate
more on driving, and help navigation, by providing necessary
information the driver could otherwise miss. The task of
road sign recognition is usually divided into the subtasks
of detection and classification; the latter is often performed
by artificial neural networks, while the former is carried out
mainly following color-based or shape-based approaches [3].

In this paper we present a mixed approach. Sets of 3D
points, which belong to the contour of the road sign model to
be detected and describe its shape, are sampled and projected
onto the image plane according to a transformation which
maps points in the camera reference frame onto the image,
and matched with the actual image content. The likelihood
of detection is evaluated using a similarity measure based on
color histograms [4]. This procedure actually estimates the
pose of an object based on a 3D model and can be utilized
with any projection system and any general object model.
One of the advantages over other model-based approaches
is that this approach does not need any preliminary pre-
processing of the image (like color segmentation) or any
reprojection of the full 3D model [4]. Another difference

from similar previous work [5], along with the aforemen-
tioned similarity measure, is that, in our case, the space
of possible poses is searched by means of Particle Swarm
Optimization (PSO), an effective bio-inspired population-
based metaheuristic.

Due to the large amount of resources needed to run the
algorithm and to compute the fitness function, a classical
sequential implementation of the system would probably
result in excessively long execution times. To achieve real-
time processing, we implemented our system on graphics
hardware within the nVIDIA CUDA

TM
environment [6], to

take advantage of the computing power offered by the
massive parallel architectures available on present consumer
video cards. As will be shown, thanks to the parallel nature
of PSO, this choice is very effective, since the final system
is able to manage several swarms at the same time, each of
which can detect a specific kind of road sign.

This paper is organized as follows: Section II briefly intro-
duces PSO; Section III addresses the problem of road sign
recognition, motivating our approach and offering further
details on how shape and color information is used in the
fitness function. In Section IV the GPU-based implemen-
tation of the system is briefly described and, finally, in
Section V we report some results obtained on a synthetic
video sequence containing a warning and a regulatory sign.

II. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization is a simple but powerful
optimization algorithm, introduced by Kennedy and Eberhart
in 1995 [7]. In the last decade many variants of the basic
PSO algorithm have been developed [8] and successfully
applied to many problems in several fields [9], image anal-
ysis being one of the most frequent ones. In fact, image
analysis problems can be often reformulated as the problem
of optimizing an objective function, directly derived from
the physical features of the problem. Beyond this, PSO
can often be more than a way to “tune” the parameters of
another algorithm, but directly the source of the solution.
For example, [10], [11], [12], [13], [14] use PSO to directly
infer the position of an object that is sought in the image.

PSO searches for the optima of a function, termed fitness
function, following rules inspired by the behavior of flocks
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of birds looking for food. A population of particles, each
of which encodes a point in the fitness function domain,
move within the search space. At each move, the fitness
of a particle, associated with its new position, is evaluated.
In their motion, particles preserve part of their velocity
(inertia) while undergoing two attraction forces: the first one,
called cognitive attraction, attracts a particle towards the best
position it visited so far, while the second one, called social
attraction, pulls the particle towards the best position ever
found by the whole swarm. In basic PSO, the following
velocity and position-update equations are applied for each
particle:

Vi(t) = w · Vi(t − 1)
+ C1 · R1 · [Xib

(t − 1) − Xi(t − 1)]
+ C2 · R2 · [Xigb

(t − 1) − Xi(t − 1)] (1)

Xi(t) = Xi(t − 1) + Vi(t) (2)

where the subscript i refers to the i-th dimension of the
search space, V is the velocity of the particle, C1, C2 are
two positive constants, w is the inertia weight, X(t) is the
particle’s position at time t, Xb(t − 1) is the best-fitness
position reached by the particle up to time t−1, Xgb(t−1)
is the best-fitness point ever found by the whole swarm; R1

and R2 are two random numbers from a uniform distribution
in [0, 1].

III. ROAD SIGN DETECTION

Suppose that an object of known shape and color may
appear within the field of view of a calibrated camera. In
order to detect its presence and, at the same time, to precisely
estimate its position, one can follow this algorithm (see
also [4]):

1) Consider a set of key contour points, of known co-
ordinates with respect to a reference position, and
representative of the shape and colors of the object.

2) Translate (and rotate) them to a hypothesized position
visible by the camera and project them onto the image.

3) Verify that color histograms of the sets of key points
match those of their projection on the image to assess
the presence of the object.

Simple objects characterized by just a few regions of ho-
mogeneous colors, as in the case of road signs, can be
described by sets of key points which lie just near the color
discontinuities, with points which belong to the same set
being characterized by the same color. Again, once all these
points are projected onto the image plane one must verify
that colors of each set of corresponding points in the image
match the original ones. A further set of points, lying just a
bit outside the object silhouette, can help verify whether the
object border has been detected: this would be confirmed
in case colors in corresponding points of the image are
significantly different from those of the object.

Figure 1. The three different sets of points used to represent a warning
sign (left) and a regulatory sign (right). All coordinates are expressed in
millimeters.

In Fig. 1 we show two kinds of traffic signs, warning (left)
and regulatory (right), along with the sets of points we use
to represent them. For each sign model, we consider three
sets of 16 points: one lies just outside the external border
(therefore, on the “background”), one on the red band just
inside the external border and one on the central white area,
as close to the red border as possible. Please note that, for the
regulatory signs, we use points uniformly distributed around
its circular shape, while for the triangle we consider more
points near the corners than along the sides. This choice
enhances the differences in the fitness values corresponding
to the two kinds of signs.

If a calibrated camera is available on a moving car, along
with an estimate of the position and rotation of a road sign
inside the camera’s field of view, the above sets of points can
be roto-translated to this position and then projected on the
images acquired, to verify the likelihood of the hypothesis.
All is needed is a method to make hypotheses and refine
them until the actual position of a sign is found.

To this aim we apply PSO, as introduced in section II.
In our method, each particle encodes an estimation of the
position of the sign with four values, representing its x,
y and z offsets, as well as its rotation around the vertical
axis (yaw) in the camera reference frame. A single swarm
can then be used to detect the possible presence of a sign
belonging to a particular category within the image. In case
one is found, its position with respect to the car will be
also determined. At the moment, no classification of the
content of the signs which have been detected is peformed
to distinguish between different signs of the same class.

PSO is run at each new frame acquisition for a pre-
defined number of generations. At the moment no tracking is
performed except, implicitly, for the fact that we do not re-
initialize the particles’ position (only velocities are randomly
re-set) on the next frame when the best fitness of the last
iteration is good enough (hopefully meaning that a sign has
been correctly found). In the next subsection we describe
the fitness function we use in our PSO-based approach in
details.
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A. Fitness Function

Let us denote the three sets of points used to describe
each kind of sign (see Fig. 1) as S1 = {s1

i }, S2 = {s2
i }

and S3 = {s3
i }, with sx

i ∈ R
2 (they all lie on the xy plane)

and i ∈ [1, 16]. Based on the position of one particle and on
the projection matrix derived from camera calibration, each
set of points is roto-translated and projected onto the current
frame obtaining the corresponding three sets of points lying
on the image plane P1 = {p1

i }, P2 = {p2
i } and P3 = {p3

i }.
To verify whether the hypothesized position is actually

correct, three color histograms in the RGB colorspace,
one for each channel, are computed for each set Px with
x ∈ {1, 2, 3}. Let us denote them as Hc

x where, again,
x ∈ {1, 2, 3} and c ∈ {R,G,B} specifies the channel for
which the histogram is computed. More formally, we can
state that:

Hc
x(b) =

1
n

n∑

i=1

δ(Ic(px
i ) − b) (3)

where c ∈ {R,G,B} specifies the color channel, x ∈
{1, 2, 3} identifies the set of points, b ∈ [1, Nbin], Nbin

being the number of bins in the histogram, n represents the
number of points per set (sixteen in our case), the function
δ(n) returns one when n = 0 and zero otherwise and, finally,
Ic(p) : R

2 → R maps the intensity of channel c at pixel
location p to a certain bin index. Note that the term 1

n

normalizes the histogram (
∑Nbin

b=1 Hc
x(b) = 1). Moreover,

three additional histograms denoted with Hc
ref are used

as reference histograms for the red band. At this point the
Bhattacharyya coefficient (ρ) [15], which offers an estimate
of the amount of overlap between two statistical samples, is
used to compare the histograms.

ρ(H1,H2) =
Nbin∑

b=1

√
H1(b)H2(b) (4)

The Bhattacharyya coefficient returns a real value between
0 (no overlap at all between the two histograms), and 1 (the
two histograms are identical). Finally, if we use

Sx,y =
ρ(HR

x ,HR
y ) + ρ(HG

x ,HG
y ) + ρ(HB

x ,HB
y )

3
(5)

to express the similarity of the two triplets of histograms
computed for the sets of points x and y we can express the
fitness function as

f = 1 − k0 (1 − S1,2) + k1 (1 − S2,3) + k2 S1,ref

k0 + k1 + k2
(6)

where k0, k1, k2 ∈ R
+ are used to weigh the contributions

of the three distances appearing in the above formula. Here
we want the histograms computed on the first two sets of
points to be as different as possible, hypothesizing that, in

case the sign had been “hit”, the background colors nearby
the sign would be significantly different from those of the
red band. Similarly, we want the histogram computed for the
points of the red band to be as different as possible from the
one computed on the white area. Finally, we want histograms
Hx

1 to resemble as much as possible the reference histograms
Hx

ref for the red band surrounding the sign. Histograms of
regions having colors that are slightly different from the
model, possibly because of noise, produce high values of
S1,ref . The fitness function f will therefore be close to 0
only when the position of one particle is a good estimate of
the sign pose in the scene captured by the camera.

IV. IMPLEMENTATION ON GPU

CUDA
TM

’s parallel programming model is designed to
allow the programmer to partition the main problem in many
sub-problems that can be solved independently in parallel.
Each sub-problem may then be further decomposed in many
modules that can be executed cooperatively in parallel. In
CUDA

TM
’s terminology, each sub-problem becomes a thread

block, which is composed by a certain number of threads
which cooperate to solve the sub-problem in parallel. The
software modules that describe the operation of each thread
are called kernels: when a program running on the CPU
invokes a kernel, a unique set of indices is assigned to each
thread to denote to which block it belongs and its position
inside it. These indices allow each thread to ’personalize’
its access to the data structures and, in the end, to achieve
problem parallelization and decomposition.

To exploit the impressive computation capabilities offered
by CUDA

TM
effectively and develop a parallel version of

PSO, the best approach is probably to consider the main
phases of the algorithm as separate tasks, each of which
must be parallelized separately: this way, each phase can
be implemented by a different kernel and the whole opti-
mization process can be performed by scheduling repeatedly
all the basic kernels needed to perform one generational
update of the swarm. Since the only way CUDA

TM
offers

to share data among different kernels is to keep them in
global memory, the current status of our PSO must be saved
there. Data organization is therefore the first problem to
tackle to exploit the GPU read/write coalescing capability.
Our data design, besides encouraging this aspect, permits to
run several swarms at the same time simply by playing with
the thread indices.

We generate pseudo-random numbers directly on the GPU
using the Mersenne Twister [16] kernel provided by the
CUDA

TM
SDK: this way the CPU load is virtually zero. A

brief outline of our kernels follows.

A. Bests Update

For each swarm, a thread block is scheduled with a
number of threads equal to the number of particles in the
swarm. Firstly, each thread loads in shared memory both
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Figure 2. Sample frame taken from our synthetic video sequence
simulating a country road scenario with two differently shaped roadsigns.

the current and the best fitness values of its corresponding
particle. Then, the personal best is updated, if needed.
Successively, parallel reduction is performed to determine
the current best fitness value in the swarm, that is then
compared with the best value found so far, to be possibly
updated.

B. Position Update

A computation grid, divided into blocks of 32 threads,
has the duty to update the position of all particles being
simulated. Each thread updates one element of the position
and velocity arrays, irrespective of the particle (or the dimen-
sion) to which it corresponds. At the beginning the particle’s
current position, personal best position, and velocity are
loaded, after which the classical PSO equations are applied
to the values.

C. Fitness Evaluation

This kernel is scheduled as a computation grid composed
by one block for each particle being simulated (irrespective
of the swarm to which it belongs). Each block comprises
a number of threads equal to the total number of points
that describe a sign (three sets of 16 points each) so
that the projection of all points on the current image is
performed in parallel. Successively, each thread contributes
to building the histograms described in section III-A: the
thread index determines to which set/histogram the projected
point under consideration belongs, while the sampled color
value determines which bin is to be incremented. Finally
the fitness value is computed according to (6) where, once
again, the parallelism among threads is exploited to compute
similarities among histograms.

V. EXPERIMENTAL RESULTS

As a first test we decided to evaluate our system on
synthetic video sequences. To do so, we simulated a 3D
rural environment with a road and a pair of traffic signs
using the public-domain raytracer POV-Ray1. We relied on

1visit http://www.povray.org/ for more information

the Roadsigns macros by Chris Bartlett2 to simulate the
signs and on some ready-to-use objects by A. Lohmüller and
F.A. Lohmüller 3 to simulate the road. Bumps and dirtiness
were added to the traffic signs in order to simulate more
realistic conditions. In Fig. 2, a sample frame from one
of the synthesized sequences is shown. As time passes, the
simulated car moves forward zigzagging from left to right.
At the same time, as they get closer to the car, the two signs
rotate around their vertical axis. We introduced rotations to
test the ability of our system to estimate the actual roto-
translation between the camera and the sign that is detected.
In fact, in our case, each particle moves in R

4 and its position
represents the x, y and z offsets of the sign as well as its
rotation on the vertical axis (yaw).

Experiments were run on a PC equipped with an Intel
Core2 Duo processor running at 1.86GHz with a moderately-
priced GeForce 8800 GT video card by nVIDIA corporation,
equipped with 1GB of video RAM. The PSO parameters
were set to w = 0.723, C1 = C2 = 1.6, and two
swarms composed by 64 particles were run for up to 50
generations per frame: the first swarm seeks for regulatory
signs (characterized by a circular shape) while the second
one looks for warning signs (of triangular shape). The
coefficients appearing in (6) were empirically set as follows:
k0 = 1.2, k1 = 1.0, k2 = 1.4.

The implementation of the whole system within the
CUDA

TM
architecture described above permitted to achieve

very good execution times, despite the computation inten-
siveness of the algorithm. In fact, a sequential version of
the algorithm required about 80 ms of processing time per
frame (limiting the maximum acceptable frame rate to about
12 fps), whereas the parallel version achieved a speed-up
of about 20 times requiring 4 to 6 ms to process each
frame. This means that we could either locate signs in videos
running up to 150/160 frames per second, or that, at 25
frames per second, more than 30 ms per frame would still
be available to perform sign recognition, after a sign has
been detected.

Fig. 3 shows three different frames obtained at the very
beginning, in the middle and nearly at the end of the
sequence, respectively. The contrast of the image has been
reduced to better highlight the swarm positions. Points
superimposed in white over the images represent the cur-
rent hypothesis about the sign position made by the best
individual, while black points depict current hypotheses of
all other individuals. In Fig. 3.a it is possible to see the two
swarms during the initial search phase: in this case both are
on the wrong target despite being already in the proximity of
a sign. Fig. 3.b and 3.c show how the two swarms correctly
converged on their targets. This always happened after a
small amount of frames, usually less than 20, meaning that

2http://lib.povray.org/collection/roadsigns/chrisb 2.0/roadsigns.html
3http://f-lohmueller.de/pov tut/objects/obj 500i.htm
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a) b) c)
Figure 3. Output of a run of our road sign detection system at the very beginning (a), at middle length (b) and near to the end (c) of a synthetic video
sequence.

the system is able to detect a sign in less than one second
since its appearance.

For a more detailed performance analysis, Fig. 4 shows
results obtained in estimating the actual position of the
signs with respect to the camera position. Fig. 4 (top-left)
shows the actual x position and the estimated one (mean
and standard deviation over one hundred runs), versus the
frame number, for both the warning (green line) and the
regulatory (red line) signs. As can be seen, after a brief
searching phase, always lasting less than twenty frames, the
horizontal position for the two signs is correctly detected
and tracked until the end of the sequence with a precision
of the order of centimeters. The sinusoidal trend of the two
position reflects the zigzagging behaviour of the car we
simulated. The top-right part of the figure shows results for
the y coordinates. This time the actual position is constant
since the simulated car has a constant pitch. Again, after the
initial search phase, the estimated position is correct, with
errors of just few centimeters. Similar considerations can
be done for the bottom-left graph of Fig. 4, which reports
results of depth (z coordinate) estimation. Despite the long
distance from the car (about fifteen meters in the beginning)
estimates are very good with errors of less than half a meter.
The error is mostly due to the distance between the two
most external sets of points, which introduces a tolerance in
centering the target. Tightening this distance could improve
the precision of the results but, at the same time, would
make it more difficult to obtain high fitness values for signs
which are far from the car: this happens because, when the
sign is far away from the car, the projections of these two
sets of points on the image almost overlap, producing color
histograms which are very similar. Finally, in the bottom-
right part of the figure we show results of yaw estimation.
In this case results are not as precise: it is possible to see
how the rotation of the warning sign is estimated rather
precisely, although in the first third of the simulation the
standard deviation is very high, while the rotation of the
regulatory sign seems to be randomly estimated. Since we
are dealing with small angles this must be due, again, to the
tolerance in locating the signs introduced by the distance
between the two external sets of points.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have shown that PSO, provided with the right fitness
function, can be effective in detecting traffic signs in real-
time. Experimental results on synthetic video sequences
showed that our system is also able to correctly estimate the
position of the detected signs with a precision of about ten
centimeters in all directions, with depth being (obviously)
the less accurate. As for future experiments with real-world
images, we think that switching from the RGB to the HSV
colorspace would permit to obtain results similar to those
presented here for synthetic sequences.

The very next step in our research will be to exploit the
accurate estimation of the position of the sign offered by our
method to rectify its image by means of a simple Inverse
Perspective Mapping (IPM) [17]. This means it will always
be possible to obtain a standardized frontal view of the
detected sign and thus to easily classify/recognise its content
irrespective of its actual orientation and distance.

A future step will also be to test our method in detecting
multiple signs of the same kind simultaneously. This might
be done in essentially two different ways: by using the same
swarm to detect many targets by re-running the optimization
process several times on the same image, masking image
regions where signs have been previously found or by
running many different competing swarms at the same time
on the same frame, that look for the same sign shape. For
this solution to work inter-swarm repulsion forces could
be introduced, in order to prevent different swarms from
converging on the same target.
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